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A METHOD TO FIND DYNAMIC PARAMETERS FOR A LEG
OF A HEXAPOD WALKING ROBOT

Jean-Claude HABUMUREMY]1', loan DOROFTEL?, Patrick KOOL?, Yvan
BAUDOIN*

In aceastd lucrare, este propusi o metodd de determinare a parametrilor
dinamici ai unui sistem mecanic, utilizand tehnici NeuroFuzzy. In multe strategii de
control adaptiv este necesard cunoasterea precisd sau estimarea acestor parametri.
In scopul determindrii lor, se incepe cu colectarea unor date, prin experiment sau
simulare, folosind arhitecturi ANFIS (Adaptive Neuro-Fuzzy Interference Systems).
Apoi, utilizam principii bazate pe proprietdtile ecutiilor care descriu modelul
dinamic al robotului, pentru a determina parametrii dinamici. Pentru a verifica
metoda propusd, se fac simuldri pe sisteme ale cdror modele dinamice sunt
cunosciute.

A method to find dynamic parameters of a system using Neuro-Fuzzy
techniques is proposed in this paper. In many model-based and adaptive control
strategies, the precise or estimated knowledge of these parameters is required. In
order to determine these parameters, we first begin by building an input/output
mapping using ANFIS (Adaptive Neuro-Fuzzy Interference Systems) architecture
based on input/output data pairs collected from experiment or simulation. Then, we
use principles based on the properties of equation which described the dynamic
model of robots in order to derive the dynamic parameters. Simulations on the
systems where the mathematical dynamic models are well known demonstrate that
proposed method is quite effective.

Key words: walking robot, pantograph mechanism, dynamic parameters,

neuro-fuzzy

1. Introduction

There are different approaches to estimate the dynamic parameters of the
systems in general and robots in particular. One solution is to dismantle the
system and determine experimentally the mass, position of the center of mass, the
moments and the products of inertia of the links. This method is very complex and
time consuming. Next to that, we do not have information about the friction.
Another approach is to estimate these parameters from CAD (Computer-Aided
Design) models. With this approach, we encounter the same problem as previous.
The approach that has been much applied is the identification using measurements
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of motion and actuation data. In the past, this problem has been well-studied [9,
10, 11]. Various techniques based on MLE (Maximum Likelihood Parameter
Estimation), Levenberg-Marquardt method, LSE (Linear Least Square
Estimation), Kalman observers, pseudo-inverses, etc., have been developed. Since
the dynamic behaviors of the systems may be complicated due to varying
environmental changes, the identification of their parameters using the mentioned
techniques could be difficult. Soft-computing approaches such Neuro-Fuzzy
techniques are the alternative for solving such complex problems.

In this paper, a method to find dynamic parameters using Neuro-Fuzzy
techniques is proposed.

2. Generalized model and some properties for robot dynamics

Generally, the dynamic model of robots with n degrees of freedom is
formulated as follow,

r=4(0)6+C(0.6)0+F(6.6)+G(0)~Jf (0) Fyr (1)
where:

T .
t=[11,79,,7,1.7,] s the forces/torques vector;

T . .. )
0= [91,92,- 0,1, On] is the position coordinates vector;

A(H) is the inertia matrix;

C (9, 9) are the centrifugal and Coriolis vectors

F (9,9) are the friction forces on the joints;

G(H) is the vector of the gravitational forces/torques;
J; (6) i1s a matrix 3 x m, which is the transpose of a

Jacobian matrix;
Frr is the m x 1 vector of the reaction forces that the

ground exerts on the robot feet ( Fy is null during the transfer phase).
Equation (1) can be written in a compact way as follow:

r=A(O)é+H(6,é), 2)

with H (49,49) being defined as a whole without distinguishing the differences

among the different terms. It contains centrifugal, Coriolis, gravitational forces,
viscous friction, coulomb friction and reaction forces terms. Some properties,
used in this paper, of the robotic dynamics with » d.o.f. are:
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o [nertia matrix, A(H)

o Itis symmetrical, i.e. 4(0)=4"(0).

