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MAZUR-ORLICZ THEOREM IN CONCRETE SPACES AND
INVERSE PROBLEMS RELATED TO THE MOMENT
PROBLEM

Octav OLTEANU!

In the first part of this work, we derive some new applications of a version of
Mazur-Orlicz theorem, in concrete spaces of absolutely integrable functions and
respectively continuous functions of several real variables. The second part is devoted
to inverse problems related to the Markov moment problem. A geometric approach of
approximating the solutions of a system with infinitely many equations involving
transcendent functions, with infinitely many unknowns, is briefly discussed.
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1. Introduction

The version of Mazur - Orlicz theorem that we have in mind in this work gives a
necessary and sufficient condition for the existence of a linear positive operator F
from an order vector space X into an order complete vector lattice Y, such that
F(x;) = y;,j € ], F(x) < P(x),x € X, where {xj}je] c X, {yj}je] C Y are given

families, P: X — Y being a sublinear operator [1]. The relation F(x) < P(x), x €
X usually controls the norm of the solution F. Recent results on this subject have
been published in [2] and have been submitted in [4]. The first aim of this work is
to prove some new application of Mazur — Orlicz theorem to concrete spaces X,
namely to X = LP,1 < p < oo. The second purpose of this work is to solve an
inverse problem related to a Markov moment problem (see the Abstract). From this
point of view, one continues the study started in [3], [13]. An existence result for
the solution of a Markov moment problem [1] is applied. For similar existence
problems based on Hahn — Banach theorem and its generalizations see [2] - [9],
[13]. For operator valued moment problems see [9] — [12]. For the construction of
some solutions see [9], [13], [3]. The purpose of the second part of this work is to
approximate the solution of a system with infinitely many equations involving
transcendent functions, with infinitely many unknowns, starting from the moments
of a solution of a Markov moment problem. Our solution is not unique. This is
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another way of solving similar problems to those treated in literature by some other
methods [14]. Recall that another important problem in the theory of moments is
the uniqueness of the solution [15] - [18]. The background of this work is contained
in some chapters from [19] — [22]. The rest of the paper is organized as follows.
Section 2 is devoted to some applications of Mazur — Orlicz theorem. In Section 3,
inverse problems related to the Markov moment problem are discussed. The
conclusions are mentioned in Section 4.

2. Applications of Mazur — Orlicz theorem

We start by recalling the general abstract form of Mazur — Orlicz theorem,
in the order vector spaces setting.

Theorem 2.1. (Theorem 5 [1]). Let X be an ordered vector space, Y an order
complete vector lattice, {x]-}]_e], {y,}._, arbitrary families in X, respectively in

JjeJ
Y and P: X — Y a sublinear operator. The following statements are equivalent
() 3F € L(X,Y) such that F(x;) = y;,Vj € ], F(x) = 0 Vx € X,
F(x) < P(x),Vx € X;

(b) for any finite subset J, c J and any {Aj}jej c R, 4 > 0V € J,, we have
0

J€Jo J€Jo
Some new applications of this general result are deduced in the sequel.

Theorem 2.2. Let X be a Banach lattice, Y an order complete Banach lattice,
{q)]-}je] cX,, {yj}je] c Y, G alinear positive bounded operator from X into Y,

a a positive number. The following statements are equivalent
(@) there exists a linear positive bounded operator F € B, (X,Y), such that

F(g;) = y;,¥j €],F(x) < aG(|x]),vx € X,||IF|| < allG|;

(b) ¥ <aG(g;) VjE].
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Proof. (a)=(b) is obvious, because of y; < F(¢;) < aG(|¢;|) = aG(y;),Vj €J.
For the converse, we apply Theorem 2.1, (b)=(a). Let J, = J be a finite subset,
{/’lj}jejo c Ry, x € X,suchthat Y, ;c; 4; @; < x. Then using (b) and the fact that the

scalars 4; are nonnegative, as well as the positivity of G, we derive

Z Ay <« Z AjG((pj) = aG Z Lig; | < aG(x) < aG(|x]) =:P(x).

Jj€Jo Jj€Jo J€Jo

Application of Theorem 2.1 leads to the existence of a linear positive operator F
from X into Y such that

F(o;) = y;,Vj €],F(x) < aG(|x]), Vx € X.

