
U.P.B. Sci. Bull., Series C, Vol. 86, Iss. 4, 2024 ISSN 2286-3540

AN OPTIMIZED FAULT-TOLERANT SCHEDULING

ALGORITHM BASED ON GROUPING STRATEGY FOR

HETEROGENEOUS MULTI-CORE PROCESSORS

Shigan YU1,2, Bing XIANG2, Yuliang BIAN1, Hui LIU1,*

As the circuit density continues to increase, the possibility of charged element

radiation turnover increases, so that the probability of transient failure in the

execution of the computer task increases, resulting in unexpected errors in the

operation results. Traditional Three Mode Redundancy (TMR) is the main method to

solve the transient fault of the processor, which is characterized by low efficiency and

high power consumption, this paper proposes a Fault Tolerant scheduling algorithm

with High-performance and Low-power consumption for Heterogeneous multi-core

processors based on Grouping strategy (FTHLHG) while ensuring system reliability.

According to the task attributes, the Directed Acyclic Graph (DAG) task model is

established to determine the priority, and the tasks are divided into two groups

with/without fault tolerant requirements. For the tasks requiring fault tolerance, this

paper proposes the Fault Tolerant Scheduling Algorithm based on the Speculation

(FTSAS). For the tasks that do not require fault tolerance, this paper proposes the

Competition Scheduling Algorithm (CSA). Simulation experiments show that the

average performance of FTHLHG is 16.9% higher than that of the traditional fault

tolerant method when executing test cases before injecting errors. When injected 200,

2000 and 6000 errors respectively, FTHLHG's fault tolerance was similar to that of

the most advanced methods, but the average performance of the FTHLHG algorithm

was improved by 11.7% and the average power consumption was reduced by 21.1%.

Keywords: Fault Tolerant; Grouping; Heterogeneous multicore; Processors;

Simulation

1. Introduction

In recent years, the rapid development of society has put forward more urgent

requirements for high-performance computers, and high-performance computers

depend on high-performance processors. In the past, high-performance processors

relied on highly integrated transistors on a single chip, which has entered the limits

of development. Now, they have turned to single-chip&multi-core processors, and

the number of high-integration transistors has increased exponentially [1]. Multi-

core chips have become the mainstream of processors, which is another way Moore's

law continues. For a long time, homogeneous multi-core has always been the main

architecture of processors, but in practice, the homogeneous big-core processor

1 School of Information Engineering, Fuyang Normal University, Fuyang 236041, Anhui, China
2 School of Computer and Information Engineering, Fuyang Normal University, Fuyang 236041,

Anhui, China

*Corresponding author: Hui Liu，E-mail: liuhuiyeah@yeah.net

60 Shigan Yu, Bing Xiang, Yuliang Bian, Hui Liu

leads to low execution efficiency for threads with low priority and complexity, and

homogeneous small-core processor will cause the decrease of throughput of the

single thread execution [2,3], so either homogeneous big-core or small-core will

cause low execution efficiency of program, which is not conducive to optimization

of overall throughput and power consumption[4]. Heterogeneous multi-core

processors (HMP) is composed of a single core with different performance.

According to the characteristics of different cores, it can be dynamically adjusted

for different applications to further optimize system performance and reduce power

consumption. Therefore, the application range is gradually promoted, for example,

ARM's big.LITTLE [5], NVidia's Tegra [6], Intel's QuickIA [7,8] and Huawei’s

Kirin-9000[9] are all the HMP.

On the other hand, the density of the circuit increases and the gate charge

decreases in critical of the transistor, which raises the probability of radiation flip of

electrically charged components [10]. BTI (Bias Temperature Instability) [11], HCI

(Hot Carrier Injection) [12], and other integrated circuit aging [13] can induce the

increase of the processor's transient fault which is the main reason for the 70-80%

processor failure [14]. Therefore, both homogeneous and heterogeneous multi-core

processors need to be improved reliability and it is important to make the system

fault tolerance especially for the key tasks at important nodes, and to ensure that the

system can produce correct results even when errors occur in the execution.

Compared with the study on the reliability of homogeneous multi-core, there is less

research on the reliability of HMP. This paper is to carry out research on fault-

tolerant scheduling for HMP. A fault-tolerant system must be redundant, and the

system’s reliability can be improved by redundant modules.

