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CONVECTION LAMINAIRE ETABLIE D’UN GAZ 
DANS UN MICROCANAL PLAN VERTICAL 

 
 

Jacques PADET1, Renato M. COTTA2 

 
 

  Dans des publications antérieures, nous avons examiné le cas particulier 
de la convection mixte établie dans un canal plan vertical, pour lequel des solutions 
analytiques sont disponibles. Ceci a permis en particulier de proposer des critères 
de transition entre convection forcée, mixte et naturelle, ainsi que d’évaluer la 
production d’entropie de flottabilité, d’entropie visqueuse et d’entropie thermique 
dans l’écoulement.. Dans le présent article, l’étude est étendue au cas d’un 
microcanal, où les conditions aux limites dynamiques et thermiques sont 
différentes du cas macroscopique. 
 
  In previous papers, we have analysed a special case of mixed thermal 
convection, so called fully developed flow, in vertical plane and annular channels, 
for which analytical solutions are available. It can be shown that they permit to 
define transition criteria from forced convection to mixed and natural convection, 
as so buoyancy, viscous and thermal entropy production. In the present paper, this 
study is extended to microchannels, where dynamic and thermal boundary 
conditions are different. 

 
Mots clés : microcanal / convection mixte / recirculation / production d’entropie 
 
 1. Introduction : cas général 
 
 Dans les nombreuses publications consacrées à la convection, la convection 
mixte occupe une place mineure par rapport à la convection forcée et à la convection 
naturelle, tout particulièrement en ce qui concerne les microcanaux. Pourtant, ces 
deux situations extrêmes ne sont en fait que les deux cas limites de la convection 
mixte, dans lesquelles les forces gravitationnelles sont, soit négligeables devant les 
forces de pression, soit prépondérantes. 
 Pour aborder cette question sous un aspect fondamental, nous choisissons 
de considérer un écoulement laminaire anisotherme entre deux plaques planes 
verticales et parallèles, respectivement placées en 𝑦𝑦 = 0 et 𝑦𝑦 = 𝑒𝑒 , dont les 
températures 𝑇𝑇1 et 𝑇𝑇2 sont imposées et uniformes (fig. 1). Le fluide est isochore, et 
l’écoulement globalement ascendant, avec une vitesse moyenne (débitante) 𝑉𝑉𝑚𝑚 .  
 Les conditions d’entrée et de sortie sont reportées à l’infini. Les champs de 
vitesse et de température sont donc indépendants de la coordonnée verticale x 
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(régimes dynamique et thermique établis). En particulier, le gradient de pression 
motrice 𝑑𝑑𝑝𝑝∗ 𝑑𝑑𝑑𝑑⁄  est une constante. 
 Cette configuration a été étudiée en particulier dans [1] et [2]. Nous en 
rappelons ici l’essentiel, dans le cas classique (macroscopique). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 –  Ecoulement plan établi ; 0TTT 21 >=− ∆ . 
 
 Une conséquence de l’équation de continuité est que la composante V  de la 
vitesse (selon la direction y) est nulle partout. En adoptant l’approximation de 
Boussinesq (pour laquelle 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 est la température de référence), les équations de 
quantité de mouvement et d’énergie se réduisent alors à : 

   0 = 𝑔𝑔𝑔𝑔�𝑇𝑇 − 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟� −
1
𝜌𝜌
𝑑𝑑𝑝𝑝∗

𝑑𝑑𝑑𝑑
+ 𝜈𝜈 𝑑𝑑2𝑈𝑈

𝑑𝑑𝑦𝑦2
                     (1) 

    𝑑𝑑2𝑇𝑇
𝑑𝑑𝑦𝑦2

= 0                      (2) 
avec les conditions aux limites : 
   𝑦𝑦 = 0 ∶   𝑇𝑇 = 𝑇𝑇1  ;   𝑈𝑈 = 0   

   𝑦𝑦 = 𝑒𝑒 ∶   𝑇𝑇 = 𝑇𝑇2  ;   𝑈𝑈 = 0                     (3) 
 La solution est donc purement conductive pour le champ de température : 

   𝑇𝑇 = −𝑇𝑇1 − 𝑇𝑇2
𝑒𝑒

 𝑦𝑦 + 𝑇𝑇1                      (4) 
et le champ de vitesse est décrit par un polynôme de degré 3 : 

𝑈𝑈 = 𝑔𝑔𝑔𝑔
6𝜈𝜈𝜈𝜈

 (𝑇𝑇1 − 𝑇𝑇2)𝑦𝑦3 − �𝑔𝑔𝑔𝑔
4𝜈𝜈

 (𝑇𝑇1 − 𝑇𝑇2) − 1
2𝜇𝜇

 𝑑𝑑𝑝𝑝
∗

𝑑𝑑𝑑𝑑
� 𝑦𝑦2 + �𝑔𝑔𝑔𝑔

12𝜈𝜈
 (𝑇𝑇1 − 𝑇𝑇2) −

1
2𝜇𝜇

 𝑑𝑑𝑝𝑝
∗

𝑑𝑑𝑑𝑑
� 𝑒𝑒𝑒𝑒     (5) 

 On en déduit la vitesse débitante : 

0 y  e 

 x 

Vm 

T1    T2 

 

 g 
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    𝑉𝑉𝑚𝑚 = − 𝑒𝑒2

12 𝜇𝜇
 𝑑𝑑𝑝𝑝

∗

𝑑𝑑𝑑𝑑
                       (6) 

 Il est à noter que cette vitesse est nulle en convection naturelle pure : le débit 
ascendant du côté de la paroi chaude est égal au débit descendant du côté froid.  
 