From the last relation, also using the fact that the norms on X and Y are solid
(lul < |v] = llull < ||v|l), we deduce

IFC)| < aG(x]) = [[FCOI < allGllllx]l = allGll[x]], vx € X.
It follows that || F|| < a]|G||. This concludes the proof. O

Corollary 2.1. Let M be a measure space, | a positive measure on M, u(M) <
0, X = L},(M),1 < p < co,g = 0 an element of L},(M), where q € (1, ] Is the
conjugate ofp (1/p + 1/q = 1), a a positive number. Let{(pj}je], {yj}jej be as
in Theorem 2.2, whereY = R. The following statements are equivalent

(a) there exists h € LL(M), 0 < h < ag ae, fM ho;du = y;,Vj € J;

Dly; <al, gp;duvjE].

Proof. One applies Theorem 2.2 for G(y) = fM gydu, Y € X,Y =R, aswellas

the representation of linear positive continuous functionals on LP spaces by
means of nonnegative elements from L? spaces. In order to prove (b)=(a),

from the preceding results it follows that there exists h € (LZ (M )) such that
+

Jy, hojdu = y;,Vj €] and

A[ht/)du < afgt/)du

M
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for all nonnegative functions Y € Lfl (M). Now we choose ¥ = yg, where B is

an arbitrary measurable subset of M. Then the last relation can be rewritten
as

f(h—ag)duSO

for all such subsets B. A straightforward application of Theorem 1.40 [21], leads to
h—ag <0 ae. in M. Since (a)=(b) is obvious, this concludes the proof.
O

Corollary 2.2. Let consider the measure space M = R%,n € {1,2...}, endowed
with the measure du = exp(— X7, p;t;)dt, - dtn,p; > 0,Vj €{1,..,n}, a a
positive number. The following statements are equivalent

(a) there exists h € L;';’(]Rm),fM ht/du>y;,VjeN",0<h<aae;
J1tJn! , . .
(0) ¥j < a 5775 Vi = (o, - Jn) ENT
1 n

Proof. One applies Corollary 2.1 to p = 1,q = o, g = 1 a.e. The notation t/ is

the multi — index notation t/ = t{l t,];”. The conclusion follows via Fubini ’s
theorem and Gamma function properties. O

—_ b
Theorem 2.3. Let X = LE(M),1 <p,u = 0,u(M) < oo, {(p]-}je] c X, {yj}je] c
R,a > 0,a € R, q the conjugate of p. Consider the following statements

(a) there exists h € (LZ (M))+ such that

[ hosd =y 07 €, [ mpde < alpll, (), vwex
M M
(b) we have y; < a [, @; du,Vj €].
Then (b)=(a).
Proof. LetJ, c J be afinite subset, {)lj}jejo c R,. Holder inequality and using also

(b), lead to the following implications
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D ey == [ 3 h0 Jaus [ v Wl en)”
M

J€Jo M \J€Jo

Yy [ D aoy |du < alwly(wn) ! =P,

J€Jo M \J€Jo

Application of Theorem 2.1 and measure theory arguments [21, theorem 6.16,
p. 122-124], yield the existence of h € L} (M) such that

F(o;) = j ho;du = y;,Vj € J,F(Y) = f hpdp < allwllp(u(M))l/q, Y EX.
M M

Moreover, since F(y) = 0,Vy € X, we have

f hpdu = 0,V € X,.
M

Taking Y = yg, Where B c M is a measurable set such that u(B) > 0, one obtains

fhduZO
B

for all such subsets B. Application of theorem 1.40 [21] leadsto h = 0 u — a.e.

From the previous relations we also derive that ||hll, < a(u(M))l/q. This
concludes the proof. O

The following theorem represents an application of the general result stated in
Theorem 2.1 to some other concrete spaces X, Y. Let H be an arbitrary Hilbert space,
neN, n>1, A4,,..,4, positive commuting self - adjoint operators acting on
H, (Bj)jeN" a sequence in Y, where Y = Y(4,, ..., 4,) is defined by

Y, = {U € AH); UA; = AjU,j = 1,---,71},Y ={VeY,;UV =VUVU€Y,}.

