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THE COMPLETE TIMOSHENKO FORM OF TORQUE 

INFLUENCE ON ROTORS LATERAL VIBRATIONS  

Cristian M. STĂNICĂ1, Mihai V. PREDOI2, Valentin SILIVESTRU3, Ion STROE4 

The torque carried by a slender rotor has an important influence on the 

lateral vibration frequencies of the rotor. At this time there in no existing 

rotordynamics formulation of the torque effect on the lateral vibrations using the 

more precise Timoshenko beam theory. The present article is proposing to fill this 

gap and complete the rotordynamics theory with the torque terms containing the 

shear effect derived from Timoshenko beam theory. 
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1. Introduction 

The first to come with a formulation of the torque influence on the slender 

rotors lateral vibration was Zorzi and Nelson following the experimental 

observations of Galomb and Eshleman.[1][2] Earlier studies showed that the 

torque can produce the failure of slender rotors (shafts) by lateral buckling. This is 

an extreme case which teach us that even the torque does not achieve the 

magnitude needed to results in lateral buckling there is an influence, a 

contribution of this on the lateral displacements of the rotor when subjected to 

other loads and, in order to obtain correct results for these other cases, this 

contribution of torque should be precisely accounted for. Zorzi and Nelson solved 

this problem using the more easy approach of Bernoully Euler beam theory [3] 

which provide a rather good result but neglects the shear effect, thus rendering 

results less precise than the Timoshenko beam theory. Today the state of the art 

solving for the rotordynamics problem involves using the most precise theory 

which is the Timoshenko beam formulation. Therefore the complete formulation 

of the torque effect including the shear is required but not available in the present 

literature. For example a relative recent work on the subject edited by Cambridge 

University [6] lists just the Euler formulation of the torque effect on the lateral 

rotordynamic vibrations. 
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2. Theoretical aspects 

In the effort to derive the relations describing the variation of the 

fundamental frequency of slender rotors as a function of torque and axial loading 

the extreme cases are considered. It was shown by previous experiments and 

demonstrated by Euler [4] and Greenhill [4] that for an amount of compressive 

axial load and or torque the buckling of the beam will occur.  

According to Eshleman and Eubanks [2] the fundamental frequency of a 

slender rotor (shafts) does not remain constant during load increasing but it is 

varying and in the case of compressive and torque loads it is decreasing 

proportional until the buckling phenomena occurs. So the buckling can be 

redefined as an extreme case of loading when the fundamental frequency of the 

loaded rotating shaft become zero Hertz. The formula for which the buckling 

under constant axial load occurs is given by Euler as 

2

2
P k

l


   ,    E I    .                            (1) 

The values for k are 1 for short bearings, 4 for long bearings, between 1 

and 4 for different combinations of bearings and 0.25 for cantilever rotor.[4] 

Regarding the buckling under torque Greenhill gives the following 

formula 

M k
l


                                                   (2) 

The values for k are ≥1 for short bearings, 2.861 for long bearings, 

between 1 and 2.861 for different combinations of bearings and between zero to 1 

for cantilever rotor depending of particularities of the application. 

A combined case is demonstrated by Ziegler [4] where the torque and 

tangential compressive load are combining and depending on each other. Using 

the notations 

0 0

 ,   ,
M P

m p
M P

                                            (3) 

where with the M0 is the buckling torque in the absence of compressive 

load and P0 is the buckling compressive load in the absence of torque, results the 

relation between buckling torque M and buckling compressive load P when both 

are simultaneous acting on the beam is 
2   1m p  .                                             (4) 

Eshleman and Eubanks [2] using as a base the work of Golomb and 

Rosenberg [4] devised a method to assess the variation of the first fundamental 

frequency of rotating shaft depending of the amount of torque carried by the shaft. 

They are providing a rather complex representation of the boundary conditions for 

a slender rotor in a form of a differential equation accounting for transverse shear, 
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rotating inertia, gyroscopic moments and torque. This is considered in two 

theoretical cases, for short bearing and for long bearings the intermediate bearings 

remaining to be considered between the two previous extreme cases. 

