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APPLICATIONS OF EXTENSION THEOREMS OF LINEAR
OPERATORS TO MAZUR - ORLICZ AND MOMENT
PROBLEMS

Octav OLTEANU' Alina OLTEANU?

The aim of the present work is to give applications to concrete spaces of
Sfunctions and operators of some theorems of extension of linear operators, with two
constraints. Constrained interpolation problems are solved (particular cases of the
general Markov moment problem), and applications of a variant of Mazur — Orlicz
theorem are considered. The latter represents “the half” of the moment problem, in
the sense that the interpolation equalities are replaced by inequalities. The general
statements mentioned above are consequences of a more general theorem of
extension of linear operators. The involved spaces have a natural topological linear
order relation structure.
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1. Introduction

The aim of the present work is to apply general results on constrained
extension of linear operators to the moment problem and Mazur-Orlicz
theorem on concrete spaces. Using Hahn-Banach results in various
applications (the moment problem, flows in infinite networks, transport
problems, economic problems) is a useful technique (see [4]-[9], [12]-[15] and
the references therein). In the present work, applications of a variant of
Mazur-Orlicz theorem are considered as optimization problems with two
opposite types of constraints (Section 2). The practical meaning is obvious and
follows from the statement of Theorem 1. Being given the elements
x;€X,y; €Y, jeJ, an important problem is that of finding necessary and

sufficient (or sufficient) conditions for the existence of a linear solution
F:X —Y, of the interpolation problem F (x j): Yj.J€J, satisfying two
constraints. Here X,Y are usually Banach lattices of functions or operators,
Y being order-complete. For such spaces, the extension theorems of Hahn -
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Banach type do work. Due to these structures on X,Y, we can apply the
results from [2] and [17].

If x; are the basic polynomials t/ =tljl z,{" ,n>2, then we have a

multidimensional real classical moment problem. The upper constraint ' < P
controls the continuity and the norm of the solution F. The lower constraint
consists usually in the fact that F is positive on the positive cone of X.
Hence the solution might have an integral representation by means of a
positive scalar or vector measure. Two other important related questions
appear namely the uniqueness and the construction of the solutions [1], [3],
[14], [18]. As background of this work, we refer to [1], [2], [9], [16], [17]. The
paper is organized as follows. Section 2 contains the statement of the general
Mazur-Orlicz theorem and two related applications. Section 3 contains two
general results on extension of linear operators. Each of these theorems is
followed by an application to concrete spaces. All the general statements
involved have the same root: Theorem 1 from [10], (see also [11]), recently
recalled in [14], [15]. Section 4 concludes the paper.

2. Applications of Mazur-Orlicz theorem

We start this section by recalling the following generalization of the

Mazur-Orlicz Theorem (see [12]). The practical meaning is obvious.

Theorem 1. (Theorem 5 [12]). Let X be a preordered linear space, Y an order-
complete vector lattice, {xj;jeJ}c X, {yj;jeJ}c Y given finite or infinite

families of elements. Let P: X — Y be a sublinear operator

The following statements are equivalent:
(a) there exists a linear operator F € L(X Y ) such that

F(xj)Zyj Vield, F(x)ZO‘v’xeX+,F(x)SP(x)‘v’xeX;
(b) for any finite subset J, — J and any {ﬂj;jeJo}c R, we have:

jel jeJo

The next result of this Section uses the order relation given by the

coefficients in spaces of analytic functions. On the other hand, let H be a
complex Hilbert space, Uy € A(H) a selfadjoint operator from H into H. One

defines:
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Y, ={UecA(H)UU,=UU}LY={UeY;UV =VU VYV eY}}, O
Y, ={UeY;{U(h)hy>0VheH|
Obviously, Y defined by (1) is a commutative algebra of selfadjoint operators.

Moreover, Y is a vector lattice, being complete with respect to the order relation
[2], [7], and the operatorial norm on Y is solid:

Ul<p|=|U| <] u.ver.
Recall that for an element U of the lattice Y, there exists (cf. [2])

U|:=sup{U,~U}=U v (-U) = +U>.
The next result is an application of Theorem 1 to the space X of all absolutely
convergent power series in the disc |Z| < r, with real coefficients, continuous up to
the boundary. The order relation is given by the coefficients: we write
z/lnz” < Z}/nz” < (4, <y,, VneN)
neN neN
z| <r. Let Y be the space defined by (1), (Bn )neN a

sequencein Y, and U €Y.