Here A(H) is the real vector space of all self — adjoint operators. One can prove
that Y is an order complete Banach lattice with respect to the usual structures
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induced by those defined on the real space of self — adjoint operators (see [19, p.
303 - 305]), and a commutative real Banach algebra. Notice that the properties of
Y=Y(4,,..,4A,), where A4,,...,A, are as mentioned above can be proved in a
similar way to those of a Y (A), where A is a self — adjoint operator. Actually, one
repeats the proofs from [19, p. 303 — 305], but for several commuting self — adjoint
operators. Then Y endowed with the usual order relation on self - adjoint operators
Is an order - complete vector lattice and a commutative real Banach algebra [19].
Let also be B the C*-algebra generated by A = (A44,4,,...,A,),that is B is the
closure in B(H) of expressions of the form

P(Ay, Ay ., An) =Y g @A AR AN, ai € Cj = (g, ey fin)-
JcN©,J finite
We may uniquely construct the joint spectral measure E4 of the commuting A =
(A1, 45, ..., Ay) In B. As itis known, the joint spectral measure E, is concentrated
on the joint spectrum X, := {y(4,), ...,¥(4,); vy €T} c g5(4)x - X 05(4,) C
Rn

I':={y:B — C;yisacharacter},

Because for any set o € Bor(2,), we have E4(0)A; = AE,, , i=12,..,n, it
results that E4(o) c Y. Consequently, we have

E,: Bor(Xy,) —» A(H).

The spectral measure E4 = E(y,, a.y:Bor(X,) - A(H) is such that for any
polynomial p = p(ty,t,, ..., tn), (t1, to, ..., t,) € X4 Of n real variables, we have

f p(tlf ) tn) dE(Al,...,An) = p(Alﬂ 'An)

2
Let denote by ¢;,j € N™ the basic polynomials ¢;(ty, ..., ty) = t]* )", j =
Uiy rjn) ENE = (ty, ..., ty) € 2y, X:= C(Zy).
Theorem 2.4. The following statements are equivalent

(@) there exists a linear bounded positive operator F € B, (X,Y) such that

F(;) > B,j € N",F(¢) < f (0l dEqa, a5 Ve € XIFI < 1;
2a
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(b) B; < A = ATt - AP V) = (jy, e, Jin) € N
Proof. The implication (a)=(b) is obvious:

B; < F(¢;) < f |0l dEa,,..a0) = f QjdEa,,.ap) = AlL - AT,
Za

Za

j € N™ (we have used the positivity of the operators A, which leads to |¢;| = ¢;

on X,). For the converse, one applies Theorem 2.1, (b)=(a), where N stands for J,

@; stands for x; and B; stands for y;, Vj € N". Let J, and {/1]-}],&] be as mentioned
0

at point (b) of Theorem 2.1. The following implications hold:

Jj€Jo J€Jo =4 J€Jo

< j?dE(Al,...,An) < J|(P|dE(A1,...,An) =:P(¢).

24 24

The positivity of the spectral measure dE,, ., has been used. On the other hand,
the hypothesis (b), the fact that the scalars 4; are nonnegative and the preceding
evaluation yield

MBS ATV = Y GBS ) Al =) A AR Al < P(),

J€Jo J€Jo Jj€Jo

where P(¢@) was defined above. Thus the implication at (b) Theorem 2.1 is
accomplished. Application of the latter theorem leads to the existence of a “feasible
solution” F having the property mentioned at point (a) of the present theorem. The
last property is a consequence of the preceding one, using the fact that the norm on
Y is solid. This concludes the proof. O

Remark. 1f in Theorem 2.4. one additionally assumes that ||A;|| < 1,k =
1,2, ..., n, then for any self - adjoint operators satisfying (b) one has

Z B, < ﬁ(z —A)™

jENn k
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3. An inverse problem related to a Markov moment problem

Let A=(01)",dv=(-Int)dt,---(~Int,)dt,. Assume that there exists a
heL?(A),0<h<1lae., such that

m = jt —In(ty))tdn (= Ity )h (... ty )dty - dty,
J=(J1’---: jn) ik eN,k=1...,n

Denote g (ty,t,)=4L -t j, €012} k=1..,n,(t,..t,)e A Consider
the system of equations

mj =J.q)j-hdvzj-goj-ﬁdvz

1 1 1 1
ZC z H ngm+p q (Xk,m,p,q) yngmij q In (Yk,m,p,q) ylgkarp q _Xlgkm+p q
P.q
p,q<M meN k=1 Jk+1 §P +1)

jk >0,k=1..,n.

