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OPTIMUM DESIGN OF FUNCTIONALLY GRADED PLATES 

UNDER THERMAL SHOCK 

Farid Vakili-TAHAMI1, Nima MAHKAM2, Arash Mohammad Alizadeh FARD3 

Optimum design of a Functionally Graded plate, which is suddenly exposed 

to a temperature gradient, is studied in this paper. A unique method is developed 

based on the combination of both discretization and Fourier series to obtain the 

time-dependent temperature and thermal stresses on the plate, by taking into 

account the material distribution. The effect of Graded Material is implemented 

using Mori-Tanaka method along with Fuzzy logic. Two optimization methods, 

Genetic algorithm and Particle Swarm Optimization, has been used to calculate the 

optimum values of volume fraction distribution to provide optimum strength ratio 

along z direction of the plate. 

 

Keywords: Functionally Graded Materials, Thermal Shock, Plate, Optimum 

Mechanical Design 

1. Introduction 

Functionally graded materials (FGMs) are a new class of composite 

materials wherein the composition of each material constituent varies gradually 

with respect to spatial coordinates. Each varying composition is designed to take 

advantage of its attractive features. For example, for advanced high temperature 

structural applications a type of materials is required to have strength at high 

temperature, creep resistance, adequate toughness and thermal shock resistance. 

Ceramics possess low density, good high temperature strength and creep 

resistance, whereas, their fracture toughness and thermal shock resistance are 

poor. Combining ceramics and metals [1-4], provides inherent advantages of these 

two kinds of materials, which has been pursued to meet the material requirements 

in many applications. The concept of functionally graded materials (FGMs) is 

now accepted worldwide and has been studied recently in many researches which 

are going to be summarized below. Due to these applications, thermo-mechanical 

behaviors of FGMs are becoming a major concern in recent research studies. For 

example, Burlayenko et al. [5] have used computational simulations to investigate 

thermal shock cracking by the virtual crack closure technique in a functionally 

graded plate. Sofiyev [6] with the use of shear deformation theory has 

investigated the thermo-elastic stability of freely supported functionally graded 
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conical shells and the problem is reduced to a set of linear algebraic equations 

using the Galerkin's method. Naotake Noda [7] has been studied on thermal 

stresses and thermal stress intensity factors in the FGMs which are subjected to 

steady temperature fields or thermal shocks. Lately, Wang et al. [8] have studied 

the thermo elastic response of FG thin plates under thermal shocks in which the 

material properties are assumed to vary along the lengthwise direction with a 

power law. They linearized the governing equations by the layer method. 

Ghiasian et al. [9] perused on one dimensional non-linear thermal condition for 

FG beams via hybrid iterative central finite and Crank-Nicolson method in which 

thermo mechanical properties are temperature and position dependent. Ranjbar 

and Alibeigloo [10] studied analytical solution of an FG thick hollow sphere 

subjected to thermo-mechanical and time dependent loads using Differential 

Transform Method (DTM) and Laplace transform. Sheng-Hu Ding and Xing Li 

[11] have investigated the growth of insulated interface crack subjected to a 

steady-state heat flux. The problem has been solved under the assumption of plane 

strain and generalized plane stress using Fourier transform. Taheri et al. [12] have 

been employed the isogeometrical optimization method for functionally graded 

structures in thermo-mechanical processes. This optimization method has been 

applied to define volume fractions of the constituents. Kursa et al. [13] 

investigated on procedure for finding an optimal content in metal-ceramic for 

specific applications. Ashby [14] has provided a review paper on multi-objective 

optimization methods for choosing materials for specific problem in which 

compromises are required to strike a balance between gaining different goals in a 

problem. A feature which distinguishes FGMs and homogeneous structures is the 

thermo-mechanical properties which vary spatially on the medium. These non-

homogeneous material properties affect transient temperature and thermal stress 

distributions, significantly. In addition, this spatial variation makes the problem 

analyze much more intricate, thus, no exact analytical solutions have been 

presented lately.  

In this paper, a new method has been proposed based on the combining 

discretization and Fourier series to obtain the transient temperature and stress 

distribution on a FGM plate. For this purpose, a computer code has been 

developed; and, it is coupled with another code which has been designed to obtain 

the volume fraction distribution of the plate with the objective of optimum 

distribution for the strength ratio. Two different methods of optimization 

techniques have been employed with the use of control points in different 

locations. In this way, the optimization will be free of any imposed predefined 

material distribution functions. Cubic Hermite polynomials are used to interpolate 

the volume fraction values between control points. Also, to consider the 

manufacturing process, a constraint is introduced to limit the variation of the 

volume fraction in adjacent layers. Material distributions in this study have been 
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evaluated using both Mori-Tanaka and Fuzzy logic together with Hashin-

Schtrikman lower bonds. 