Denote ¢,(z)=z",neN,

Theorem 2. The following statements are equivalent:
(a) there is a linear positive operator F € L, (X Y ), such that

F(p,)=B,,neN,|F(p) < Z|an|-U", Vo= Zan(pn eX;
neN neN
(b) the following relations hold

B, <U", neN;
Proof. (b):> (a). One applies theorem 1 to x; =¢;, jeN. If

Y40, <v= Yl ay R neN 4 <a;, jedo)
jeJo neN

then the hypothesis and the above relations yield:
AiB;<A;U) <a;-U’, jeN=

Y ABi< Y a; Ul <Y a, U= a,|-U" =

jeJo jeJo neN neN

w|(U)=Ply). Plp)= D la,|- U" =P(-p). o= > a,0, € X.
neN neN
Notice that the definition of the order relation on the space X implies
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D anpn| =l = D lanlen.

neN neN

Hence, the assertions from (b), Theorem 1 are accomplished and the conclusion
follows from a direct application of the latter theorem. On the other hand,
(a)= (b) is almost obvious, since B, < F(p, ) forall ne N lead to

B, SF((/)n)£|F(q0nl£P(¢)n)=Un, neN.

This concludes the proof. i
Next we consider the space X of all absolutely convergent power series in the

n
open unit polydisc Hﬂzk| < 1}, with real coefficients, and the order relation

k=1
given by
D.ajwj = D B (“j SﬂjaJEN")
jeN” jeN"
where

0 € X, 0i(z1mnzn) =7 o2, = (1) €N".

The relations (1) define the space Y. Let A4;,B;, k =1,...,n be positive elements

of Y such that their norms are strictly smaller than one, and (U n a

J ) jeN
sequence in Y, a,f € R,. Next we use the fact that X 1is a vector lattice. In
particular, for positive elements A4;,k =1,...,n of ¥, we have

v= 70 == Dlile. Wldi.d,)= 2|y 4" aln.
jeNn jeNn jeNn
The last definition has sense since the power series defining y converges

absolutely in the unit polydisc, and Y is complete with respect to the norm —
topology.

Theorem 3. The following statements are equivalent:

(a) there exists a linear positive operator F € L (X Y ) such that

U SF((pj),jeNn,F(l//)éa'|l//|(A1,...,An)+,B'|1//|(Bl,...,Bn),1// e X;

O) Uj<a- A1 ajn + p-BV - -BIn ) = (jo jy )€ N"
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Proof. The implication (a)=> (b) is obvious, since ¢ I =|(p il jeN" and the

hypothesis (a) lead to
a-Aljl e Adn _,_ﬂ.Blfl BN
In order to prove the converse implication, we apply Theorem 1, (b):> (a), SO

that we have to verify the implication mentioned at point (b) of Theorem 1. Let

n .
Jo < N” be a finite subset and {/1]- }jeJ

the present theorem, the following implications hold:
JjeJo jeN"

0 c R, . Then using the hypothesis (b) of

Uj<a-Al'--a)n +p-B/1---B)", VjeN" =
J1 J J1 J
jeJo jeJo

JjeJo jedo

jENn jeNn
a-y(Ay,.,A4,)+p-w(B,..B,)=a -|1//|(A1,...,An)+,B-|l//|(Bl,...,Bn)= P(y).

Notice that |1//| =y, since all the coefficients y ;, je N " are nonnegative. Now a

direct application of Theorem 1 leads to the existence of a linear positive operator
F from X into Y, such that F(goj)z Uj,jeN", Fly)<Ply),weX.