We propose the following algorithm for approximating the solutions of the system
of equations (1).
Step 1. Find an approximation h of the solution h in terms of the moments

m;, jeN". To this end, since he L7(A)c L% (A), h has a Fourier expansion
with respect to the Hilbert base (z// j)j -0 associated following Gram-Schmidt
k_

procedure to the complete system of linearly independent polynomials (goj )j 50
k_

The Fourier coefficients (h,z//j> are given by:

(ypy= D athey= D am,

lk<ik. K<k,
k=0 k=0
where ¢ are given by the Gram-Schmidt procedure, so that we know h in terms

of the moments. Recall that there exists a subsequence of the sequence of Fourier
partial sums, which converges pointwise to h. This fact is a consequence of the
remark that the partial sums of the Fourier series converge in an L? — space. Then
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one applies theorem 3.12 [21], p. 65. In the sequel we can write: h ~ h, where h

is a partial sum of the Fourier series of h. Note that all these partial sums are
polynomials, so that they are continuous.

Step 2. Let h be a partial sum of the Fourier series with respect to the orthogonal
polynomials (y/j )J'k>1' Using Schwarz inequality, and approximation of

continuous functions i by simple functions:

|;‘]-(t].""’tﬁ)z ZCP,QZDp’q (tl""’tn)’
p,.q<M

The numbers ¢, ¢ are the values of h at some points in
m ~ mqg +1
{(tl,...,tn);—qéh(tl,...,tn)< d }
2P 2P
where p is large and m is suitable chosen for approximating h.

One deduces

mj =~ [oihdv= o)l 3 epq 20y tat) [dv =
A A \pag

Zcp'q . Z I¢j Alxa,m, p,g 'Y1.mp.0) (tl)mllxn,m,p,qﬁyn,m,p,q) (ta)dv |
p.q meN A

where D, , are open subsets approximating in measure the subsets
myg =~ my +1
{(t et — < h(ty,enn ty ) < —

2P
written as below

}, and whose cell decompositions may be

(0,1)n ) Dp,q =Umen [X1m, p.q' Yim,p,q )% x Xy m p.q Yn,m, p,q) o

Mg ~ mg +1
{(tl,...,tn);Z—SSh(tl,...,tn)< d }

b

The above arguments yield
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YL,m,p,q Yn,m,p,q j
-~Zcpq > j (= Inty )dty - j tI (- Int, )dt, |=
rnENX1mpq Xn,m, p,q
Jk+1 jk+1
ﬁ CGC b wmpg , W kmpa ||

Zcp,q
p.q

jk +1 *kmpg (Jk+1)2 Xkm.p.g

meN k=1
jk+1 jk+1 jk+1 jk+1
n kapqI (Xk,m,p,q) ykmpqI (yk,m,p,q) Ykm,p.a ~ Xkm,p.g
2 pal 211 e +1
p.q meN k=1 k (ix +1)

For the one-dimensional case see [13], Remark 29. The conclusion is that we can
determinate (approximate) the ‘“unknowns” Yy m pn.q:Xk,m,p,q: K=1....,n by

means of the cell decomposition of the open subsets D, 4 associated to the known

polynomial h (cf. [21, section 2.19]). The basic relations can be summarized as the
system of equations (1), where mj are given, ¢ o are known from Step 1, and the

UNKNOWNS Xy m 1 a» Viemp,q @€ determined in terms of the cell - decomposition of

the suitable chosen open subsets D,,,, deduced from the known polynomial h  (the
measure v is outer regular [21]). The unknowns are the coordinates of the vertices
of the cells (see. [21, section 2.19]). Clearly, the solution is not unique. So, using
the above notations, we have proved the following theorem.

Theorem 3.1. An approximation for the solution of (1) is given by the coordinates
Xkmpq, Yempg, K € {1,...,n} of the vertices of the cells from the cell —

decomposition of the open subsets D, , associated to the known polynomials h.
For a similar one dimensional problem, having a finite number of unknowns and
solved by using other methods see [14].

4. Conclusions

New characterizations for the existence of solutions of abstract and concrete
Mazur — Orlicz problems are proved. In the second part of this work, a geometric
method of approximating the solution of a system with infinitely many equations
and unknowns is sketched. This is a general method. Similar problems can be
solved using the same ideas and appropriate modifications. One uses a different
method for related problems to those solved in the literature by some other methods.
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