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MODÉLISATION DU COMPORTEMENT DYNAMIQUE 
D'UNE POUTRE AVEC UNE FISSURE FINE 

Dana Codruta VIŞAN1, Ioan PĂRĂUŞANU2 

From the point of view of the dynamic behaviour, the appearance of a 
breathing crack in a bar leads to the change of its natural frequencies. From the 
relationships, well known in the literature of speciality, that corresponds to the 
movement in the first natural mode of vibration of a simple supported beam, we 
chose a modelling with a single degree of freedom system. If there is a breathing 
crack in the beam, the elastic constant of the model is a time function which makes 
that the differential equation of the movement is of Mathieu type, the vibration being 
nonlineaire. In contrast to the numerical solutions of this type of equation, which 
are presented in the literature of specialty, and which does not take into account the 
damping factor, in this case there has been written a code, which is based on the 
Runge-Kutta integration method, but, in which there has been added a term 
corresponding to the damping forces. The influence of the parameters of the crack 
on the natural frequencies of the beam has been studied and diagrams have been 
drawn, in the future, they may be used for the identification of these parameters. 

 
Du point de vue du comportement dynamique, l'apparition d'une fissure dans 

une poutre conduit au changement des fréquences naturelles de celle-ci. À partir des 
relations, bien connues de la littérature de spécialité, qui correspondent au 
mouvement dans le premier mode naturel de vibration d'une poutre simplement 
appuyée, on a choisi un système de modélisation avec un seul degré de liberté. Au 
cas où dans la poutre il y a une fissure fine, la constante élastique du modèle est une 
fonction de temps et l'équation différentielle du mouvement est de type Mathieu, la 
vibration étant nonlinéaire. À la différence des solutions numériques de ce type 
d'équation, qui sont présentées dans la littérature de spécialité, et qui ne tiennent 
pas compte de l'amortissement du système aussi, dans ce cas on a écrit un logiciel, 
qui a à la base la méthode d'intégration de Runge-Kutta, mais où on a ajouté le 
terme correspondant aux forces d'amortissement. On a étudié l'influence des 
paramètres de la fissure sur les fréquences naturelles de la poutre et on a tracé des 
diagrammes qui, à l'avenir, pourraient être utilisés pour l'identification de ces 
paramètres. 
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1. Introduction 

La réponse dynamique d'une structure, les fréquences naturelles et les 
formes des modes naturels des vibrations, dépendent de la manière dont on 
répartit les masses, les rigidités et les amortissements le long de la structure. La 
présence d'une fissure, qui peut se produire suite à une sollicitation à la fatigue, 
conduisant à l'apparition des vibrations non-linéaires dans le comportement 
dynamique de la structure. Pendant le mouvement de vibration, la rigidité de la 
zone de la fissure se modifie en permanence au fil du temps, le niveau de la non-
linéarité est sensible aux changements des paramètres de la fissure, l'emplacement 
et la profondeur. Dans la littérature de spécialité, le problème du comportement 
dynamique d'une poutre fissurée a été résolu tant par sa simplification et le 
traîtement dans le domaine linéaire [1-4], que par une approche non-linéaire [6]. Il 
y eu des solutions moyennes, dans lesquelles, à l'aide de la méthode des éléments 
finis, on a mis en place une matrice de rigidité supplémentaire dans la zone de la 
fissure, qui modélisait les deux positions extrêmes de celle-ci: complètement 
ouverte ou complètement fermée, son influence se produisant à chaque moitié de 
la période du mouvement de vibration [7]. Une bonne modélisation détaillée de la 
zone fissurée a été faite par Dimarogonas [17, 18]. Les idées présentées dans son 
travail, ont contribué à la réalisation du modèle proposé, un modèle dynamique 
avec un seul degré de liberté, dont la rigidité varie harmoniquement dans le temps. 
L'équation du mouvement qui en résulte est de type Mathieu et elle a été résolue 
numériquement en fonction du temps, par la méthode de Runge-Kutta. 

2. Modèle mathématique d'une poutre fissurée simplement appuyée 

La poutre simplement appuyée de la Figure 1, avec la longueur L et la 
section bxh, présente une fissure, avec la profondeur a à la distance L0. Notant 
avec U l'énergie spécifique de déformation et tenant compte du théorème de 
Castigliano, ainsi que du fait que la rotation φ de la section, dans la zone de la 
fissure, est directement proportionnelle avec le moment de flexion, il en résulte: 

 
Fig. 1. La poutre fissurée et son modéle. 
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L'énergie spécifique de déformation causée par la fissure, a la forme [8]: 
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où J représente l'énergie spécifique de déformation repartie à la hauteur de la 
fissure et elle est obtenue par la formule suivante: 
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où E et ν sont le module de Young et le coefficient de Poisson. Compte tenant de 
l'état plane des contraintes, le facteur K est donné par la relation [8]: 

( ) aFK πασ ⋅⋅=                                                   (4) 
où la contrainte σ est: 
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et F(α) est une fonction sans dimension [8], exprimée en fonction du rapport 
α=a/h: 