This concludes the proof. i
Theorem 4. Let

XzLil(M),yZO,{wj}jeJcX,{yj}jEJ CcR,u

being a O — finite measure. Assume that the intersection of the supports of two
different functions ¢ ir P has measure zero. The following statements are

equivalent:
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(a) there exists h e ch (M) such that

Oéh(x)ﬁlu—a.e., Ih(pjd,uZyj,jeJ;
M
(b) the following inequalities hold
yj< jw}du,jeJ-
M
Proof. The implication ()= (b) is almost obvious, because of the qualities of .
Namely we have:
y; < J.hqojd,u < jh(p}rdy < J.(/)}rd,u, jedJ.
M M M
For the converse, let J 0C J be a finite subset and {/I i EJO}C R, be such

that Zﬂ, 9, <. Using the hypothesis on the supports, we deduce

JjeJo
s
2405 =| hep| vt Y ayis YA [o)du=
Jj€Jo Jj€Jo JjeJg JjeJo M
+
[| 2450, | du<[v*dus[pldu=Ply)
M\JjeJo M M

We have used the fact that the scalars 4, j € J are nonnegative. Application of
Theorem 1 to P(l//)=||l//||l leads to the existence of a linear positive form F of
norm at most one, such that F ((/) j)Z v, jed. This functional has a

representation by means of a function /2 with the qualities stated at point (a). This
concludes the proof. |

Remark 5. The set of the solutions % concerning theorem 4 is compact in the

weak topology with respect to the dual pair (LI,LOO) For connections to extreme
points and for results concerning the truncated moment problem on a bounded
interval see [14, Section 4]. For a related moment problem on the positive
semiaxes, see [15, Theorem 7 and Corollary §].
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3. On Markov moment problem

We recall the following abstract moment problem [12]. It is another way
of writing a previous result [10], [11], in the moment problem setting (see [14],
Theorem 2). This previous result is a generalization of H. Bauer’s Theorem 5.4
[17].
Theorem 6. (see [12]). Let X,Y, be as in Theorem 1, P:X —Y a convex

operator, {x j }jEJ cX, {y j }jEJ c Y given families. The following assertions are
equivalent:

(a) there exists a linear positive operator F: X — Y such that
F(xj)zyj Vjeld, F(x)s P(x)‘v’xeX;
(b) for any finite subset J, — J and any {/Ij }jeJo c R, we have:
Z/”tjxj <x= lejyj < P(x)
jeJo jeJo

Theorem 7. With the notations and under the hypothesis of Theorem 4, the
following statements are equivalent;

(a) There exists heLﬁ(M),OShSl, such that Igojhduzyj,jeJ;

M
(b) for any finite subset J, — J and any family {/1 j} _

JjeJo
+
DA< DA I?)j dp.
jeJo jeJo M
Proof. The implication (a)=> (b) is almost obvious, due to the qualities of 4 and

C R, we have

using the assumption on the supports of ¢, j € J. Namely we have:

Z/Wﬁjh' 2.4 |du<
M

JjeJo Jj€Jo

+ +
[ir| Doy | dus || Taop| du=[| 2207 |du
M \Jjelo M\JjeJo M\JjeJo

For the converse implication, we apply (b) = (a) of Theorem 6. We verify the
implication mentioned at point (b), Theorem 6, also using the assumption (b) of
the present theorem. We have:
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.
DA<y = DA | = DA v =
JjeJo JjeJo jeJo
s

DA SI I dﬂ:f DA | du
JjeJo M\ JjeJo M\JjeJo
< J.w+d,u£ J-|t//|dy=||(// pYeX.

M M

Applying Theorem 6, there is an R — linear positive functional /' on X,
of norm at most one, which is the solution of the interpolation problem
Floj)=y;.je.
By measure theory arguments [16], the conclusion follows. m
Next we recall an earlier result on the abstract Markov moment problem, in
order to apply it to the multidimensional classical Markov moment problem. It is a
general convexity and extension of linear operators result, with many applications
[6]. This result represents a further consequence of Theorem 1 [10], recalled
recently in [14], [15]. The proof of Theorem 8 from below can be found in [11]. If
V' is a convex neighborhood of the origin in a locally convex space X, we

denote by py the gauge (Minkowski functional) [17] attached to V' :
pV(x)zinf{/i >0;x¢€ /1V}, xeX.

Theorem 8. (see [11], [6], [13]). Let X be a locally convex space, Y an order

complete vector lattice with strong order unit uy and S < X a vector subspace.