 2. Cas d’un microcanal 
 
 2.1. - Bases théoriques 
 Lorsque le libre parcours moyen des molécules dans le fluide devient 
significatif par rapport à la largeur du canal (en pratique, ceci se produit 
essentiellement dans les gaz), on observe au voisinage des parois un saut de vitesse 
(accommodation dynamique) et un saut de température (accommodation 
thermique). Dans ce cas, le conduit est qualifié de microcanal [3,4,5].  
 
 Les paramètres caractéristiques du problème sont : 
- le libre parcours moyen  𝜆𝜆𝑚𝑚  
- le coefficient d’accommodation dynamique  𝜎𝜎𝑉𝑉  
- le coefficient d’accommodation thermique  𝜎𝜎𝑇𝑇  
- le coefficient de la loi isentropique  𝛾𝛾 (= 1,4 pour un gaz diatomique) 

- le nombre de Knudsen  𝐾𝐾𝐾𝐾 = 𝜆𝜆𝑚𝑚
𝑒𝑒

                                       (7) 
 On pose : 

   𝛽𝛽𝑉𝑉 = 2 − 𝜎𝜎𝑉𝑉
𝜎𝜎𝑉𝑉

     ;     𝛽𝛽𝑇𝑇 = 2 − 𝜎𝜎𝑇𝑇
𝜎𝜎𝑇𝑇

 2 𝛾𝛾
𝛾𝛾 + 1

                     (8) 
 
 Les conditions aux limites qui remplacent (3) sont alors les suivantes : 
  𝑦𝑦 = 0 ∶   𝑇𝑇 = 𝑇𝑇1 + 𝛽𝛽𝑇𝑇 𝜆𝜆𝑚𝑚 �

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑦𝑦=0

  ;   𝑈𝑈 = 𝛽𝛽𝑉𝑉 𝜆𝜆𝑚𝑚 �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑦𝑦=0

    

 𝑦𝑦 = 𝑒𝑒 ∶   𝑇𝑇 = 𝑇𝑇2 − 𝛽𝛽𝑇𝑇 𝜆𝜆𝑚𝑚 �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑦𝑦=𝑒𝑒

 ;   𝑈𝑈 = − 𝛽𝛽𝑉𝑉 𝜆𝜆𝑚𝑚 �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑦𝑦=𝑒𝑒

  (9) 

 Elles sont applicables si le nombre de Knudsen satisfait la condition : 
    0,001 < 𝐾𝐾𝐾𝐾 < 0,1                   (10) 

 
 Alors, les équations (1) et (2) restent valables, mais doivent être résolues 
avec les conditions aux limites (9). 
 
 2.2. - Champ de température 
 L’intégration de (2) donne : 

   𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐴𝐴 = 𝑐𝑐𝑐𝑐𝑐𝑐 = �𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑦𝑦=0

= �𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑦𝑦=𝑒𝑒

                (11a) 

 
    𝑇𝑇 = 𝐴𝐴 𝑦𝑦 + 𝐵𝐵                    (11b) 
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 Les conditions aux limites (9) déterminent les constantes A et B. En 
introduisant le nombre de Knudsen (7), on obtient : 

 𝐴𝐴 = − 𝑇𝑇1− 𝑇𝑇2
𝑒𝑒 (1+2 𝛽𝛽𝑇𝑇 𝐾𝐾𝐾𝐾) 

     ;     𝐵𝐵 = (1+𝛽𝛽𝑇𝑇 𝐾𝐾𝐾𝐾)𝑇𝑇1+𝛽𝛽𝑇𝑇 𝐾𝐾𝐾𝐾 𝑇𝑇2
1+2 𝛽𝛽𝑇𝑇 𝐾𝐾𝐾𝐾

                   (12) 
 
 En particulier, le flux de chaleur entre les deux parois est : 

    𝜑𝜑 = −𝜆𝜆 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= − 𝜆𝜆 𝐴𝐴                   (13) 
 Cette valeur est évidemment plus faible que dans un macrocanal, où elle est 
égale à 𝜆𝜆(𝑇𝑇1 − 𝑇𝑇2)/𝑒𝑒. 
 
 2.3. - Champ de vitesse 
 Avant d’intégrer l’équation (1), il faut préciser la température de référence 
𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 qui devra être utilisée (en relation avec l’approximation de Boussinesq). 
D’après [2], c’est ici la température moyenne du fluide, soit : 

   𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 = 1
𝑒𝑒

 ∫ 𝑇𝑇(𝑦𝑦) 𝑑𝑑𝑑𝑑𝑒𝑒
0 = 𝐴𝐴 𝑒𝑒

2
+ 𝐵𝐵                  (14) 

 Avec (12), le résultat est : 
    𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑇𝑇1+𝑇𝑇2

2
                     (15) 

 La température de référence est donc la même que dans un macrocanal, ceci 
étant dû à la symétrie des conditions aux limites thermiques sur les deux parois 
(même valeur de 𝛽𝛽𝑇𝑇). 
 