0 It is positive definite and bounded below and above, i.e.
30 < a < <o, such that

al, <A(0)<pl, VOeR", 3)

where [, is the n x n identity matrix.

o Its inverse A'(#) exists, and is also positive definite and
bounded,

I

<A'(0)<—1,. )

1
a
o Centrifugal and Coriolis forces, C (9,9)

o Itis bilinear in @.
0 It may be written in several factorizations, such as

C(6.6)6=Cy(6.6)=C1(0)C,[06]=C5(0)[ 60]+C4(0)| 8], (5)
where [00]=[46, 0,0,--6,,8,] and [0*]=[ 67 G3--62] .

0o Given two n-dimensional vectors x and y, we have
C(0,x)y=C(0,y)x.
e Friction, F (6’,9): Friction terms are complex and are described only

approximately by a deterministic model [1, 2, 3]. The friction is present
between any pair of surfaces having relative motion. Despite its
complexity, one of the most important characteristics is that it is energy

dissipative, i.e. QTF(H,Q) <0.
e Gravitational force, G()

0 It can be derived from the gravitational potential energy function

P(6). ie. G(H):Z—Z.
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o Itis also bounded, i.e. ||G(t9)|| <y(0)

where y is a scalar function. For revolute joints, the bound is a constant
independent of & whereas for prismatic joints, the bound may depend on 4.

3. Principle to find dynamic parameters using Neuro-Fuzzy
techniques

Experimentally on the real system (robot) or on its simulator, we collect
from sensors (encoder, tachogenerator, potentiometer, ...) following data sets,

(6(K). 6().0,1 (k). 0,(k). 7 (k). 23(k).o70s (K). 7, ()} (6)

To collect these data, the trajectories should be well chosen. They will
determine the accuracy of the dynamic parameters found. A lot of work has been

done on this subject [13]. From these data, we -constitute éj (k) and

6;(k) (j=11t0n).
If data sets are collected from a simulator and have no noise, we can
estimate the speed and the acceleration of the joints as follow:

<0 (k+1)-6;(k-1)

0(k)= e : (7)

é(k):Hj(k+1)—29;§k)+9j(k—1), ®

where T is a sampling time.

In reality, collected data have noises and we cannot use the differentiators
as above because they are excessively sensitive to even small errors (they behave
as high pass-filter). To solve this problem we accept the assumption that the
speeds and the accelerations of the joints change a little during five consecutive
observations. This assumption is practically valid because with actual
microcontroller, the time of sampling is less than 1 ms. We also assume that these

observations are near on a parabola of second order. Knowing 6; (k—2),
0, (k-1), 0; (k), 0, (k+1), 0; (k+2) at respectively time (k-2)7T, (k-1)T,
kT, (k+1)T, (k+2)T, we would like to find @, b and ¢ such that the errors of
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these observations data to the parabola € ;= ax? +bx+c are minimal in the sense
of least square. Solving this problem, we have:

a= D (9)
1472

(20K +14)0; (k—2)~(10k=7)0; (k1) - 20k0; (k) ~(10K +7) 0 (k-+1) +(20k—14)0; (+2) (1)
~70T

Because 6 (k)= 2akT +b, we obtain by calculation

6 (k)= 249j(k—2)+0j(k—l_)l—ozj(k+1)—20j(k+2)‘ an

We can apply the same procedure to have the acceleration. Doing that, we
will get:

é/:2éj(k—2)+9j(k—1_)l—()ij(k+l)—29j(k+2): (12)
40, (k=4)+46; (k=3)+6, (k=2) - 46, (k=1)-108; (k) -4, (k+1)+6; (k+2)+40; (k +3) +46; (k +4)

10072

Now, with the extended collected data (which include the velocities and
accelerations of the joints), we can use these sets for mapping,

6 (k). 6, (k),-0,(k), 6 (k), 65(k), 0,(k),.61(k), 0(k),--0, (k)

to 7; (k) (where j = I to n) in parallel identification model as shown in Figure 1.