( ) 432 141.1333.74.112.1 ααααα +−+−=F                          (6) 
En remplaçant l'équation (3) dans l'équation (2) et en intégrant de 0 à a, 

nous obtenons : 
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En revanche, la variation de l'élasticité de la poutre simplement appuyée, à 
la raison de l'existence de la fissure, peut être obtenue de l'équation de 
Dimarogonas et Paipatis [9] : 
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Considérant que la vibration de la poutre de la Figure 1 a lieu dans le 
premier mode naturel de vibrations, elle peut être modelée comme celle de la 
Figure 1, sous la forme d'un système avec un seul degré de liberté. C'est parce que 
la rigidité du bar varie harmoniquement pendant la vibration, se situant entre deux 
valeurs extrêmes: correspondant à la position fermée de la fissure et l'autre à la 
position ouverte, que le modèle obtenu a un comportement non-linéaire. Compte 
tenant de la forme déformée de la poutre dans le premier mode naturel de 
vibration, l'équation (10), 
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on peut obtenir la masse et la rigidité équivalentes au système initial [10], pour 
qu'après elles soient utilisées dans le modèle: 

( ) ( ) LmxxYxmm
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2 =⋅⋅= ∫                                    (11) 

où m  est la masse de la poutre par unité de longueur. 
La rigidité équivalente, qui correspond à la position où la fissure est 

complètement fermée, est calculée en utilisant la relation: 
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où EI est la rigidité en flexion de la poutre et C représente l'élasticité équivalente. 
De même, lorsque la fissure est complètement ouverte, la rigidité équivalente est 

oo Ck 1= , où oC  représente l'élasticité équivalente correspondant à cette position: 
CCCo Δ+=                                                    (13) 

La rigidité équivalente du système avec un seul degré de liberté varie 
périodiquement dans le temps, entre les deux valeurs extrêmes fk  et ok , sous la 
forme: 

( ) ( )[ ]tkktk o ωcos1++= Δ                                           (14) 
où Δk  est l'amplitude de la variation harmonique de la rigidité: 

( )of kkk −=Δ 2
1                                                (15) 

Par conséquent, de l'équation ci-dessus résulte que la rigidité 
correspondente à la position de l'équilibre est égale à la moyenne arithmétique des 
deux rigidités, l'une correspondente à la position dans laquelle la fissure est 
fermée et l'autre quand elle est ouverte. Ainsi, le mouvement harmonique, effectué 
d'un côté et de l'autre de la position de l'équilibre, peut être considéré comme étant 
effectué avec la vitesse angulaire ω, dont la valeur est entre les valeurs ωf et ωo, 
valeurs correspondantes aux positions complètement fermée et respectivement 
totalement ouverte: 
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Notant avec c le coefficient équivalent d'amortissement du système avec 
un seul degré de liberté et tenant compte des paramètres concentrés, la masse 
équivalente et la rigidité équivalente, qui est une fonction du temps, l'équation du 
mouvement du système, illustré à la Figure 1, est: 

( )[ ]{ } 0cos1 =++++ Δ ytkkycym o ω                               (17) 
On préfère une forme sans dimension pour l'équation (17). Pour réaliser 

cela, on fait le suivant changement de variable: 
zt 2=ω                                                      (18) 
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En remplaçant les relations (18) et (19) dans l'équation (17) on obtiendra: 

( )[ ] 02cos2
d
d4

d
d

2

2

=+++ yzqa
z
y

z
y ζ                                (20) 

où 
( )

cr

d

c
c

m
kq

m
kka ==

+
= ΔΔ ζ

ωω
;2;4

22                         (21) 

 
et ζ représente la fraction de l'amortissement critique du système, correspondant à 
la relation (16). 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2. Graphique de stabilité. 
 

L'équation différentielle (20) est de type Mathieu. Ce type d'équations est 
souvent rencontré dans de différents domaines de la physique et de l'ingénieurie. 
Certains problèmes de la physique théorique conduisent à des équations Mathieu, 
en particulier la propagation des ondes électromagnétiques dans un milieu ayant 
une structure périodique, le mouvement des électrons dans un réseau cristallin etc. 

En fonction des valeurs des paramètres sans dimension a et q, les solutions 
de l'équation (20) peuvent être stables ou instables (fig. 2) [11]. 
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3. Simulation numérique 

Pour étudier l'effet de la profondeur de la fissure et de la position qu'elle 
occupe le long de la poutre sur la fréquence naturelle, on a considéré une poutre 
en acier avec une longueur de 1 m et 30 x 12 mm2 en section. On considère trois 
positions de la fissure le long de la barre, à une distance de 0.15 m, 0.35 m et 
respectivement 0.5 m par rapport à l'appui de gauche. Pour chaque position on a 
calculé les fréquences naturelles, correspondant à trois profondeurs de la fissure: 3 
mm, 6 mm et 9 mm. Le module d'élasticité du matériel est 210 GPa, le coefficient 
de Poisson 0.3 et la densité 7850 Kg/m3. La solution de l'équation (20) a été 
obtenue numériquement, à l'aide des fonctions MATLAB. On a choisi les 
conditions initiales suivantes: y = 1 mm pour le déplacement et y  = 0 pour la 
vitesse. 