 
 Alors, l’équation dynamique (1) devient : 

   𝜈𝜈 𝑑𝑑
2𝑈𝑈

𝑑𝑑𝑦𝑦2
= 1

𝜌𝜌
 𝑑𝑑𝑝𝑝

∗

𝑑𝑑𝑑𝑑
− 𝑔𝑔𝑔𝑔(𝐴𝐴𝐴𝐴 + 𝐵𝐵) + 𝑔𝑔𝑔𝑔𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟                       (16) 

 Deux intégrations successives donnent : 
 𝑈𝑈 = 1

𝜇𝜇
 𝑑𝑑𝑝𝑝

∗

𝑑𝑑𝑑𝑑
 𝑦𝑦

2

2
− 𝑔𝑔𝑔𝑔

𝜈𝜈
 𝐴𝐴 𝑦𝑦

3

6
− 𝑔𝑔𝑔𝑔

𝜈𝜈
 �𝐵𝐵 − 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟�

𝑦𝑦2

2
+ 𝐶𝐶1 𝑦𝑦 + 𝐶𝐶2            (17) 

 
 Introduisons les conditions aux limites dynamiques (9) pour déterminer les 
constantes : 
 𝑦𝑦 = 0     ⇒      𝑈𝑈(0) = 𝐶𝐶2 = 𝛽𝛽𝑉𝑉 𝜆𝜆𝑚𝑚 �

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑦𝑦=0

   

    𝐶𝐶2 = 𝛽𝛽𝑉𝑉 𝜆𝜆𝑚𝑚 𝐶𝐶1                   (18) 
 𝑦𝑦 = 𝑒𝑒     ⇒      𝑈𝑈(𝑒𝑒) = − 𝛽𝛽𝑉𝑉 𝜆𝜆𝑚𝑚 �

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑦𝑦=𝑒𝑒

   

  1
𝜇𝜇

 𝑑𝑑𝑝𝑝
∗

𝑑𝑑𝑑𝑑
 𝑒𝑒

2

2
− 𝑔𝑔𝑔𝑔

𝜈𝜈
 𝐴𝐴 𝑒𝑒

3

6
− 𝑔𝑔𝑔𝑔

𝜈𝜈
 �𝐵𝐵 − 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟�

𝑒𝑒2

2
+ 𝐶𝐶1 𝑒𝑒 + 𝐶𝐶2 =

                         − 𝛽𝛽𝑉𝑉 𝜆𝜆𝑚𝑚  �1
𝜇𝜇

 𝑑𝑑𝑝𝑝
∗

𝑑𝑑𝑑𝑑
 𝑒𝑒 − 𝑔𝑔𝑔𝑔

𝜈𝜈
 𝐴𝐴 𝑒𝑒

2

2
− 𝑔𝑔𝑔𝑔

𝜈𝜈
 �𝐵𝐵 − 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟� 𝑒𝑒 + 𝐶𝐶1� 

 Après remplacement de 𝐶𝐶2 par (18), tous calculs faits, on obtient : 
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 𝐶𝐶1 = − 1
2𝜇𝜇

 𝑑𝑑𝑝𝑝
∗

𝑑𝑑𝑑𝑑
 𝑒𝑒 +  𝑔𝑔𝑔𝑔

𝜈𝜈
 𝐴𝐴 𝑒𝑒

2

6
 𝑒𝑒+3𝛽𝛽𝑉𝑉𝜆𝜆𝑚𝑚
𝑒𝑒+2𝛽𝛽𝑉𝑉𝜆𝜆𝑚𝑚

+ 𝑔𝑔𝑔𝑔
𝜈𝜈

 �𝐵𝐵 − 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟�
𝑒𝑒
2
      (19) 

 
 2.4. – Vitesse débitante 
 La vitesse débitante a maintenant pour expression, d’après (17) et (18) : 

 𝑉𝑉𝑚𝑚 = 1
𝑒𝑒

 ∫ 𝑈𝑈 𝑑𝑑𝑑𝑑𝑒𝑒
0 = 1

𝜇𝜇
 𝑑𝑑𝑝𝑝

∗

𝑑𝑑𝑑𝑑
 𝑒𝑒

2

6
− 𝑔𝑔𝑔𝑔

𝜈𝜈
 𝐴𝐴 𝑒𝑒

3

24
− 𝑔𝑔𝑔𝑔

𝜈𝜈
 �𝐵𝐵 − 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟�

𝑒𝑒2

6
+ 𝐶𝐶1

2
 (𝑒𝑒 +

2𝛽𝛽𝑉𝑉𝜆𝜆𝑚𝑚)        (20) 
 
 Il sera commode d’expliciter le paramètre  𝐵𝐵 − 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 , à partir de (12) et 
(15) : 
  𝐵𝐵 − 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 = (1+𝛽𝛽𝑇𝑇 𝐾𝐾𝐾𝐾)𝑇𝑇1+𝛽𝛽𝑇𝑇 𝐾𝐾𝐾𝐾 𝑇𝑇2

1+2 𝛽𝛽𝑇𝑇 𝐾𝐾𝐾𝐾
− 𝑇𝑇1+𝑇𝑇2

2
= 𝑇𝑇1−𝑇𝑇2

2(1+2𝛽𝛽𝑇𝑇𝐾𝐾𝐾𝐾)
   

    𝐵𝐵 − 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 = −𝐴𝐴 𝑒𝑒
2
             (21) 

d’où : 
   𝑉𝑉𝑚𝑚 = 1

𝜇𝜇
 𝑑𝑑𝑝𝑝

∗

𝑑𝑑𝑑𝑑
 𝑒𝑒

2

6
+ 𝑔𝑔𝑔𝑔

𝜈𝜈
 𝐴𝐴 𝑒𝑒

3

24
+ 𝐶𝐶1

2
 (𝑒𝑒 + 2𝛽𝛽𝑉𝑉𝜆𝜆𝑚𝑚) 

