
U.P.B. Sci. Bull., Series D, Vol. 70, No. 2,2008                                                     ISSN 1454-2358 

A METHOD TO FIND DYNAMIC PARAMETERS FOR A LEG 
OF A HEXAPOD WALKING ROBOT 

Jean-Claude HABUMUREMYI 1, Ioan DOROFTEI2, Patrick KOOL3, Yvan 
BAUDOIN 4 

În această lucrare, este propusă o metodă de determinare a parametrilor 
dinamici ai unui sistem mecanic, utilizând tehnici NeuroFuzzy. În multe strategii de 
control adaptiv este necesară cunoaşterea precisă sau estimarea acestor parametri. 
În scopul determinării lor, se începe cu colectarea unor date, prin experiment sau 
simulare, folosind arhitecturi ANFIS (Adaptive Neuro-Fuzzy Interference Systems). 
Apoi, utilizăm principii bazate pe proprietăţile ecuţiilor care descriu modelul 
dinamic al robotului, pentru a determina parametrii dinamici. Pentru a verifica 
metoda propusă, se fac simulări pe sisteme ale căror modele dinamice sunt 
cunoscute. 

A method to find dynamic parameters of a system using Neuro-Fuzzy 
techniques is proposed in this paper. In many model-based and adaptive control 
strategies, the precise or estimated knowledge of these parameters is required. In 
order to determine these parameters, we first begin by building an input/output 
mapping using ANFIS (Adaptive Neuro-Fuzzy Interference Systems) architecture 
based on input/output data pairs collected from experiment or simulation. Then, we 
use principles based on the properties of equation which described the dynamic 
model of robots in order to derive the dynamic parameters. Simulations on the 
systems where the mathematical dynamic models are well known demonstrate that 
proposed method is quite effective. 

Key words: walking robot, pantograph mechanism, dynamic parameters,  
                     neuro-fuzzy 

1. Introduction 
There are different approaches to estimate the dynamic parameters of the 

systems in general and robots in particular. One solution is to dismantle the 
system and determine experimentally the mass, position of the center of mass, the 
moments and the products of inertia of the links. This method is very complex and 
time consuming. Next to that, we do not have information about the friction. 
Another approach is to estimate these parameters from CAD (Computer-Aided 
Design) models. With this approach, we encounter the same problem as previous. 
The approach that has been much applied is the identification using measurements 
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of motion and actuation data. In the past, this problem has been well-studied [9, 
10, 11]. Various techniques based on MLE (Maximum Likelihood Parameter 
Estimation), Levenberg-Marquardt method, LSE (Linear Least Square 
Estimation), Kalman observers, pseudo-inverses, etc., have been developed. Since 
the dynamic behaviors of the systems may be complicated due to varying 
environmental changes, the identification of their parameters using the mentioned 
techniques could be difficult. Soft-computing approaches such Neuro-Fuzzy 
techniques are the alternative for solving such complex problems.  

In this paper, a method to find dynamic parameters using Neuro-Fuzzy 
techniques is proposed. 

2. Generalized model and some properties for robot dynamics 

Generally, the dynamic model of robots with n degrees of freedom is 
formulated as follow, 

( ) ( ) ( ) ( ) ( ), , F
T RFA C F G J Fτ θ θ θ θ θ θ θ θ θ= + + + −          (1) 

where: 

[ ], , , , T
n nτ τ τ τ τ−= 1 2 1   is the forces/torques vector; 

[ ], , , , T
n n−θ = θ θ θ θ1 2 1  is the position coordinates vector; 

( )θA         is the inertia matrix; 

( ),θ θC        are the centrifugal and Coriolis vectors 

( ),θ θF        are the friction forces on the joints; 

( )θG         is the vector of the gravitational forces/torques; 

( )T
FJ θ        is a matrix 3 x m, which is the transpose of a 

Jacobian matrix; 
RFF         is the m x 1 vector of the reaction forces that the 

ground exerts on the robot feet ( RFF  is null during the transfer phase). 
 Equation (1) can be written in a compact way as follow: 
 

( ) ( ),A Hτ = θ θ+ θ θ ,              (2) 
 
with ( ),θ θH  being defined as a whole without distinguishing the differences 
among the different terms. It contains centrifugal, Coriolis, gravitational forces, 
viscous friction, coulomb friction and reaction forces terms. Some properties, 
used in this paper, of the robotic dynamics with n d.o.f. are: 
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• Inertia matrix, ( )θA  

o It is symmetrical, i.e. ( ) ( )TA Aθ θ= . 
o It is positive definite and bounded below and above, i.e. 