 

2. Problem Characteristics 
 

An infinite FG plate is considered with the thickness of L and material 

properties of thermal conductivity k, density ρ, specific heat c, Young’s modulus 

E and Coefficient of Thermal Expansion (CTE) α which all vary on the thickness 

of the plate in z direction depending on the volume fraction of materials (Figure 

1). The governing equations are transient regarding the thermal shock effects. The 

initial value of the temperature in the plate is assumed to be uniform. The surfaces 

z=0 and z=L are suddenly exposed to constant temperatures of 0T  and LT , 

respectively. Physical properties for two constituents of the FGM are given in 

Table 1.  

 
 

Figure 1. Functionally Graded plate 

3. Material properties 
 

It should be noticed that the FG structures are known as structures with 

continuous properties varying functionally in the medium. Two micromechanical 

formulations which are known to be used to estimate the equivalent properties  

of FGM are self-consistent [15] and Mori-Tanaka [16-19] methods. Another 
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method for evaluating the properties in FG structures is finite element method 

[20-21]. In this study the thermal conductivity, CTE and Young’s Modulus are 

determined by Mori-Tanaka method in the region where volume fraction is less 

than 0.3 and greater than 0.7. Regarding the accuracy, Mori-Tanaka method is not 

valid in the region between 0.3 and 0.7 and thus, we take the advantage of Fuzzy 

logics to determine these properties in the region with the volume fraction 

between 0.3 and 0.7. 
Table 1.Material properties of the Model  

 

Material 
Specific heat 

(J/kg.K) 

Thermal 

conductivity 

(W/m.K) 

Coefficient of 

thermal expansion 

(
610
 / C  ) 

Density 

(kg/ 3m ) 

Young’s 

modulus 

(GPa) 

SiC cC  =278 
c  =2.09 

c  =10 
c =3186.55 

cE = 442.44 

Al 2024 mC  =897 
m =204 

m  =23 
m  =2973 

mE  =78.05 

 

Based on Mori-Tanaka method, Poisson’s ratio and modulus of elasticity are 

introduced as equations (1) and (2): 
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in which K and are the Bulk Modulus and shear Modulus expressed as 

equations (3) and (4): 
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Conductivity k and thermal expansion  are obtained by equations (6) and (7): 
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In all equations (3-7), the variables with subscript 1 are known as the base 

material and variables with subscript 2 are added ingredient.  

In order to evaluate FG parametric values in equations (1-7) that are mentioned 

before, we use ( )  which is described as equation (8); 

1

2

( ) 0 0.3
( )

( ) 0.7 1

  
 

  

   
  

     

 (8) 

In middle values 0.3 0.7  , we use fuzzy interpolation (Figure 2) to determine 

the value of ( )   using 1( )   and 2 ( )  . In addition, we need to define data 

functions with parameter   by equations (9) and (10): 

3

1 3
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                               2 1( ) 1 ( )    
  (10) 

in which  =0.4 is the length of interpolation interval. For 0.3 0.7  , ( )   

is determined with equation (11);  
 

1 2 1 2( ) Gravity( ( ), ( ), ( ), ( ), )

in which 0.3 0.7

          





 
  (11) 

 

 

 

Membership function 
 

Parametric material values 
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Figure 2. Data functions in Mori-Tanka method 

Maximum allowable strength (
yS  ) for each layer along the FG plate is evaluated 

using Hashin-Schtrikman lower bond [22]: 
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4. Material Distribution 
 

In practice material distribution in FG plates is determined based on the 

manufacturing process. To achieve certain design characteristics, a favorite 

distribution is perused. Usually this distribution is defined based on optimization 

methods. However, using predefined material distribution functions impose a 

limitation for an optimum result. To overcome this shortcoming and to determine 

the optimum material distribution in the plate, one can define the volume fraction 

using control points. Between these control points, volume fraction can be 

interpolated. With dividing FG plate in to n layers and by selecting n+1 control 

points, the position of each control point is calculated by Eq. (13): 

( 1),  1,...,t b n n N
n b N  

 (13) 
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in which
n
, 

b
 and 

t
are positions of n’s, first and last control point on the plate. 