   𝐶𝐶1 = − 1
2𝜇𝜇

 𝑑𝑑𝑝𝑝
∗

𝑑𝑑𝑑𝑑
 𝑒𝑒 +  𝑔𝑔𝑔𝑔

𝜈𝜈
 𝐴𝐴 �𝑒𝑒

2

6
 𝑒𝑒+3𝛽𝛽𝑉𝑉𝜆𝜆𝑚𝑚
𝑒𝑒+2𝛽𝛽𝑉𝑉𝜆𝜆𝑚𝑚

−  𝑒𝑒
2

4
� =

                                                                     =  − 1
2𝜇𝜇

 𝑑𝑑𝑝𝑝
∗

𝑑𝑑𝑑𝑑
 𝑒𝑒 −  𝑔𝑔𝑔𝑔

𝜈𝜈
 𝐴𝐴 𝑒𝑒3

12(𝑒𝑒+2𝛽𝛽𝑉𝑉𝜆𝜆𝑚𝑚)
                            

 Introduisons à présent le nombre de Knudsen (𝐾𝐾𝐾𝐾 = 𝜆𝜆𝑚𝑚/𝑒𝑒) dans tous les 
termes, en prenant en compte l’expression (12) de A : 
   𝐶𝐶1 = − 𝑒𝑒

2𝜇𝜇
 𝑑𝑑𝑝𝑝

∗

𝑑𝑑𝑑𝑑
+  𝑔𝑔𝑔𝑔 ∆𝑇𝑇

12 𝜈𝜈
 𝑒𝑒
(1+2𝛽𝛽𝑇𝑇𝐾𝐾𝐾𝐾)(1+2𝛽𝛽𝑉𝑉𝐾𝐾𝐾𝐾)

          (22) 
 L’expression de la vitesse débitante est finalement : 
    𝑉𝑉𝑚𝑚 = − 𝑒𝑒2

12 𝜇𝜇
 𝑑𝑑𝑝𝑝

∗

𝑑𝑑𝑑𝑑
 (1 + 6 𝛽𝛽𝑉𝑉 𝐾𝐾𝐾𝐾)          (23) 

 
 Par rapport à un macrocanal, la correction est exprimée par le terme entre 
parenthèses, qui est plus grand que 1, et qui ne dépend que du paramètre dynamique. 
Donc, pour un même gradient de pression motrice et un même écart de température 
entre les parois, le débit dans un microcanal est plus élevé que dans un macrocanal, 
et il est indépendant des paramètres thermiques.  
 
 2.5. – Condition de recirculation 
 La limite d’apparition d’une recirculation correspond à une dérivée de la 
vitesse nulle sur la paroi 2, soit d’après (17) : 
  �𝑑𝑑𝑈𝑈

𝑑𝑑𝑑𝑑
�
𝑦𝑦=𝑒𝑒

= 𝑒𝑒
𝜇𝜇

 𝑑𝑑𝑝𝑝
∗

𝑑𝑑𝑑𝑑
− 𝑔𝑔𝑔𝑔

𝜈𝜈
 𝐴𝐴 𝑒𝑒

2

2
− 𝑔𝑔𝑔𝑔

𝜈𝜈
 �𝐵𝐵 − 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟� 𝑒𝑒 + 𝐶𝐶1 = 0       (24a) 

et, compte tenu de (21) : 
    𝑒𝑒

𝜇𝜇
 𝑑𝑑𝑝𝑝

∗

𝑑𝑑𝑑𝑑
+ 𝐶𝐶1 = 0                            (24b) 
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 Remplaçons 𝐶𝐶1 par (22) ; il vient après simplification : 
   𝑒𝑒

2 𝜇𝜇
 𝑑𝑑𝑝𝑝

∗

𝑑𝑑𝑑𝑑
+  𝑔𝑔𝑔𝑔 ∆𝑇𝑇

12 𝜈𝜈
 𝑒𝑒
(1+2𝛽𝛽𝑇𝑇𝐾𝐾𝐾𝐾)(1+2𝛽𝛽𝑉𝑉𝐾𝐾𝐾𝐾)

= 0   
 Introduisons enfin  𝑉𝑉𝑚𝑚  à partir de (23). La condition (24) devient : 

  −6 𝑉𝑉𝑚𝑚
𝑒𝑒

 1
1+6 𝛽𝛽𝑉𝑉𝐾𝐾𝐾𝐾

+ 𝑔𝑔𝑔𝑔 ∆𝑇𝑇
12 𝜈𝜈

 𝑒𝑒
(1+2𝛽𝛽𝑇𝑇𝐾𝐾𝐾𝐾)(1+2𝛽𝛽𝑉𝑉𝐾𝐾𝐾𝐾)

= 0                 (25) 
 
 Rappelons ici la définition du coefficient de poussée thermique :  
    𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑔𝑔𝑔𝑔 ∆𝑇𝑇 𝐷𝐷ℎ

2

𝑉𝑉𝑚𝑚 𝜈𝜈
  

avec un diamètre hydraulique 𝐷𝐷ℎ = 2 𝑒𝑒 pour un conduit plan, soit : 
    𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 4 𝑒𝑒2  𝑔𝑔𝑔𝑔 ∆𝑇𝑇

𝑉𝑉𝑚𝑚 𝜈𝜈
                   (26) 

 On voit que la relation (25) est vérifiée pour une valeur critique 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐 du 
coefficient de poussée thermique : 

   𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐 = 288 (1+2𝛽𝛽𝑇𝑇𝐾𝐾𝐾𝐾)(1+2𝛽𝛽𝑉𝑉𝐾𝐾𝐾𝐾)
1+6 𝛽𝛽𝑉𝑉𝐾𝐾𝐾𝐾

                  (27) 
une recirculation apparaissant si 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 > 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐 
 Dans un macrocanal (𝐾𝐾𝐾𝐾 ≅ 0) on retrouve bien la valeur connue 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐 =
288, cf. [2]. 
 