α β∃ < ≤ < ∞0 , such that 
 

( ) n
n nI A Iα θ β θ≤ ≤ ∀ ∈ℜ ,             (3) 

 
where nI  is the n x n identity matrix. 

o Its inverse ( )1A θ−  exists, and is also positive definite and 
bounded, 

 

( )11 1
n nI A Iθ

β α
−≤ ≤ .             (4) 

 
• Centrifugal and Coriolis forces, ( ),θ θC  

o It is bilinear in θ . 
o It may be written in several factorizations, such as 

 

( ) ( ) ( ) ( ) ( ) 2
0 1 2 3 4, ,C C C C C Cθ θ θ θ θ θ θθ θ θθ θ θ⎡ ⎤⎡ ⎤ ⎡ ⎤= = = +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ,        (5) 

 

where 1 2 2 3 1
T

n nθθ θ θ θ θ θ θ−⎡ ⎤⎡ ⎤ =⎣ ⎦ ⎣ ⎦  and 2 2 2 2
1 2

T
nθ θ θ θ⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ . 

 
o Given two n-dimensional vectors x and y, we have 

( ) ( ), ,θ θ=C x y C y x . 

• Friction, ( ),θ θF : Friction terms are complex and are described only 
approximately by a deterministic model [1, 2, 3]. The friction is present 
between any pair of surfaces having relative motion. Despite its 
complexity, one of the most important characteristics is that it is energy 
dissipative, i.e. ( ),T Fθ θ θ ≤ 0 . 

• Gravitational force, ( )θG  
o It can be derived from the gravitational potential energy function 

( )θP , i.e. ( )θ
θ
∂

=
∂

G P . 
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o It is also bounded, i.e. ( ) ( )θ γ θ≤G  
where γ  is a scalar function. For revolute joints, the bound is a constant 
independent of θ  whereas for prismatic joints, the bound may depend on θ . 

3. Principle to find dynamic parameters using Neuro-Fuzzy 
techniques 

Experimentally on the real system (robot) or on its simulator, we collect 
from sensors (encoder, tachogenerator, potentiometer, …) following data sets, 
 
          ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 2 1 1 2 1, , , , , , ,n n n nk k k k k k k kθ θ θ θ τ τ τ τ− − .  (6) 

 
 To collect these data, the trajectories should be well chosen. They will 
determine the accuracy of the dynamic parameters found. A lot of work has been 
done on this subject [13]. From these data, we constitute ( )j kθ  and 

( ) ( )1 toj k j nθ = . 

 If data sets are collected from a simulator and have no noise, we can 
estimate the speed and the acceleration of the joints as follow: 
 

( )
( ) ( )1 1

2
j jk k

k
T

θ θ
θ

+ − −
= ,             (7) 

 

( ) ( ) ( ) ( )
2

1 2 1j j jk k k
k

T

θ θ θ
θ

+ − + −
= ,           (8) 

 
where T is a sampling time. 
 In reality, collected data have noises and we cannot use the differentiators 
as above because they are excessively sensitive to even small errors (they behave 
as high pass-filter). To solve this problem we accept the assumption that the 
speeds and the accelerations of the joints change a little during five consecutive 
observations. This assumption is practically valid because with actual 
microcontroller, the time of sampling is less than 1 ms. We also assume that these 
observations are near on a parabola of second order. Knowing ( )2θ −j k , 

( )1θ −j k , ( )θ j k , ( )1θ +j k , ( )2θ +j k  at respectively time ( )2−k T , ( )1k T− , 

kT , ( )1k T+ , ( )2k T+ , we would like to find a, b and c such that the errors of 
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these observations data to the parabola 2θ = + +j ax bx c  are minimal in the sense 
of least square. Solving this problem, we have: 
 

( ) ( ) ( ) ( ) ( )
2

2 2 1 2 1 2 2

14
j j j j jk k k k k

a
T

θ θ θ θ θ− − − − − + + +
= ,        (9) 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )20 14 2 10 7 1 20 10 7 1 20 14 2