ANFIS architecture is used for that. It has been proved that Mandani
controllers as well as Sugeno controllers are universal approximators [4, 5].
ANFIS is one of the first fused Neuro-Fuzzy proposed by Jang [6]. It implements
a Sugeno FIS (Fuzzy Interference System) and it has five layers as shown in
Figures 1 and 2, for 2 input and 3 membership functions.

The first layer has adaptive nodes and it is used for the fuzzification of the
input variables. The output of this layer will depend on the selected membership
function which can be a triangular, a Gaussian, a trapezoidal, a bell-shaped, etc.
Those parameters which specify a membership function will be called premise
parameters. The output of the second layer is the product of all incoming signals
and represents the firing strength of a rule. The product (it is more appropriate)
has been chosen but it can be any T-norm operator that performs fuzzy AND. The
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third layer normalizes the rule strengths. The i™ node is calculated as the ratio of
the strength of the i rule to the sum of all firing strengths. The fourth layer has
also adaptive nodes. The output of this layer for one nod will be the product
between the normalized firing strength with a function. This function has
parameters called consequent parameters. The fifth layer is the output. It
computes the overall input as the summation of all incoming signals.

A step in the learning procedure (called hybrid learning) has got two parts
[6]:

e The premise parameters are fixed and the input patterns are propagated up
to fourth level of the layer. With the values of this level and the output
patterns, optimal consequent parameters are calculated using an iterative
least mean square procedure. The least mean square can be used because
the output is a linear function of the consequent procedure.

e The patterns are propagated again with now, consequent parameters fixed.
In this part back-propagation algorithm is used to modify the premise
parameters.

After obtaining n ANFIS architectures (which express the mapping
between data from the motion of the joints and the data of the torque of one joint),
we carry out n + 1 experiments on them. We maintain the same position and
speed of the joints but we change n + 1 times the accelerations. We have

n .o .
7y =D Ay Oy + H(6,0), (13)
k=1

where ‘919 are the values of the torques and the accelerations on the joint i at the ;"
experiment respectively. From the properties of the robotic dynamics, the inertia
matrix is only dependent of the position (angular or linear position), i.e. by
changing only the acceleration, the value of 4, will not change and H (9,9) will

remain the same. Subtracting relation (13) obtained on the same joint but at
different experimentations, we have:

n
T =Ty = D (9k1 — k() ) A (14)
pa
or

At; =A0 4, (15)

where
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Aty —At 0 —élz 0y —ézz énl _énZ
Aty — Az 911 —913 921 _é23 énl _énZ
ATil _Az-in éll _éln 921 _éZn énl _énn
Aty — ATi(n+1) 91 1~ él(n+1) éZl - éZ(n+1) e énl - én(rH—l)
T
and 4; = I:Ail Ay - Ai(n—l) Ain] .

We can then calculate 4; if A@ is invertible as follow:

4 =AG'Az;. (16)

Finally we deduced H,.(e,é) from the equation (13). We can use the

property which stipulates that the inertia matrix is symmetrical to check the
validity of the values of its elements obtained on different joints and experiments
(is 4; equalto 47).

4. Application of the method

4.1. Identification of the dynamic model and parameters estimation of
a two link planar arm

In order to illustrate the method quoted above, we have applied it to a two
link planar arm, shown in Figure 3.

The parameters of its dynamic model are well-known [14]. They will
enable us to establish comparisons with those obtained by means of the Neuro-
Fuzzy model. By neglecting the friction torques and the tip contact forces, the
model of the two link planar arm is as follows [14],

Tl = Al lél +A1292 +H1

y - , (17)

where

Ay =1 +my I+ kG, + 1 +my (a12 +13 +2ayl, cosé?z)+1m2 +m,, aj ;