 Plus généralement, puisque les conditions propres à un microcanal 
conduisent à  augmenter la vitesse moyenne d’un facteur  (1 + 6 𝛽𝛽𝑉𝑉 𝐾𝐾𝐾𝐾) (23), elles 
réduisent le coefficient 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (26) dans la même proportion. 
 
 2.6. - Exemples numériques 
 On observe sur (23) et (27) que les principaux paramètres dynamiques dans 
un microcanal sont ceux d’un macrocanal, affectés de facteurs correctifs. Il est 
important de connaître leur ordre de grandeur. Pour cela, considérons l’air à 
pression ambiante. Une valeur moyenne pour les coefficients d’accommodation 
est : 
    𝜎𝜎𝑉𝑉 ≅ 𝜎𝜎𝑇𝑇 ≅ 0,9    
 De (8) on déduit : 

    𝛽𝛽𝑉𝑉 = 1,22   ;    𝛽𝛽𝑇𝑇 = 1,43                (28a) 
 Quant au libre parcours moyen, il vaut : 

    𝜆𝜆𝑚𝑚 = 68 𝑛𝑛𝑛𝑛                  (28b) 
 

1er cas :  En prenant  𝑒𝑒 = 1000 𝑛𝑛𝑛𝑛 = 1 𝜇𝜇𝜇𝜇 , on a  𝐾𝐾𝐾𝐾 = 𝜆𝜆𝑚𝑚
𝑒𝑒

= 0,068 , ce qui est 
conforme à la condition (10). 
 - La vitesse débitante est, d’après (23) : 
 𝑉𝑉𝑚𝑚 = − 𝑒𝑒2

12 𝜇𝜇
 𝑑𝑑𝑝𝑝

∗

𝑑𝑑𝑑𝑑
 (1 + 6 𝛽𝛽𝑉𝑉 𝐾𝐾𝐾𝐾) = − 𝑒𝑒2

12 𝜇𝜇
 𝑑𝑑𝑝𝑝

∗

𝑑𝑑𝑑𝑑
 (1 + 6 × 1,22 × 0,068)  
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    𝑉𝑉𝑚𝑚 = − 𝑒𝑒2

12 𝜇𝜇
 𝑑𝑑𝑝𝑝

∗

𝑑𝑑𝑑𝑑
× 1,5                 (29a) 

 Par rapport à un macrocanal, la vitesse et le débit sont multipliés par 1,5. 
 
 - Le flux de chaleur entre les parois est fourni par (13) et (12) : 

   𝜑𝜑 = − 𝜆𝜆 𝐴𝐴 = 𝐴𝐴 = 𝜆𝜆 𝑇𝑇1− 𝑇𝑇2
𝑒𝑒 (1+2 𝛽𝛽𝑇𝑇 𝐾𝐾𝐾𝐾) 

                (29b) 
 Avec les lois macroscopiques, il vaudrait : 
  𝜑𝜑0 = 𝜆𝜆 𝑇𝑇1− 𝑇𝑇2

𝑒𝑒 
  , d’où :  𝜑𝜑 = 𝜑𝜑0

(1+2 𝛽𝛽𝑇𝑇 𝐾𝐾𝐾𝐾) 
= 𝜑𝜑0

1,195
           (29c) 

 Le gradient de température étant plus faible, les effets de flottabilité dans 
l’écoulement sont atténués. 
 
 - La condition de recirculation (27) est ici : 
  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 > 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐 = 288 (1+2𝛽𝛽𝑇𝑇𝐾𝐾𝐾𝐾)(1+2𝛽𝛽𝑉𝑉𝐾𝐾𝐾𝐾)

1+6 𝛽𝛽𝑉𝑉𝐾𝐾𝐾𝐾
= 288 × 1,195 ×1,166

1,5
   

  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐 = 288 × 0,93 = 267,5                   (30) 
 Les effets de 𝛽𝛽𝑉𝑉  et de  𝛽𝛽𝑇𝑇  se compensent partiellement, mais l’effet de 𝛽𝛽𝑉𝑉 
est dominant, et le seuil critique est légèrement abaissé. 
 
2ème cas : Avec  𝑒𝑒 = 5000 𝑛𝑛𝑛𝑛 = 5 𝜇𝜇𝜇𝜇 , on a  𝐾𝐾𝐾𝐾 = 𝜆𝜆𝑚𝑚

𝑒𝑒
= 0,0136 , toujours en 

conformité avec  la condition (10). 
 Les résultats sont en particulier : 
    𝑉𝑉𝑚𝑚 = − 𝑒𝑒2

12 𝜇𝜇
 𝑑𝑑𝑝𝑝

∗

𝑑𝑑𝑑𝑑
× 1,1   

    𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐 = 288 × 0,975 = 281                 (31) 
  
 En augmentant la largeur du conduit, on diminue le nombre de Knudsen, et 
on se rapproche naturellement des valeurs relatives à un macrocanal. 
 