The volume fractions to the corresponding control points are
n
, which the 

optimization variables are. After defining the values of 
n
 in control points, the 

Hermite cubic interpolation functions are used as equations (14) to determine the 

volume fraction in other points: 
 

 

In equation (14), 
n

S  is the distribution gradient percentage of the volume fraction 

in n’s control point, the values of H are evaluated as: 
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in which kB  is Bernstein polynomial:  

                                    
(3 )3

1
kk
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  (16) 

in which t   stands for the Bernstein input variable. In Bernstein polynomial 3 and 

k  are to be binomial coefficient. 

Also values for the distribution gradient 
n

S  are expressed by equation (17): 
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5. Governing equations 

 5.1 Temperature distribution 
 

As mentioned before the governing equations for conduction field must be 

transient as equation (18): 

 1 1 2 1 3

1 1 4
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(14) 
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 ( ) T/
( )c( )
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 

   

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We take   and T representing as non-dimensional time and temperature 

parameters described as 2/ Lmt   and *

0/T T T  where *T  and t are 

temperature and time respectively. It seems that there is no analytical solution for 

this equation, therefore to obtain a semi-analytical solution; the plate is divided to 

n layers in the z direction (Figure 1) in which all properties are constant. The heat 

transfer coefficients are assumed to be 0h  and Lh in edge parts of the plane. The 

transient heat conduction problem described in equation (18) can be described as 

equations (19-24) by taking the advantage of considering FG plate consist of n 

different layers: 
2
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In which   shows a non-dimensional parameter described as z/L. Parameter  can 

be evaluated considering the number of layers in region of 0b =0 and nb =L/L=1, 

respectively. The solution for the equations (19-22) can be described as Fourier 

series shown in equations (25): 

, , , , ,

1

( , ) ( ( sin( ) cos( ))exp( (i) ))i i m i m i m i m i mT I           


        

ib
< < 1ib   

(25) 

In which ,i m  (m=1, 2, 3…) denotes eigenvalues for each layer that can be 

calculated with the following condition. 
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In which ai,j in the matrix are the values defined by the equations of boundary and 

continuous for the considered problem. 

All values of the  i,m and ,i m  are nonzero and are evaluated with solving  

equation (27) : 

[ ]{ } { }A X B   (27) 

BoundaryConditionsCoeficients

ContinuetyConditionsCoeficients

InitialCondition Coeficients in Layer Boundaries

InitialCondition Coeficients inSub-layers

The second side of the equations with all

A

B

 
 
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 
 
 

   known values

  (28) 

 

It can be seen that the number of unknown variables in the above equations is 

more than the number of developed equations. To overcome this problem a 

number of new equations is produced by introducing new sub layers based on 

equation (20). The number of equations for each layer is the same as the number 

of unknown parameters ,i m , ,i m  and ,i m  (m=1, 2, 3…). The number of required 

subdivisions can be calculated using following steps: 

 

 Determine the number of layers ( )n  

 Determine the satisfying number of eigenvalues (m ) in equation (25)  

 Determine the number of the developed equations to be solved 

 Knowing that the number of all un-known parameters of equation (25) 

is equal to 2 n m , 

Then, the number of sub-layers can be obtained by subtracting the 

number of available equations from number of unknowns. 

 

5.2 Stress distribution 

Assuming an idealized thermal shock to happen, Erdogan and Wu [23] 

have determined the thermal stresses of a fully free FG plate as equation (29): 

0

( )
( , ) ( ( )(T( , ) T ))

1 ( )
xx

E 
        

 
   

  

 (29) 
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in which 0T  is the initial temperature. The  and  are time dependent constants 

and are calculated by equations (30) and (31): 

                                              0

( ) 0

L

xx d   
       

(30) 

   0

( ) 0

L

xx d    
    

(31) 

Matrix method which is described in determining the temperature field, again is 

used in stress analyze to evaluate the parameters   and . These two equations 

satisfy the boundary conditions applied to the free edges of the plate. By 

satisfying these two equations, all parametric values as  and   will be 

evaluated, resulting stress distribution in the plate in all point. 

6. Optimization 

             In this work, Genetic Algorithm (GA) and Particle Swarm Optimization 

(PSO) methods are used to obtain the desired volume fraction distribution. 
 

6.1 Genetic algorithm 
 

Genetic algorithm is a method of optimization based on natural selection. 

This method optimizes the initial random population by a special selecting rule. 

The initial population is random, which includes the information about 

optimization variables (volume fraction in the control points). In the next step, 

objective function is evaluated and on this basis, the population is sorted. Then, 

half of the population members which are inappropriate are excluded. Among the 

remaining members, the algorithm chooses some data named as parents whom 

they will generate some new data. In this study, we have used the weighting 

method for selecting the parents. Corresponding probability for each rank, n, is 

evaluated with equation (32): 

1
1

1n

n N
i

n

N n
P

n


 


  

 (32) 

In which N shows the number of remaining data which is equal to half of total 

population. 