One important conclusion of Eshleman and Eubanks in their study is that 

considering Bernoulli-Euler theoretical representation of slender shafts a serious 

error [2] is introduced in the model and the consideration of shear stresses is 

mandatory in order to work with exact and safe results.  

In order to develop a theoretical tool which can manage the complexity of 

today aerospace and industrial applications Zorzi and Nelson developed a finite 

element theoretical extension to Bernoulli Euler beam formulation in order to 

account for torque and thus to avoid the gross error arising in assessing the natural 

frequencies for the highly loaded slender shafts.[1] 

As the experience showed this theory proved to be quite successful. 

Nevertheless the more precise Timoshenko beam theory is used in precise 

calculations of the critical speeds of the shafts. This theory is intrinsically build to 

account for the shear stresses influence regarding shaft lateral displacements and 

natural frequencies. As, from the best knowledge of the authors of this article, at 

this time there in no such extension to the Timoshenko theory accounting for the 

torque highly loaded slender shafts. Therefore this article main purpose is to fill 

this theoretical gap and provide a complete Timoshenko theory formulation 

regarding the finite element calculation of critical speeds of rotating slender shafts 

and their lateral vibration amplitude A short presentation of the Timoshenko beam 

theory shows in the figure 1 a rotating element of the considered beam with the 

sign conventions used for displacements at the both ends. 

 

 
Fig. 1. Timoshenko rotating beam element 
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The strategy used in finite elements theory is to solve the problem using a 

finite number of grid points and then extrapolate this results in the rest of the 

problem domain. Referring to just one finite element this involves calculating 

displacements first in the element nodes and then find the wanted value for 

displacement or stress in every point of the element domain. This can be done 

using the so called shape function. These shape functions are grouped in the shape 

functions matrix Ψ so that for a considered one-dimensional element presented in 

the figure 1, for every point on the element there is a value of the s coordinate 

along the element. Therefore the displacements in every point of the element u(s), 

v(s), θx(s),θy(s) can be expressed using the shape functions as functions of the 

displacements at the element grid points (in this case the element two extreme 

points) u1,v1,u2,v2,θx1, θy1, θx2 and θy2. 
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One additional consequence of the Timoshenko beam theory is the 

particular shape of the stiffness matrix expressed for one beam element as 
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where 

2
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 
 

   .                                                (7) 

 

This stiffness matrix is then integrated in the equation of equilibrium. A 

general expression of this equation using a noninertial reference system is 

provided by Vollan and Komzsik in [5] as follows, 

        

             2 2
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     
         (8) 

The elegance of Vollan approach is that his noninertial theory is built 

around the classical rotating frame theory by simply adding to the classical 

stiffness matrix the lines and columns resembling the noninertial character. The 

objective of this article is not to deal explicitly with these noninertial terms but 

with the development of the classical subset of the stiffness matrix which is 

applicable in all the cases, rotating or fully noninertial analysis reference frames.  

In order to account for the influence of the torque carried by slender rotors, 

an addition to the stiffness matrix [K] is needed which will be noted [KT]. This 

will be proportional with the torque and will be subtracted from the stiffness 

matrix such to simulate the softening effect regarding lateral displacements and 

lateral vibration natural frequencies. So the equilibrium equation will get an 

additional term [KT], 

        
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            (9) 

 

This additional stiffness (softening) matrix was determined in the context 

of Bernoulli Euler beam theory by Zorzi and Nelson and appears in relatively 

recent books like [6] in this old format. 

The purpose of this article is to find the expression of this matrix in the 

formulation of more exact Timoshenko beam theory with complete consideration 

of the shear phenomena and shear stresses. 

3. Problem solution 

The scientist which tackle this difficult issue like Eshleman, Eubanks and 

Nelson [1][2] are decomposing using the parallelogram rule the torque vector (T) 

along the two main directions, the direction perpendicular with the beam element 

section and the direction parallel with the beam section. This can be observed in 

the figures 2 and 3. 
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Considering the approximation associated with small values of θ, 

sin( )x xT T    ,    sin( )y yT T                               (10) 

The torque decomposing can be further developed at the sections of the 

extremities of the beam finite element ds such the following figures. 