 3.  Convection forcée/mixte/naturelle : critère de transition 
 
 3.1. – Approche théorique 
 Pour les écoulements en macrocanaux, nous avons proposé des critères 
permettant de différentier les trois régimes de convection, forcée, mixte ou naturelle 
[6, 7]. Deux d’entre eux (sensiblement équivalents) sont basés sur la comparaison 
des termes de l’équation de quantité de mouvement (16), réécrite ci-dessous : 
 0 = 𝑔𝑔𝑔𝑔�𝐴𝐴𝐴𝐴 + 𝐵𝐵 − 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟��������������− 1

𝜌𝜌
 𝑑𝑑𝑝𝑝

∗

𝑑𝑑𝑑𝑑� + 𝜈𝜈 𝑑𝑑
2𝑈𝑈

𝑑𝑑𝑦𝑦2���  =

                                       𝑎𝑎                          𝑏𝑏             𝑐𝑐                                                     (32) 
 Par commodité, ces trois termes ont été désignés par a, b, c. 
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 On considérera ici seulement le critère basé sur la comparaison des forces 
de flottabilité et des forces de pression (a et b). Une comparaison locale, point par 
point, n’aurait aucune validité générale. La comparaison des moyennes 
arithmétiques sur la section droite de l’écoulement ne serait pas non plus 
opérationnelle, puisque a peut être ici positif, et là négatif. On s’est donc orienté 
vers une comparaison des moyennes quadratiques  𝑎𝑎2  et  𝑏𝑏2  sur l’intervalle [0, 𝑒𝑒] : 

   𝑎𝑎2 = 1
𝑒𝑒

 ∫ 𝑎𝑎2 𝑑𝑑𝑑𝑑𝑒𝑒
0      ;     𝑏𝑏2 = 1

𝑒𝑒
 ∫ 𝑏𝑏2 𝑑𝑑𝑑𝑑𝑒𝑒
0                   (33) 

 Avec (21),  a devient : 
    𝑎𝑎 =  𝑔𝑔𝑔𝑔 𝐴𝐴 �𝑦𝑦 − 𝑒𝑒

2
�                  (34) 

 On a donc : 
   𝑎𝑎2 = (𝑔𝑔𝑔𝑔𝑔𝑔)2

𝑒𝑒
 ∫ �𝑦𝑦2 − 𝑒𝑒𝑒𝑒 + 𝑒𝑒2

4
�  𝑑𝑑𝑑𝑑 = 1

12
 𝑒𝑒

0 (𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔)2      
et, avec (12) : 

    𝑎𝑎2 = (𝑔𝑔𝑔𝑔 ∆𝑇𝑇)2

12 (1+2 𝛽𝛽𝑇𝑇 𝐾𝐾𝐾𝐾)2                     (35) 
 
 De même, avec (23) : 

    𝑏𝑏 = −12 𝜈𝜈
𝑒𝑒2

 𝑉𝑉𝑚𝑚
1+6 𝛽𝛽𝑉𝑉 𝐾𝐾𝐾𝐾

= 𝑐𝑐𝑐𝑐𝑐𝑐                  (36a) 

    𝑏𝑏2 = 144 𝜈𝜈2

𝑒𝑒4
 𝑉𝑉𝑚𝑚2

(1+6 𝛽𝛽𝑉𝑉 𝐾𝐾𝐾𝐾)2                (36b) 
 Le rapport de (35) et (36b) a été désigné par 𝛤𝛤2 : 

   𝛤𝛤2 = 𝑎𝑎2

𝑏𝑏2
= 1

1728
 �𝑔𝑔𝑔𝑔 ∆𝑇𝑇 𝑒𝑒2

𝑉𝑉𝑚𝑚 𝜈𝜈
�
2

 �1+6 𝛽𝛽𝑉𝑉 𝐾𝐾𝐾𝐾
1+2 𝛽𝛽𝑇𝑇 𝐾𝐾𝐾𝐾

�
2
               (37a) 

 En considérant l’expression (26) du coefficient de poussée thermique, on 
voit que : 

    𝛤𝛤2 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2

27648
 �1+6 𝛽𝛽𝑉𝑉 𝐾𝐾𝐾𝐾
1+2 𝛽𝛽𝑇𝑇 𝐾𝐾𝐾𝐾

�
2
                 (37b) 

 Réciproquement, si on choisit 𝛤𝛤, la valeur correspondante de RiRe est : 
    𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 166,28 𝛤𝛤 1+2 𝛽𝛽𝑇𝑇 𝐾𝐾𝐾𝐾

1+6 𝛽𝛽𝑉𝑉 𝐾𝐾𝐾𝐾
                  (38) 

 
 Admettons alors que, en convection forcée, les forces de flottabilité 
représentent au maximum 5% des forces de pression (soit 𝛤𝛤 < 0,05), ou à l’inverse 
que, en convection naturelle, les forces de pression ne dépassent pas 5% des forces 
de flottabilité (𝑏𝑏 < 0,05 𝑎𝑎 , soit 𝛤𝛤 > 20). Avec 𝐾𝐾𝐾𝐾 = 0,068 (§ 2.5, 1er cas), on 
obtient : 
 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 < 6,62     pour la convection forcée 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 > 2650    pour la convection naturelle                    (39) 
 6,62 < 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 < 2650   pour la convection mixte 
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 Par rapport aux conditions aux limites d’un écoulement macroscopique, 
RiRe est réduit d’un facteur : 
    1+2 𝛽𝛽𝑇𝑇 𝐾𝐾𝐾𝐾