70
j j j j jk k k k k k k k k k

b
T

θ θ θ θ θ+ − − − − − − + + + − +
=

−
. (10) 

 
 Because ( ) 2j k akT bθ = + , we obtain by calculation 
 

( ) ( ) ( ) ( ) ( )2 2 1 1 2 2
10

j j j j
j

k k k k
k

T
θ θ θ θ

θ
− + − − + − +

=
−

.       (11) 

 
 We can apply the same procedure to have the acceleration. Doing that, we 
will get: 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2

2 2 1 1 2 2
10

4 4 4 3 2 4 1 10 4 1 2 4 3 4 4

100

θ θ θ θ
θ

θ θ θ θ θ θ θ θ θ

− + − − + − +
= =

−
− + − + − − − − − + + + + + + +

=

j j j j
j

j j j j j j j j j

k k k k
T

k k k k k k k k k

T

(12) 

 
 Now, with the extended collected data (which include the velocities and 
accelerations of the joints), we can use these sets for mapping, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1 2, , , , , , , , , ,n n nk k k k k k k k kθ θ θ θ θ θ θ θ θ , 

to ( )j kτ  (where j = 1 to n) in parallel identification model as shown in Figure 1. 
 ANFIS architecture is used for that. It has been proved that Mandani 
controllers as well as Sugeno controllers are universal approximators [4, 5]. 
ANFIS is one of the first fused Neuro-Fuzzy proposed by Jang [6]. It implements 
a Sugeno FIS (Fuzzy Interference System) and it has five layers as shown in 
Figures 1 and 2, for 2 input and 3 membership functions. 
 The first layer has adaptive nodes and it is used for the fuzzification of the 
input variables. The output of this layer will depend on the selected membership 
function which can be a triangular, a Gaussian, a trapezoidal, a bell-shaped, etc. 
Those parameters which specify a membership function will be called premise 
parameters. The output of the second layer is the product of all incoming signals 
and represents the firing strength of a rule. The product (it is more appropriate) 
has been chosen but it can be any T-norm operator that performs fuzzy AND. The  
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Fig. 1. Offline ANFIS parallel identification model 
 

 
 

Fig. 2 ANFIS architecture 
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third layer normalizes the rule strengths. The ith node is calculated as the ratio of 
the strength of the ith rule to the sum of all firing strengths. The fourth layer has 
also adaptive nodes. The output of this layer for one nod will be the product 
between the normalized firing strength with a function. This function has 
parameters called consequent parameters. The fifth layer is the output. It 
computes the overall input as the summation of all incoming signals. 
 A step in the learning procedure (called hybrid learning) has got two parts 
[6]: 

• The premise parameters are fixed and the input patterns are propagated up 
to fourth level of the layer. With the values of this level and the output 
patterns, optimal consequent parameters are calculated using an iterative 
least mean square procedure. The least mean square can be used because 
the output is a linear function of the consequent procedure. 

• The patterns are propagated again with now, consequent parameters fixed. 
In this part back-propagation algorithm is used to modify the premise 
parameters. 

 After obtaining n ANFIS architectures (which express the mapping 
between data from the motion of the joints and the data of the torque of one joint), 
we carry out n + 1 experiments on them. We maintain the same position and 
speed of the joints but we change n + 1 times the accelerations. We have 
 

( )
1

,
n

ij ik kj
k

A Hτ θ θ θ
=

= +∑ ,           (13) 

 
where kjθ  are the values of the torques and the accelerations on the joint i at the jth 
experiment respectively. From the properties of the robotic dynamics, the inertia 
matrix is only dependent of the position (angular or linear position), i.e. by 
changing only the acceleration, the value of ikA  will not change and ( ),θ θH  will 
remain the same. Subtracting relation (13) obtained on the same joint but at 
different experimentations, we have: 
 