Let Ac X be a convex subset. Assume that the set A has the following
properties
(a) there exists a (convex) neighborhood V of the origin such that
(S + V)ﬂ A=®, (O is the empty set: A and S are distanced),
(b) A is bounded.
Then for any equicontinuous family of linear operators {f] }jeJ c L(S, Y) and for

any y e Y, \ {0}, there exists an equicontinuous family {Fj }jeJ c L(X, Y) such

that
Fjls=/; and F}| 423,V €.
Moreover, if V' is a neighborhood of the origin such that
£ivNS)cl-ug.upl (S+V)N4=0,

0<0£€RS.l.pV|ASO£, a1>0s.t.§£a1u0,
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then the following relations hold

Fj(x)£(1+a+a1)py(x)-u0, xeX,jeld.

In the next result X will be the space of all continuous functions ¢ in the closed

n
polydisc H ﬂzk| <n }, that can be represented by an absolutely convergent series

k=1
in the corresponding open polydisc We denote
(oj(zl,... 0)= 1]1 zin, zk|<rk,k—l 1y j = (Jsjp) €N

Let H be a Hilbert space, and Y the space defined by (1). Let A4,...,4, be
positive elements of Y, such that ||Ak || <1, k=1,.,n In the sequel {1//1- }jeN”

will be a subset of X such that
v ;(0,...0)=1,

Theorem 9. With the notations and under the hypothesis from above, let
jk 2> m 2> 1, k= 1,...,1’1

<M,vjeN".
[e 0]

Bj)jeNn ’
be a sequence in Y and B € Y, \{0}. Assume that
|Bj| <AV ain, =g )isys Jx 2 mos k=1,

Then there exists a linear operator F e L(X,Y) such that:
Flo;)=B;,jeN", jx 2mo,k=1..n Fly;)> B, jeN",

rloy<| 1o 1120 Ly,

n my

kot 7 =4k
Proof. From the assumptions on the functions

Qs Jr Zmy 21k =1,...n, lyj,jeN",

we infer that
||s —w”w > |s(0)—w(0)| =1l,VseS= Sp{(Dj; Jr 2my, k= 1,...n},

VweA::co({t//j;jeN”})
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the convex hull of the set {// jsJEN ”} It follows that (S +B(0,1))N 4=,

where @ denotes the empty set, and B(O,l) is the unit ball centered at the origin.
Thus

V=B(01), py=

where pj stands for the gauge attached to ¥ = B(0,1). We also have B< ”E" .

o> PV|4 <M =a,

Moreover if

s= D A0, €SNBO.L), jy 2my, k=1,...n,
Jj€J
then Cauchy inequalities, the fact that the 4 joJ = L,...,n are commuting, as well

as the relation 4 < ||A|| -1, (where A is a selfadjoint operator), yield
ZAJBJ_ Z|’1]| |BJ|< ,—,Aljl---A,{n <

J
Jj€Jo JjeJo Jj€Jo 1 Looepfn

> (A_J oy [A_j S”[IIAI«IIJ’"‘). AT
jizmo Jnzmo " k=1\ Tk 7k =4

It follows that

3 < ”B" Hrk _"Ak” (”A ”J Uy = a - ug.

Tk

Now all conditions of Theorem 8 are accomplished. An application of the latter
theorem leads to the existence of a linear operator

Fel(x,Y).Flp;)=B,,Vj; 2m, Fly;)2 B, jeN",

“"’<[“M*”B” -5 ||Jmo}'”‘””w ”

" .:ﬁ Tk (”Ak"Jmo .l
Pl U '
This concludes the proof. m
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4. Conclusions

Section 2 gives characterizations for the existence of the solutions of three
concrete Mazur-Orlicz problems. In Section 3, we consider a similar problem to
that of theorem 4, in the interpolation setting. On the other hand, sufficient
condition for the existence of the solution of a Markov moment problem is stated
and discussed. Both general results of Sections 2, respectively 3, are consequences
of the same general theorem on extension of linear operators with two constraints
[10], [11], recalled recently in [14, Theorem 1], [15]. The way of proving
Theorems 4 and respectively 7 shows that Mazur-Orlicz-type results are quite
different to the corresponding Markov moment problems, So, one can say that
there are major differences in solving Mazur-Orlicz and Markov moment

problems, even for similar statements. The functions jrJE€ N" of theorem 9

can be concrete elementary normalized entire functions (in each separate
variable), related to the exponential function.
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