1+6 𝛽𝛽𝑉𝑉 𝐾𝐾𝐾𝐾
= 1,195

1,5
= 0,8  

 
 3.2. – Considérations pratiques 
 Malheureusement, les valeurs numériques de nombres sans dimension 
comme RiRe ne nous renseignent pas sur les ordres de grandeur réels des paramètres 
physiques. Cette connaissance est pourtant essentielle d’un point de vue pratique. 
 D’après la littérature, pour un écoulement d’air en microcanal, l’ordre de 
grandeur de la vitesse débitante est le plus souvent de 10− 2 à 10− 1 𝑚𝑚/𝑠𝑠. 
Choisissons alors : 
 𝑉𝑉𝑚𝑚 = 10− 2 𝑚𝑚/𝑠𝑠   
 Dans un écoulement d’air à  300 𝐾𝐾 (𝜈𝜈 = 1,57 10− 5 𝑚𝑚2/𝑠𝑠  ; 𝛽𝛽 = 1/300), 
en prenant  𝑒𝑒 = 10− 6 𝑚𝑚 (§ 2.6, 1er cas) et Δ𝑇𝑇 = 40 °𝐶𝐶 , le calcul donne pour le 
coefficient de poussée thermique : 
 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ≅ 10− 5   
 A l’évidence, on est très en dessous de la valeur 6,62 obtenue dans (39) pour 
le seuil CF-CM. Autrement dit, la circulation du gaz doit être considérée comme 
un écoulement de convection forcée, où les forces de flottabilité sont négligeables. 
 Avec une vitesse de 10− 1 𝑚𝑚/𝑠𝑠 , ou une épaisseur de canal  𝑒𝑒 = 5 10− 6 𝑚𝑚  
(§ 2.6, 2ème cas), rien n’est fondamentalement changé, et cette observation reste 
valable. 
 
 Par contre, pour un espace 𝑒𝑒 = 1 𝑚𝑚𝑚𝑚 (et en conservant  𝑉𝑉𝑚𝑚 = 10− 2 𝑚𝑚/𝑠𝑠), 
RiRe est voisin de 10. On est donc à la limite de la convection mixte, et les forces 
de flottabilité deviennent significatives. Mais alors, le conduit ne peut plus être 
considéré comme un microcanal. 
 
 4. Production d’entropie 
 
 4.1. – Cas macroscopique 
 La production d’entropie dans un écoulement laminaire de convection mixte 
a été analysée dans [8]. Elle repose sur deux sources : la dissipation visqueuse et la 
diffusion thermique. 
 L’entropie visqueuse générée dans une section droite de l’écoulement a pour 
valeur approchée (en 𝑊𝑊/𝑚𝑚2 𝐾𝐾) : 

  𝜎𝜎𝜈𝜈′′ = 1,39. 10− 3 (𝜌𝜌 𝑔𝑔 𝛽𝛽 Δ𝑇𝑇)2

𝜇𝜇 𝑇𝑇𝑚𝑚
+ 12 𝜇𝜇 𝑉𝑉𝑚𝑚2

𝑒𝑒 𝑇𝑇𝑚𝑚
       (40) 

 Notons que le dernier terme représente la production d’entropie dans un 
écoulement isotherme, ou de convection forcée. 
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 Quant à la production d’entropie thermique, elle s’écrit localement (en 
𝑊𝑊/𝑚𝑚3 𝐾𝐾) : 

    𝜎𝜎𝑡𝑡ℎ′′′ = 𝜆𝜆
𝑇𝑇2

 �𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
2

= 𝜑𝜑
𝑇𝑇2

 ∆𝑇𝑇
𝑒𝑒

                   (41) 
soit, pour l’ensemble de la section (𝑊𝑊/𝑚𝑚2 𝐾𝐾) : 

     𝜎𝜎𝑡𝑡ℎ′′ = 𝜑𝜑  ∆𝑇𝑇
𝑇𝑇𝑚𝑚2

                    (42) 
 
 4.2. – Adaptation aux microcanaux 
 4.2.1. – Entropie visqueuse 
 Compte tenu des conclusions du §.3.2, la production d’entropie visqueuse 
est celle d’un écoulement de convection forcée, l’entropie de flottabilité étant 
négligeable. Autrement dit, l’expression (40) se réduit à : 

     𝜎𝜎𝜈𝜈′′ = 12 𝜇𝜇 𝑉𝑉𝑚𝑚2

𝑒𝑒 𝑇𝑇𝑚𝑚
                   (43) 

 
 4.2.2. – Entropie thermique 
 Le taux de production locale d’entropie thermique est donné par la première 
partie de l’équation (41) : 

     𝜎𝜎𝑡𝑡ℎ′′′ = 𝜆𝜆
𝑇𝑇2

 �𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
2
   

 Le flux et le gradient de température sont ici donnés par (11), (12) et (13), 
d’où : 