2
A12 = Az] = 112 +mlz (12 +a112 COS 92)+kr2]m2 N



A method to find dynamic parameters for a leg of a hexapod walking robot 23

2 .
A22 :IIZ +m1212 +kr2]m2 5

Hy=-2m, a,1,6,6, sin 6, — m, all2922 sin &, + (ml1 h+my, ay+my a ) gcost +
+my g cos (6, +6,) ,
Hy=my al,67 sin 6, — my,Lgcos(6,+6,);
ly, I, are the distances of centers of mass for the two links from the
respective joint axes;
my , myare the masses of the two links;

m,, , m,, are the masses of the rotors for the two joints motors;

m, >

I, > I, are the moments of inertia with respect to the axes of the two
joints;

k,, k., are the reduction ratio of the gears;

I, , I, are the moments of inertia relative to the centers of mass for the
two links.

y

Fig. 3. Two link planar arm
In order to have numerical values, we use the data from [14]:
ay=ay=1m; Iy =1y =0.5m; m; =m; =50kg; I =1 —10kg-m?;
. . 2
k. = k., =100; m,, =m, =5kg I, =1, =0.0lkg-m".

From equation (17), we have collected data sets,
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with 6 (k) and 6, (k) in the range of 0 to % and k going from 1 to 4096 (the

range and the number of data were taken to reduce the offline learning calculation
time). We have made trials to determine the appropriate number of membership
functions and the type of FIS by considering the final RMSE (Root Mean Square
Error). We have found from different trials that two triangular membership
functions (N and P) by input and first-order Sugeno FIS give a small error.

After nearly 409600 iterations for each data sets, we have obtained a
RMSE of about 0.0879 for 7; and 0.0862 for 7, .

From the ANFIS models of the two link planar arm, we have solved the
equations (15), to estimate its dynamic parameters. Some results are shown in
Table 1 (we have chosen for illustration the variation of &, because the matrix 4

is only dependent on this parameter). The 4, 4, (1), 4 (2), Ay, parameters
are estimated using our method and 4;;, 4,, 4,, are computed using the

equations from [14].

Table 1
Dynamic parameters of the two link planar arm

6, ;111 4 1&12 (1) 12112 (2) 4y ;122 4y

0.1 249.8 | 249.76 | 48.408 | 48.303 | 48.375 | 122.53 122.5

0.2 249.03 | 249.01 | 48.022 47.98 48.002 | 122.52 122.5

0.3 247.78 | 247.78 | 47.39 47.38 47383 | 122.51 122.5

0.4 246.05 | 246.06 | 46.525 | 46.524 | 46.527 122.5 122.5

0.5 243.88 | 243.89 | 45.435 | 45.432 45.44 122.49 122.5

0.6 241.27 | 241.28 | 44.131 | 44.122 | 44.133 | 122.48 122.5

0.7 238.26 | 238.25 | 42.622 42.61 42.621 | 122.47 122.5

0.8 234.85 | 234.85 | 40.916 40.91 40918 | 122.46 122.5

0.9 231.06 | 231.09 | 39.022 | 39.048 39.04 122.45 122.5

4.2. Identification of the dynamic model and parameters estimation of
the leg of AMRUS robot

The pantograph mechanism has been used in many legged robots projects
(TITAN III, TITAN IV, RIMHO, ...). Opposed to other mechanisms, the
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pantograph mechanism exhibits the most potentiality for the following reasons [7,
8]:
e An exact-straight-line foot trajectory can be obtained by actuating only
one linear actuator. A high efficiency is to be expected.
e The leg geometry can be made more compact by adjusting the
magnification ratio.
e The input motions can be mechanically decoupled. The simplest approach
to the foot trajectory control can be used.
e The closed-loop gives a good rigidity of the leg.

As disadvantage of this mechanism, the linear actuating systems are more
difficult to design and to protect if normal electric motors are used. Also when
using model-based controller, it is not easy to find the parameters of the leg due to
the closed-loop. The first problem leads often to the choice of a 2D pantograph
mechanism to make the design more compact. In this case, the GDA
(Gravitational Decoupled Actuation) is not perfect. A 2D pantograph (Figure 4)
has been used on the robots MECANT, BOADICEA and the robot AMRUS5
(Figure 5) that we have designed.