( )1 ( 1) 1 ( 1)
1

n

i i j k k j ik
k

Aτ τ θ θ+ +
=

− = −∑           (14) 

or 
i iAτ θΔ = Δ ,             (15) 

 
where 
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1 2 11 12 21 22 1 2

1 3 11 13 21 23 1 2

1 11 1 21 2 1

1 ( 1) 11 1( 1) 21

,

i i n n

i i n n

i

i in n n n nn

i i n n

τ τ θ θ θ θ θ θ

τ τ θ θ θ θ θ θ

τ θ

τ τ θ θ θ θ θ θ

τ τ θ θ θ+ +

Δ −Δ − − −⎛ ⎞
⎜ ⎟
⎜ ⎟Δ −Δ − − −
⎜ ⎟
⎜ ⎟Δ = Δ =
⎜ ⎟
⎜ ⎟Δ −Δ − − −
⎜ ⎟
⎜ ⎟Δ −Δ − −⎝ ⎠ 2( 1) 1 ( 1)n n n nθ θ θ+ +

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟−⎝ ⎠

 

and 1 2 ( 1)
T

i i i i n inA A A A A−⎡ ⎤= ⎣ ⎦ . 

 We can then calculate iA  if θΔ  is invertible as follow: 
 

1
i iA θ τ−= Δ Δ .             (16) 

 
Finally we deduced ( ),iH θ θ  from the equation (13). We can use the 

property which stipulates that the inertia matrix is symmetrical to check the 
validity of the values of its elements obtained on different joints and experiments 
(is ijA  equal to jiA ?). 

4. Application of the method 

4.1. Identification of the dynamic model and parameters estimation of 
a two link planar arm 

In order to illustrate the method quoted above, we have applied it to a two 
link planar arm, shown in Figure 3. 
 The parameters of its dynamic model are well-known [14]. They will 
enable us to establish comparisons with those obtained by means of the Neuro-
Fuzzy model. By neglecting the friction torques and the tip contact forces, the 
model of the two link planar arm is as follows [14], 
 

1 11 1 12 2 1

2 21 1 22 2 2

A A H

A A H

τ θ θ

τ θ θ

= + +

= + +
,           (17) 

 
where 
          ( )1 1 1 2 2 2 2

2 2 2 2 2
11 1 1 1 2 1 2 2 12 cosl l r m l l m mA I m l k I I m a l a l I m aθ= + + + + + + + + ; 

          ( )2 2 2

2
12 21 2 1 2 2 2cosl l r mA A I m l a l k Iθ= = + + + ; 
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2 2 2

2
22 2 2l l r mA I m l k I= + + ; 

          
( )

( )
2 2 1 2 2

2

2
1 1 2 1 2 2 1 2 2 2 1 1 1 1

2 1 2

2 sin sin cos

cos
l l l m l

l

H m a l m a l m l m a m a g

m l g

θ θ θ θ θ θ

θ θ

= − − + + + +

+ +
; 

          ( )
2 2

2
2 1 2 1 2 2 1 2sin cosl lH m a l m l gθ θ θ θ= − + ; 

 1l , 2l  are the distances of centers of mass for the two links from the 
respective joint axes; 
 

1lm , 
2lm  are the masses of the two links; 

 
1mm , 

2mm  are the masses of the rotors for the two joints motors; 

 
1mI , 

2mI  are the moments of inertia with respect to the axes of the two 
joints; 
 1rk , 2rk  are the reduction ratio of the gears; 
 

1lI , 
2lI  are the moments of inertia relative to the centers of mass for the 

two links. 

 
 

Fig. 3. Two link planar arm 
 

 In order to have numerical values, we use the data from [14]: 

1 2 1 2

1 2 1 2

2
1 2 1 2

2
1 2

1 ; 0.5 ; 50kg; 10kg m ;

100; 5kg; 0.01kg m .

l l l l

r r m m m m

a a m l l m m m I I

k k m m I I

= = = = = = = = ⋅

= = = = = = ⋅
 

 From equation (17), we have collected data sets, 
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( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( ) ( ){ }