          𝜎𝜎𝑡𝑡ℎ′′′ = 𝜆𝜆
𝑇𝑇2

 ∆𝑇𝑇2

𝑒𝑒2 (1+2 𝛽𝛽𝑇𝑇 𝐾𝐾𝐾𝐾)2                   (44) 
 Sur l’ensemble de la section, la production d’entropie est alors : 
     𝜎𝜎𝑡𝑡ℎ′′ = ∫ 𝜎𝜎𝑡𝑡ℎ′′′(𝑦𝑦) 𝑑𝑑𝑑𝑑𝑒𝑒

0    
soit, en première approximation, si ∆𝑇𝑇/𝑇𝑇 est assez petit : 

      𝜎𝜎𝑡𝑡ℎ′′ = 𝜆𝜆
𝑒𝑒

 �∆𝑇𝑇
𝑇𝑇𝑚𝑚
�
2 1

(1+2 𝛽𝛽𝑇𝑇 𝐾𝐾𝐾𝐾)2                   (45) 
 Pour faciliter la comparaison avec (42), écrivons : 

      𝜎𝜎𝑡𝑡ℎ′′ = 𝜑𝜑  ∆𝑇𝑇
𝑇𝑇𝑚𝑚2

 1
(1+2 𝛽𝛽𝑇𝑇 𝐾𝐾𝐾𝐾)2        (46) 

 On voit que, par rapport au cas macroscopique, la production d’entropie 
thermique est diminuée d’un facteur  (1 + 2 𝛽𝛽𝑇𝑇 𝐾𝐾𝐾𝐾)2 = 1,1952 = 1,43. 
 
 4.2.3. – Ordres de grandeur 
 Revenons à l’exemple numérique déjà plusieurs fois considéré. Sachant que 
pour l’air à 300 K, 𝜇𝜇 = 1,85 10− 5 𝑘𝑘𝑘𝑘 𝑚𝑚− 1 𝑠𝑠− 1  et  𝜆𝜆 = 0,025 𝑊𝑊 𝑚𝑚− 1 𝐾𝐾− 1, on 
obtient avec (43) et (45) : 
 𝜎𝜎𝜈𝜈′′ = 7,5 10− 5 𝑊𝑊 𝑚𝑚− 2 𝐾𝐾− 1  
 𝜎𝜎𝑡𝑡ℎ′′ = 260  𝑊𝑊 𝑚𝑚− 2 𝐾𝐾− 1   
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 Il apparait que, dans le cas microscopique, même avec des valeurs 
différentes de celles qui ont été choisies, la production d’entropie thermique est très 
supérieure à la production d’entropie visqueuse. Cette dernière est donc 
négligeable. 
 
 5. Conclusions 
 
 Rappelons tout d’abord le cadre de l’étude : canal plan vertical, écoulement 
de gaz laminaire et établi, gradient de pression motrice imposé, températures des 
parois uniformes et imposées. Dans ces conditions, la comparaison entre un 
macrocanal et un microcanal fait apparaître les propriétés suivantes : 
- le gradient de température et la production totale d’entropie sont plus faibles que 
dans un écoulement de convection mixte macroscopique. 
- la vitesse débitante 𝑉𝑉𝑚𝑚 (et par conséquent le débit) reste indépendante des 
paramètres thermiques, mais elle est plus élevée dans un microcanal (formule 23). 
En conséquence, le coefficient de poussée thermique (27) est diminué 
proportionnellement à 𝑉𝑉𝑚𝑚 . 
- sur les autres paramètres, les accommodations dynamiques et thermiques ont des 
effets contraires, et se compensent partiellement, cf. (27), (32). Leur influence 
globale est donc limitée. 
- les critères de transition entre convection forcée, mixte et naturelle sont 
légèrement abaissés. Néanmoins, une recirculation peut se produire dans un 
microcanal. 
 
 Toutefois, cette dernière observation doit être nuancée, car elle reste 
largement théorique. En effet, compte tenu des valeurs numériques usuelles 
rencontrées dans les microsystèmes, on peut affirmer que le régime convectif est 
toujours celui de la convection forcée, sauf arrêt presque complet de la circulation. 
Les forces de flottabilité peuvent donc être négligées dans tous les calculs. 
 

NOMENCLATURE 
 
e distance entre les parois, m 
g accélération de la pesanteur, m.s-2 
Kn nombre de Knudsen (définition 7) 
qv débit volumique, m3.s-1 
𝑝𝑝∗ pression motrice, Pa (définie par  𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 �����������⃗ 𝑝𝑝∗ = 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔����������⃗  𝑝𝑝 − 𝜌𝜌𝑔⃗𝑔)      
Ri nombre de Richardson 
Re nombre de Reynolds 
RiRe coefficient de poussée thermique 
T température, °C ou K 
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T1, T2 températures paroi chaude / paroi froide, °C 
∆T = T1 – T2 
U composante locale de la vitesse dans la direction x, m.s-1 
𝑉𝑉𝑚𝑚 vitesse moyenne (débitante), m.s-1 
x coordonnée verticale, m 
y coordonnée transversale, m 
β coefficient de dilatation thermique du fluide, K - 1 
𝜆𝜆 conductivité thermique, 𝑊𝑊.𝑚𝑚−1.𝐾𝐾−1 
µ viscosité dynamique du fluide, kg.m-1.s-1 
ν viscosité cinématique, m2.s-1 
ρ masse volumique, 𝑘𝑘𝑘𝑘.𝑚𝑚−3     
𝜎𝜎′′ taux de production d’entropie surfacique, 𝑊𝑊.𝑚𝑚−2.𝐾𝐾−1  
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