In the next step, after selecting the parents, a new generation is to be generated by 

applying continuous crossover operator so that each pair of parents generate two 

new members, while total population number is fixed. Next step is to evaluate the 

values of the objective function for new members. These steps are repeated till the 

solution is converged. To implement the constraints (equation (33)), Penalty 

function method (equations (34)) is used: 
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0(x) gg     (33) 

 0max 0,[g g(x)]J J


      (34) 

in which g0 is the threshold value of the constraint and Ĵ  shows the objective 

function after applying the penalty function. The value of penalty coefficient P  , 

is an extremely large number so that the constraint is satisfied. 

 

6.2 Particle Swarm Optimization 
 

Particle Swarm Optimization (PSO) method has been inspired from 

ordered movements of a flocks of fishes which are based on two main opinions: 

firstly, communication between different members of the population; and 

secondly, fitness of each member. As a base rule of the algorithm, all members 

have tendency to change their position and follow the best member with high 

fitness. Also, each member is obligated to memorize its own best position. This 

method works with numbers of data, named as particles. Best member of the 

population is chosen to be the leader which it makes other members to move 

toward it. As a result, considering the number of iteration, all of the population 

gathers around the leader, which may change in each iteration. This makes the 

algorithm to converge [24 - 26].  

In PSO, each particle is an answer for the problem, and it is identified with 

a vector which the length of it is the number of designing parameters. Initial 

population is randomly produced with position of 
0

i
x  and speed 0

i
v . After 

determining the leader, speed and position of the other particles are updated. 

Equations (35), (36) and (37) are the base equations of the algorithm; 

      1

1 2
(g x ) ( x )k k k k k k

i i i i i
v v l

 
(35) 

  1 1k k k

i i i
x x v

 
(36) 

1 1 1 2 2 2,ra r a     (37) 

in which 
k

i
l  and gk   are the values of the best answer for the particle i  and best 

answer of the all population. Similarly, ,  a1 and a2 are the coefficient of inertia 

and learning factors respectively, and r1, r2 are two random parameters in the 

range of zero and one. Larger coefficient of inertia results spreading the 

population on a plane without considering the best experience of each particle, on 

the other hand, small coefficient of inertia forbids each particle to alter and move 

on its own present values. It should be considered that the magnitude of these 

coefficients is less than one [25 - 27]. These values are considered to be constant 
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during the process based on equation (38) to simplify the method in contemporary 

projects [25]: 

1
0.721

2ln(2)
     (38) 

Parameters  
1

a  and
2

a are the values which show how much each particle will alter 

based on the best personal and population experience (leader). The sum of all 

these values should be less than 4. Equations (39) and (40) show the suggested 

values given in references [24] and [25]; 

 
1 2

2a a
 (39) 

   
1 2

0.5 ln(2) 1.193a a
 (40) 

After updating speed, each particle will move to its new position. If the 

updated position is the best position which the particle had experienced, the 

position will be collected as the best position till the next one occurs. Moreover, if 

the updated position is the best position among the all population it will be chosen 

as the leader. At the end, the position of the leader will be selected as the final 

answer for the algorithm. 

 

6.3 Optimization formulation 
 

            To be able to evaluate the values of the optimum variables, the objective 

function and problem constraints are introduced as equations (41) and (42); 

min ( )
yS

Obj SF d


 
  

 
  (41) 

1 1,2,...,i i i n      (42) 

In which   is the value of stress in each layer and SF  is to be ideal safety factor. 

The value of the objective function is to be minimized in order to have uniform 

factor of safety based on the maximum allowable strength in each layer. Also, 

equation (42) constraints the change of the volume fraction value in 
thi  layer 

comparing to the neighboring layers in the range of  .  

 

7. Validation 
 

To validate the solution method, the temperature distribution along the z 

direction of a FG plate as a result of thermal shock in a harsh environment is 

obtained and compared with those reported by Wang et al. [28]. For this purpose 

or model verification, one-dimensional transient temperature distribution given by 

Wang for TiC and Ni has been used. Physical properties for TiC and Ni are given 
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in Table 2. Convection coefficients of the outer surfaces of the plate: 0h  and Lh  are 

infinite in two sides, and the plate and boundary conditions are symmetric with 

respect to longitudinal axis. Two sides of the plate have been exposed to sudden 

temperature change in the very beginning of the heat conduction process. Results 

of both solution methods, those obtained with the proposed method and those 

reported by Wang [28], are shown in figure 3 and good agreement is observed.  