Les graphiques obtenus sont déplacement-temps et, dans l'espace des 
phases, vitesse-déplacement. Il n'y a q'une partie des graphiques obtenus qui sont 
présentés dans le document, conformément au Tableau 1. 

 
Tableau 1 

Les paramètres analysés 
L0/L a/h ζ a q Figure 

 
 

0.35 

 
 

0.5 

0  
 

4.0023 

 
 

0.0550 

Fig. 3 
0.0025 Fig. 4 
0.0375 Fig. 5 
0.2250 Fig. 6 

0.75 0 4.0503 0.2603 Fig. 7 
 

0.5 
 

0.75 
0  

4.1689 
 

0.4823 
Fig. 8 

0.0025 Fig. 9 
 
Pour a/h = 0.5, les figures 3 à 6, le mouvement  du système est stable et il 

est amorti d'autant plus rapidement que ζ est plus grand (des valeurs dans la plage 
comprise entre 0 et 0.225). Mais, si le rapport a/h = 0.75, les valeurs de a et q sont 
dans le voisinage de la zone d'instabilité des solutions de l'équation (20), le 
mouvement devenant apériodique, Fig. 7-9, avec une variation de l'amplitude 
pareille à celle du phénomène de battement, un phénomène rencontré quand la 
fréquence d'une force perturbatrice a des valeurs proches de celles de la fréquence 
naturelle du système. Cette situation correspond à la réalité, si vous n'oubliez pas 
que la valeur relativement élevée du rapport a/h est antérieure à la casse du 
matériel dans cette section. 
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Fig.3. Conformément au Tableau 1. 

 

   
Fig.4. Conformément au Tableau 1. 

    
Fig.5. Conformément au Tableau 1. 

    
Fig.6. Conformément au Tableau 1. 
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Fig.7. Conformément au Tableau 1. 

    
Fig.8. Conformément au Tableau 1. 

 

    
Fig.9. Conformément au Tableau 1. 

 
Notant avec ff la fréquence naturelle de la poutre fissurée et avec f la 

fréquence naturelle de la poutre sans fissure, dans la Figure 10 on represente la 
variation de la fréquence relative, le rapport ff/f en fonction de la position de la 
fissure dans la poutre, du rapport L0/L et de la profondeur de la fissure, le rapport 
a/h. Les valeurs de la fréquence naturelle de la poutre fissurée sont toujours 
inférieures à celles de la poutre sans fissure et elles sont d'autant plus petites que 
la profondeur de la fissure est plus grande et/ou la position de la fissure est plus 
proche du milieu de la barre. 

4. Conclusions 

À partir des relations existantes dans la littérature de spécialité, on a 
contruit un modèle d'une poutre simple appuyée, qui a une fissure pour laquelle 
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les paramètres sont connus. Les vibrations libres de ce modèle, sont des vibrations 
non-linéaires par suite du changement dans le temps de la constante élastique, qui 
varie entre deux valeurs: l'une correspondante à la position de déformation de la 
barre, la situation où la fissure est ouverte et l'autre position où la fissure est 
fermée et qui correspond à la situation dans laquelle la barre n'est pas fissurée. Le 
modèle mathématique a conduit à l'apparition d'une équation de type Mathieu, 
dans laquelle on a  introduit aussi l'amortissement existant dans le système. On a 
résolu cette équation par une méthode numérique, à l'aide de l'intégration de 
Runge-Kutta et en utilisant deux conditions initiales y = 1 et y  = 0. 

Il faut mentionner que, dans la littérature de spécialité, ce type d'équation a 
des solutions numériques seulement pour le cas où il n'y a pas d'amortissement 
dans le système, ζ = 0 dans l'équation (20) [12,13]. Le programme écrit dans 
MATLAB [14] peut tenir compte de l'amortissement du système aussi, son effet 
sur le système pouvant ainsi être étudié. 

Les résultats de la simulation numérique, obtenus en exécutant le logiciel 
écrit, ont mis en évidence des variations des fréquences naturelles de la poutre 
fissurée par rapport à celles de la poutre sans fissure. Ces variations sont d'autant 
plus grandes que la profondeur de la fissure est plus grande et elle est placée plus 
près du milieu de la barre. 

La connaissance pour un système des diagrammes comme celles 
présentées dans la Figure 10, des diagrammes obtenues par une simulation 
numérique sur un modèle mathématique validé (telle que celle illustrée dans cet 
article), peut servir à identifier les paramètres inconnus d'une fissure, dans une 
situation réelle dans laquelle on a fait des déterminations expérimentales et on a 
obtenu les fréquences naturelles du système fissuré. Celui-ci est le prochain 
objectif de la recherche, constituant le prolongement de celles qui sont décrites ci-
dessus. 
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