1 1 1 2 2 2 1

1 1 1 2 2 2 2

, , , , , ,

, , , , , ,

k k k k k k k

k k k k k k k

θ θ θ θ θ θ τ

θ θ θ θ θ θ τ
, 

 

with ( )1 kθ  and ( )2 kθ  in the range of 0 to 
3
π  and k going from 1 to 4096 (the 

range and the number of data were taken to reduce the offline learning calculation 
time). We have made trials to determine the appropriate number of membership 
functions and the type of FIS by considering the final RMSE (Root Mean Square 
Error). We have found from different trials that two triangular membership 
functions (N and P) by input and first-order Sugeno FIS give a small error. 
 After nearly 409600 iterations for each data sets, we have obtained a 
RMSE of about 0.0879 for 1τ  and 0.0862 for 2τ . 
 From the ANFIS models of the two link planar arm, we have solved the 
equations (15), to estimate its dynamic parameters. Some results are shown in 
Table 1 (we have chosen for illustration the variation of 2θ  because the matrix A 

is only dependent on this parameter). The 11A , ( )12 1A , ( )12 2A , 22A  parameters 
are estimated using our method and 11A , 12A , 22A  are computed using the 
equations from [14]. 
 

Table 1 
Dynamic parameters of the two link planar arm 

2θ  11A  11A  ( )12 1A  ( )12 2A  12A  22A  22A  

0.1 249.8 249.76 48.408 48.303 48.375 122.53 122.5 
0.2 249.03 249.01 48.022 47.98 48.002 122.52 122.5 
0.3 247.78 247.78 47.39 47.38 47.383 122.51 122.5 
0.4 246.05 246.06 46.525 46.524 46.527 122.5 122.5 
0.5 243.88 243.89 45.435 45.432 45.44 122.49 122.5 
0.6 241.27 241.28 44.131 44.122 44.133 122.48 122.5 
0.7 238.26 238.25 42.622 42.61 42.621 122.47 122.5 
0.8 234.85 234.85 40.916 40.91 40.918 122.46 122.5 
0.9 231.06 231.09 39.022 39.048 39.04 122.45 122.5 

4.2. Identification of the dynamic model and parameters estimation of 
the leg of AMRU5 robot 

The pantograph mechanism has been used in many legged robots projects 
(TITAN III, TITAN IV, RIMHO, …). Opposed to other mechanisms, the 
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pantograph mechanism exhibits the most potentiality for the following reasons [7, 
8]: 

• An exact-straight-line foot trajectory can be obtained by actuating only 
one linear actuator. A high efficiency is to be expected. 

• The leg geometry can be made more compact by adjusting the 
magnification ratio. 

• The input motions can be mechanically decoupled. The simplest approach 
to the foot trajectory control can be used. 

• The closed-loop gives a good rigidity of the leg. 
 As disadvantage of this mechanism, the linear actuating systems are more 
difficult to design and to protect if normal electric motors are used. Also when 
using model-based controller, it is not easy to find the parameters of the leg due to 
the closed-loop. The first problem leads often to the choice of a 2D pantograph 
mechanism to make the design more compact. In this case, the GDA 
(Gravitational Decoupled Actuation) is not perfect. A 2D pantograph (Figure 4) 
has been used on the robots MECANT, BOADICEA and the robot AMRU5 
(Figure 5) that we have designed. 

 
 

Fig. 4. Leg structure based on a 2D pantograph mechanism 
 
 The second problem has been solved using the method explained above. 
The pantograph mechanism has 2 closed loops and it is not an easy task to derive 
the dynamic model and the parameters of such mechanism using classical method 
(Newton-Euler formalism). That is why we have preferred to use Soft-Computing 
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methodology to identify those parameters, which have been used in the control 
strategy of the robot. ANFIS has been proved to have the best performance in 
comparison to others methods: FNN (Feedforward Neural Networks 
Architecture), RBFNN (Radial Basis Function Neural Networks, RKNN (Runge-
Kutta Neural Networks), [12]. 
 

 
 

Fig. 5. AMRU5 walking robot 
 
 Due to the pantograph mechanism, the actuators responsible of the 
translation movement r3 will only be used to support the body of the robot against 
gravity forces and in transfer phase. The actuators that generate the translation 
movement r2 and the rotation θ  are used in the tracking of the trajectory when 
the legs are in the stance phase. As we have a decoupling of r3 from r2 and 1θ , 
equation (2) can be split in two parts as follows: 
 

1 11 12 1 1 1 2 1 2

2 21 22 2 2 1 2 1 2

( , , , )

( , , , )

A A H

A A H

τ θ θ θ θ θ

τ θ θ θ θ θ

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟= +

⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
,        (18) 

 
( )3 3 3 3 3 3,A Hτ θ θ θ= + .           (19) 

 
 We will only consider the system of equations (18) in this paper, to 
explain that ANFIS joints control (equation (19) is a particular case). Equation 
(18) will be written as: 
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( ) ( ),θ θ θ θ= +T A H ,           (20) 

where [ ]1 2, Tτ τ=T , 
11 12

21 22

A A

A A

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

A� , [ ]1 2, TH H=H  and [ ]1 2, Tθ θ θ= . 