 

 
 

 

 

From the figures 4 and 5 one can observe the equilibrium relations. 
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and using the sign convention as Eshleman [2] 
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Then using the equation (5.31) from Frishwell [6] we have the expression 

of shear angle β. Because the sign convention used by Eshleman is opposed 

comparing with Frishwell the β expressions are used here with changed sign, 

Fig. 2. Torque vector decomposing xOz 

plane 

Fig. 3. Torque vector decomposing yOz 

plane 

 

Fig. 4. Force and torque equilibrium in xOz 

plane 

Fig. 5. Force and torque equilibrium in yOz 

plane 
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In order to formulate the equilibrium equation the generalized Hamilton 

principle is used due to the nonconservative nature of the torque [7], 
2 2

1 1
( ) 0

t t
e e e

t t
K P dt W dt     .                           (17) 

The first integral of Hamilton principle contains the conservative terms 

from which are usual obtained using shape function of the finite elements the 

terms containing the mass matrix and the usual stiffness matrix. The second 

integral is the place for nonconservative phenomena like the influence of torque 

on lateral vibrations of slender rotors. 

Considering the notations 

x txT M   ,            (18)  y tyT M                       (19) 

 

the last term, the nonconservative term, from relation (17) becomes 
2 2
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In the relation (20) are inserted the u and v derivatives obtained with the 

help of relations (13) and (14) where βx and βy are replaced according with the 

relations (15) and (16). So the equation (20) becomes 
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Expanding further and grouping conveniently the terms, the equation (21) 

becomes 
2 2 2 2 3 2 3
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Then further arranging the terms in a matrix format the equation (22) 

becomes 
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For the equation (20) are used the displacements u and v along the beam 

element according to the coordinate s. Using the Timoshenko shape functions this 

can be expressed as function of the element grid points displacements 

(displacements at the extremities of the beam element). Then with the introduction 

of the shape functions grouped in the shape functions matrix (5) the relation (23) 

becomes for the first term 
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and the second term of (23) becomes 
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The terms (24) and (25) are further transformed so that the displacements 

vector {qe} is moved to the right side and then using the notations KTα and KTβ for 

the first part. The terms (24) and (25) can be written 
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Using (26) and (27) in the relation (23), this becomes 
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T TW K K                                      (28) 

Where T T TK K K  
 is the stiffness matrix extension which express the 

influence of the torque transmitted by the analyzed slender rotor according to 

relation (9). 

In order to find the terms of the KTα and KTβ for one beam element, the 

matrices, the expressions which they denote are expanded using the actual 

expressions of the shape functions inside the shape functions matrix ΨT. The 

derivatives and integration are transmitted to the shape functions inside the shape 

function matrix and after the evaluation of these the following matrices are 

obtained 
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1 1 1 1
0 0 0 0

2 2 2 2

1 1 1 1
0 0 0 0

2 2 2 2

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 1 1 1
0 0 0 0

2 2 2 2

1 1 1 1
0 0 0 0

2 2 2 2

 ...
1

.
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l l l l

l l l l

l l l l

l l l l
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      
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    

   
    

   
      


 

 

 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 

 

(30) 

One can observe that the obtained stiffness matrices expressing the 

influence of the torque are complying with the rule which state that making the 

term Φ=0 the Timoshenko beam theory is reduced to the Bernoulli Euler theory. 

Indeed the KTβ vanishes being multiplied by zero and the KTα take exactly the 

shape deduced by Zorzi and Nelson in [1] according the Bernoulli Euler beam 

theory. 

4. Conclusions 

The important contribution of this article to the present state of the art in 

the field of both inertial and noninertial frame rotating machines vibration 

analysis is the full expression of the stiffness matrix in the Timoshenko beam 

theory including the contribution of the torque to the evaluation of lateral 

displacement and vibration frequencies. This is realized by the mean of complete 

formulation of the equilibrium equation in the Timoshenko theory, equilibrium 

equation which is the basis to further calculate the system natural frequencies, 

displacements and tensions. This is especially important as the Timoshenko 

theory is considerable more accurate than Bernoulli Euler because considers 

additionally the influence of shear stress and shear displacements. 
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