Fig. 4. Leg structure based on a 2D pantograph mechanism

The second problem has been solved using the method explained above.
The pantograph mechanism has 2 closed loops and it is not an easy task to derive
the dynamic model and the parameters of such mechanism using classical method
(Newton-Euler formalism). That is why we have preferred to use Soft-Computing
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methodology to identify those parameters, which have been used in the control
strategy of the robot. ANFIS has been proved to have the best performance in
comparison to others methods: FNN (Feedforward Neural Networks
Architecture), RBFNN (Radial Basis Function Neural Networks, RKNN (Runge-
Kutta Neural Networks), [12].

Fig. 5. AMRUS walking robot

Due to the pantograph mechanism, the actuators responsible of the
translation movement 73 will only be used to support the body of the robot against
gravity forces and in transfer phase. The actuators that generate the translation
movement 2 and the rotation & are used in the tracking of the trajectory when
the legs are in the stance phase. As we have a decoupling of r3 from 72 and 6,

equation (2) can be split in two parts as follows:
T Ay A\ 6, H,(6,,6,,06,,06,)
(1J={ 11 12}["1}{ 1101, 0 .1 .2 }, (18)
7y) \doy Ap )\0,) \Hy(6,,6,,6,0,)
T3=A3é3+H3(93,93). (19)

We will only consider the system of equations (18) in this paper, to
explain that ANFIS joints control (equation (19) is a particular case). Equation
(18) will be written as:
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T = A(0)6+H(6.6), (20)

T Ay Ap
where 7 =[7},7,] , A=

:|, H:[Hl,Hz]T and 0:[91,92]T
A21 22

To identify the parameters of the dynamic model described by equation
(20), we need its equivalent discrete-time version defined by nonlinear difference

equations. To approximate @ and 6, we will use a Taylor series as follows:

2

9(k+1):9(k)+At9(k)+ATt9(k)+0(At3), @1)
e(k—l)=H(k)—Até(k)+ATt29(k)+0(At3). (22)

Equation (21) plus equation (22) gives:

O0(k+1)=20(k)+0(k-1)

0(k)= . 23
(+) = @)
Equation (21) minus equation (22) gives:
% 0(k+1)—0(k—1)
O0(k)= . 24
(%) A (24)
where Af is a sampling time.
Equation (20) becomes in discrete-time:
T (k)=A(0(k))6(k)+H(0(k).0(k)). (25)

where 0 (k) and (k) are expressed by the equations (23) and (24) respectively.
It is necessary to estimate the elements of the inertia matrix A (H(k)) and
the elements of the matrix H(G(k),é(k)) because they will be used in the

strategy control. To estimate those elements, we use the principle that the
elements of the inertia matrix are only dependent on H(k) and the elements of the

matrix 1 are dependent on @(k) and &(k), i.e. if we change #(k) and we

maintain (k) and (k) with the same values, the elements of the inertia matrix
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will remain the same. Suppose we have the same H(k) , é(k) for three different

angular accelerations éj (k) (j=a,band c), then

7;(k)=A(0(k))6; (k)+H(6(k),0(k)), (26)

J

T .. . .. T
where 7; (k)=[ 7, (k) z,; (k)| and &, (k)=[ 4, (k) b; (k)] .
By applying the principle stated above, we have:
710 (k) =71 (k) = 44 (éla

) ; (27)
Ua (k)_Tlc (k) = Ay (91a

k) =By (K))+ 412 (62
)-8 (

) k)= (K))
k) =6y, (k) + 42 6y, G

)
k)= 6y (k)

7o (k) =12 (k) = 45 (éla (k) -6y, (k)) + 4y (éza (k)- by, (k))

( (
( (

) ) ) , - (28)
o (k) =72 (k) = 45 (‘91a (k)-6. (k)) + 4y (92a (k)=65, (k))
Solving the systems of equations (27) and (28) we will get:
_ (éZC _éZb)Tla +(é2a —éZC)le +(52b b, )Tlc (29)
" (élb - élc)éZa + (élc - éla)éZb + (éla - élb)éZC ’
(élc —élb)fla + (éla Oic )71 (élb _éla)rlc
Ap), =4 =7 . —, (30)
(42 )1 ? (9117 _91c)92a +(‘91c a)92b (91a _91b)92c
(é2c Oy, ) Tog (éZa 2c ) Top+ (‘92b b>, ) T2¢
A =4y =5 5 —, 31)
(Ha), = (61 =6, ) 650+ (6 =61 )6y + (61 =61y ) 65
Ay —— (élc _élb)TZa +(éla _élc)TZb +(é1b -0y, )Tzc (32)

(élb _élc)éZa +(élc _éla)éZb +(é1a _élb)éZC .