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1



n
o

n
-d

im
e
n

si
o

a
n

l 
te

m
p

e
ra

tu
re

 

 

Method used in this paper

Kakac and Yener

Figure 3. Results validation; Transient temperature distribution in a homogeneous layer. 
 

Table 2.Material properties of the verified model  
 
 

Material 
Specific heat 

(J/kg.K) 

Thermal 

conductivity 

(W/m.K) 

Coefficient of 

thermal expansion 

(
610
 / C  ) 

Density 

(g/
3cm ) 

Young’s 

modulus 

(GPa) 

TiC cC  =134 c  =25.1 c  =7.4 c =4.94 cE = 320 

Ni mC  =439.5 m =90.5 m  =13.3 m  =8.89 mE  =206 

 

8. Results of optimum material distribution 
 

Firstly, the temperature distribution for a FG Al2024/SiC plate, 

manufactured by Erdemir et al [29], is calculated using the proposed solution 

method. The results are obtained for a FG plate with 0h  and Lh equal to infinity and 

initial temperature of 25 centigrade degrees. Figure 4 and 5 show the convergence 

rate for GA and PSO respectively. These figures show that both solutions 

converge beyond 40 iterations the influence of provision lambda is noticeable in 

both two methods. Value of safety factor SF= /yS  obtained from these 

Wang [28] 
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optimization methods, and are shown in Figures 6 and 7 which are to be uniform 

in all over the plate as the optimization goal. It can be seen in these figures that 

PSO have resulted a better SF distribution for the plate than GA but with higher 

number of generations which as a sequence it needs more time to result a precise 

answer for the problem.  

Maximum allowable stress for the pure aluminum and ceramic are 

assumed to be 112.3 MPa and 490.3 MPa, respectively. The distribution of the 

volume fraction along the z  direction of the plate with non-dimensional 

parameter ib  for FG plate is illustrated in figures 8 and 10 for both methods. In 

Figures 9 and 11 the stress distribution on FG plate due to the thermal shock with 

0.45   is presented by considering the time. As it can be seen from these 

figures PSO method provides more uniform stress distribution all over the plate 

rather than GA method. 
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Figure 4. GA convergence rate in the FG plate with different range of lambda. 



Optimum design of functionally graded plate under thermal shock                      83 

0 20 40 60 80 100 120
5

5.5

6

6.5

7

Generation

O
b
je

c
ti

v
e
 F

u
n
c
ti

o
n

 

 

=25 %

=35 %

=45 %

=15 %

 
Figure 5. PSO convergence rate in the FG plate with different range of lambda. 
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Figure 6. The best safety Factor (
Sy


) distribution in all over the plate with different range of 

volume fraction provisions for GA. 
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Figure 7. The best Safety Factor (
yS


 ) distribution in all over the plate with different range of 

volume fraction provisions for PSO. 
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Figure 8. Volume fraction distribution along the z direction of FG plate with different 

range of lambda provision in genetic algorithm method. 
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Figure 9. Stress distribution along the z direction of FG plate under thermal shock with 

volume fraction resulted with genetic algorithm method.  Indicate small time pass after shock is 

exposed for lambda=45%. 
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Figure 10. Volume fraction distribution along the z direction of FG plate with different 

range of lambda provision in PSO optimization method. 
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Figure 11. Stress distribution along the z direction of FG plate under thermal shock with      

volume fraction resulted with PSO method.  Indicate small time pass after shock. 

 

9. Conclusion 

                Transient thermal shock effect on a FG plate has been studied in this 

paper. Two different sides of the plate undergo a sudden temperature gradient. A 

computer code has been developed to obtain the temperature distribution along 

the z direction of the plate. The method is based on the combining discretization 

and Fourier series in space and time domain. Equivalent material properties have 

been evaluated with hybrid use of Mori-Tanaka and Fuzzy logic with considering 

Hashin-Schtrikman lower bonds. To evaluate the accuracy of the solution method, 

the results of this method are compared with the available data in the literature. A 

good agreement is observed.  

This computer code is extended with the use of two different optimization 

methods: GA and PSO, which determine the FGM volume fraction distribution to 

provide optimum strength ratio along the plate. For this purpose, material 

distribution across the z direction of the plate is obtained in control points. 

Volume fraction distribution across the plate is interpolated using cubic Hermite 

polynomials which have been calculated using Bernstein polynomial. The results 

show the flexibility of the proposed method compared to other methods which use 

predefined volume fraction functions. 
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