 To identify the parameters of the dynamic model described by equation 
(20), we need its equivalent discrete-time version defined by nonlinear difference 
equations. To approximate θ  and θ , we will use a Taylor series as follows: 
 

( ) ( ) ( ) ( ) ( )
2

3Δ1 Δ Δ
2
tk k t k k O tθ θ θ θ+ = + + + ,        (21) 

 

( ) ( ) ( ) ( ) ( )
2

3Δ1 Δ Δ
2
tk k t k k O tθ θ θ θ− = − + + .        (22) 

 
 Equation (21) plus equation (22) gives: 
 

( ) ( ) ( ) ( )
2

1 2 1
Δ

k k k
k

t
θ θ θ

θ
+ − + −

= .          (23) 

 
 Equation (21) minus equation (22) gives: 
 

( ) ( ) ( )1 1
2Δ

k k
k

t
θ θ

θ
+ − −

= .           (24) 

 
where Δt  is a sampling time. 
 Equation (20) becomes in discrete-time: 
 

( ) ( )( ) ( ) ( ) ( )( ),k k k k kθ θ θ θ= +T A H .         (25) 
 
where ( )kθ  and ( )kθ  are expressed by the equations (23) and (24) respectively. 

 It is necessary to estimate the elements of the inertia matrix ( )( )kθA  and 

the elements of the matrix ( ) ( )( ),k kθ θH  because they will be used in the 
strategy control. To estimate those elements, we use the principle that the 
elements of the inertia matrix are only dependent on ( )kθ  and the elements of the 

matrix H  are dependent on ( )kθ  and ( )kθ , i.e. if we change ( )kθ  and we 

maintain ( )kθ  and ( )kθ  with the same values, the elements of the inertia matrix 
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will remain the same. Suppose we have the same ( )kθ , ( )kθ  for three different 

angular accelerations ( )j kθ  ( , and )j a b c= , then 
 

( ) ( )( ) ( ) ( ) ( )( ),j jk k k k kτ θ θ θ θ= +A H ,         (26) 
 

where ( ) ( ) ( )1 2
T

j j jk k kτ τ τ⎡ ⎤= ⎣ ⎦  and ( ) ( ) ( )1 2
T

j j jk k kθ θ θ⎡ ⎤= ⎣ ⎦ . 

 By applying the principle stated above, we have: 
 

( ) ( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( )( ) ( ) ( )( )

1 1 11 1 1 12 2 2

1 1 11 1 1 12 2 2

a b a b a b

a c a c a c

k k A k k A k k

k k A k k A k k

τ τ θ θ θ θ

τ τ θ θ θ θ

− = − + −

− = − + −
,      (27) 

 

( ) ( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( )( ) ( ) ( )( )

2 2 21 1 1 22 2 2

2 2 21 1 1 22 2 2

a b a b a b

a c a c a c

k k A k k A k k

k k A k k A k k

τ τ θ θ θ θ

τ τ θ θ θ θ

− = − + −

− = − + −
.      (28) 

 
 Solving the systems of equations (27) and (28) we will get: 
 

( ) ( ) ( )
( ) ( ) ( )

2 2 1 2 2 1 2 2 1
11

1 1 2 1 1 2 1 1 2

c b a a c b b a c

b c a c a b a b c
A

θ θ τ θ θ τ θ θ τ

θ θ θ θ θ θ θ θ θ

− + − + −
=

− + − + −
,       (29) 

 

( ) ( ) ( ) ( )
( ) ( ) ( )

1 1 1 1 1 1 1 1 1
12 121

1 1 2 1 1 2 1 1 2

c b a a c b b a c

b c a c a b a b c
A A

θ θ τ θ θ τ θ θ τ

θ θ θ θ θ θ θ θ θ

− + − + −
= = −

− + − + −
,      (30) 