The difference between (4, )1 and (4, )2 is very small if the two data
sets {6,(k), 6,(k), 6,(k), 0,(k), 6,(k), 6,(k), 7,(k)} and
{Hl(k), él(k), él(k), 0, (k). 0, (k), 6, (k), 7, (k)} constituted converge to

a small RMSE. It could be that one of the sets has a small error. If it is the case,
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we could use the property that the inertia matrix is symmetrical and the ANFIS
model which has the smallest error, to find some parameters of the dynamic
model. If, for example, the second data gives a small RMSE error, we will use the
equations (31) and (32) to find 4;, (A4,; = 4;,) and 4,,. We can then calculate

4, from two different angular accelerations as follows:

Tia =71y — 412 (éZa - éZb)

A = = -
! (Hla _elb)

: (33)

After the determination of the matrix A(H(k)), we can determine the

matrix H with the following equations:
Hl(e(k)’é(k)):ﬁj_Allélj_Alzézj (34)
Hz(e(k)’é(k))zfzj_Az1é1j—A2292j (35)

where j could be a, b or c. Here also we can compare the different results obtained
with different ;.

The first step to find the dynamic parameters of the AMRUS leg was the
design of an initial FLC (Fuzzy Logic Controller). With this initial FLC, the leg
has been moved randomly and we have collected data sets necessary to train the
ANFIS in the purpose of having the dynamic model of the two considered joints.
After having used those data in the training of ANFIS architectures, we have
obtained a RMSE of about 0.52 for the joint 1 and about 6.01 for the joint 2. The
resulted elements of the inertia matrix are shown in Figures 6-9.

0.0285 .

0.0286 4
= 002844
=

0.0284 4

0.0283 4
0.0

0

001 1
rz{mj theta{rd)

Fig. 6. Element 4;; of the inertia matrix
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05
thetal(rd)

r2(m) 001 4

Fig. 7. Element (4, ), of the inertia matrix (first method)

A12b

0.5

05
r2(m) EE thetal (rd)

Fig. 8. Element (4, ), of the inertia matrix (second method)
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05
r2(m) Ml thetal(rd)

Fig. 9. Element 4,, of the inertia matrix

5. Conclusion

In the framework of HUDEM project (Belgian Ministry of Defense), a
hexapod walking robot with hexagonal architecture has been built. The
architecture of the robot has been chosen on the basis of the existing robots
survey.

In this paper, we have shown the principle to identify the dynamic
parameters of a mechanical system using Soft-Computing methodology. We
firstly begin by collecting motion and actuation data from well-selected
trajectories of the joints. The assumption saying that the variations of the
velocities and accelerations of the joints during 5 consecutive observations are
small, allow us to derive these parameters from the measured positions (which
include generally noises). This assumption is practically acceptable in several
parts of the selected trajectories. Then we use ANFIS architectures in the mapping
of motion data of the joints to actuation data of one joint. Finally, to identify the
elements of the inertia matrix, we apply on the ANFIS architectures obtained, the
principle that the elements of the inertia matrix are only dependent on the joints
position. This method has been tested on a two link planar manipulator because
we have a mathematical model of it. The comparison between the outputs of the
method and the mathematical model proves the validity of it. Then, we have been
used this method to identify the dynamic parameters of a pantograph-based leg of
AMRUS walking robot. The use of the parameters obtained in a model-based
adaptive controller developed on a leg simulator has been shown the efficiency of
the proposed method.
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