 

( ) ( ) ( ) ( )
( ) ( ) ( )

2 2 2 2 2 2 2 2 2
12 212

1 1 2 1 1 2 1 1 2

c b a a c b b a c

b c a c a b a b c
A A

θ θ τ θ θ τ θ θ τ

θ θ θ θ θ θ θ θ θ

− + − + −
= =

− + − + −
,      (31) 

 

( ) ( ) ( )
( ) ( ) ( )

1 1 2 1 1 2 1 1 2
22

1 1 2 1 1 2 1 1 2

c b a a c b b a c

b c a c a b a b c
A

θ θ τ θ θ τ θ θ τ

θ θ θ θ θ θ θ θ θ

− + − + −
= −

− + − + −
.       (32) 

 The difference between ( )12 1A  and ( )12 2A  is very small if the two data 

sets ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 1 1 2 2 2 1, , , , , ,k k k k k k kθ θ θ θ θ θ τ  and 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 1 1 2 2 2 2, , , , , ,k k k k k k kθ θ θ θ θ θ τ  constituted converge to 
a small RMSE. It could be that one of the sets has a small error. If it is the case, 
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we could use the property that the inertia matrix is symmetrical and the ANFIS 
model which has the smallest error, to find some parameters of the dynamic 
model. If, for example, the second data gives a small RMSE error, we will use the 
equations (31) and (32) to find 12A  ( 21 12A A= ) and 22A . We can then calculate 

11A  from two different angular accelerations as follows: 
 

( )
( )

1 1 12 2 2
11

1 1

a b a b

a b

A
A

τ τ θ θ

θ θ

− − −
=

−
.          (33) 

 

 After the determination of the matrix ( )( )kθA , we can determine the 
matrix H  with the following equations: 
 
 ( ) ( )( )1 1 11 1 12 2, j j jH k k A Aθ θ τ θ θ= − −          (34) 
 
 ( ) ( )( )2 2 21 1 22 2, j j jH k k A Aθ θ τ θ θ= − −          (35) 
 
where j could be a, b or c. Here also we can compare the different results obtained 
with different j. 

The first step to find the dynamic parameters of the AMRU5 leg was the 
design of an initial FLC (Fuzzy Logic Controller). With this initial FLC, the leg 
has been moved randomly and we have collected data sets necessary to train the 
ANFIS in the purpose of having the dynamic model of the two considered joints. 
After having used those data in the training of ANFIS architectures, we have 
obtained a RMSE of about 0.52 for the joint 1 and about 6.01 for the joint 2. The 
resulted elements of the inertia matrix are shown in Figures 6-9. 
 

 
 

Fig. 6. Element 11A  of the inertia matrix 
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Fig. 7. Element ( )12 1A  of the inertia matrix (first method) 

 
 

 
 

Fig. 8. Element ( )12 2A  of the inertia matrix (second method) 
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Fig. 9. Element 22A  of the inertia matrix 

5. Conclusion 

In the framework of HUDEM project (Belgian Ministry of Defense), a 
hexapod walking robot with hexagonal architecture has been built. The 
architecture of the robot has been chosen on the basis of the existing robots 
survey. 

In this paper, we have shown the principle to identify the dynamic 
parameters of a mechanical system using Soft-Computing methodology. We 
firstly begin by collecting motion and actuation data from well-selected 
trajectories of the joints. The assumption saying that the variations of the 
velocities and accelerations of the joints during 5 consecutive observations are 
small, allow us to derive these parameters from the measured positions (which 
include generally noises). This assumption is practically acceptable in several 
parts of the selected trajectories. Then we use ANFIS architectures in the mapping 
of motion data of the joints to actuation data of one joint. Finally, to identify the 
elements of the inertia matrix, we apply on the ANFIS architectures obtained, the 
principle that the elements of the inertia matrix are only dependent on the joints 
position. This method has been tested on a two link planar manipulator because 
we have a mathematical model of it. The comparison between the outputs of the 
method and the mathematical model proves the validity of it. Then, we have been 
used this method to identify the dynamic parameters of a pantograph-based leg of 
AMRU5 walking robot. The use of the parameters obtained in a model-based 
adaptive controller developed on a leg simulator has been shown the efficiency of 
the proposed method.  
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