The traditional method usually uses the TMR method to solve the transient

fault of the processor. After all the three modules have completed the task, the

majority rule is adopted. When the two modules are consistent, the wrong result of

the inconsistent module is shielded, and the wrong module is synchronized to the

correct state. After that, the entire TMR system starts to execute the next task from

the same state simultaneously. This homogeneous TMR mainly adopts the spatial

redundancy for the reliability of processor system. Each task is executed three times

on a homogeneous system with three modules, which features low efficiency and

high power consumption and are unable to make full use of the characteristic of the

diversity of tasks. Because different cores have different properties, HMP have

different high efficiency when processing different tasks.

In order to take full advantage of the characteristics of each core, this paper

proposes a fault-tolerant scheduling method based on grouping strategy for HMP,

which can improve the system reliability and realize high-performance and low-

power scheduling at the same time. The contributions of this paper are summarized

as follows.

An optimized fault-tolerant scheduling algorithm based on grouping strategy for heterogeneous… 61

(1) The shortcomings of existing TMR are analyzed in detail, and an optimal

scheduling method FTSAS based on speculation mechanism is proposed.

(2) On the basis of studying the different properties of heterogeneous

multicore and the existing tasks to be processed, a high performance HMP

scheduling method CSA based on competition mechanism is proposed.

(3) According to the different characteristics of the tasks to be processed, a

high performance HMP fault-tolerant scheduling method FTHLHG based on

grouping strategy is proposed.

(4) The proposed FTHLHG method and other fault-tolerant methods are

evaluated, and the experimental results show that FTHLHG can achieve higher

performance and lower power consumption while ensuring reliability.

The rest of this paper is organized as follows. Section 2 reviews the related

works. Section 3 introduces the System model. The System working mechanism is

presented in Section 4. Section 5 describes the system scheduling implementation.

Section 6 evaluates the proposed method. Section 7 concludes the paper and plans

the future work.

2. Related works

In order to improve the reliability of the system, fault-tolerant technology

has been valued in different degrees and forms in the development of computers,

which causes academia and industry to invest the important energy in this aspect of

research. Traditional fault-tolerant technologies have redundant methods such as

DMR(Dual Mode Redundancy) [15], TMR [16], Multi-version technology [17],

LOCKSTEP [18], PB(Primary and Backup version) [19], SMT (Simultaneous

Multi-threading) [20], checkpoint technology [21] and other Redundancy Check

fault tolerance such as ECC (Error Correcting Code) [22], CRC (Cyclic

Redundancy Check)[23], PCC(Parity Check Code) [24], HC(Hamming Code) [25].

Among these fault-tolerant methods, TMR has been used much longer and more

widely, which has the effect of error detection and fault tolerance, but TMR method

can correct only one error at a time. DMR can only detect errors without fault-

tolerant ability, and NMR (N>3) can correct multiple errors at a time. Multi-version

technology mainly focuses on using multiple versions of a part of software to realize

fault tolerance. LOCKSTEP technology processes the same instructions by the

redundant hardware at the same time and is realized by the method of redundant

hardware to execute tasks repeatedly, which can keep multiple CPUs and memory

exactly synchronized and execute the same instructions within the correct clock

cycle. PB fault-tolerant technology means a task contains a primary version and a

backup version which can work in the active mode, passive mode, and overlapping

mode and the system schedules the primary version and the backup version to

different processors. The result of the backup version will be adopted as the final

62 Shigan Yu, Bing Xiang, Yuliang Bian, Hui Liu

output when there are errors during the execution of the primary version. During

the specific execution, tasks need to be divided first and a detection module needs

to be added to judge results, which increases the scheduling overhead. SMT fault-

tolerant technology is a chip multiprocessor technology that assigns each task to

each independent thread, and has a separate pipeline [26,27]. It is a fine-grained

fault-tolerant technology to realize fault tolerance by comparing the results of each

thread. Checkpoint fault-tolerant technology saves the system in a different state as

checkpoints during the different implementation stages. When an error occurs, the

system rolls back to the previous checkpoint and re-executes the tasks from the

checkpoint that is mainly used in the processing faults of fail-stop [28]. This method

requires the setting of system checkpoints at irregular intervals, which causes

inefficient in execution. The redundancy check bit is mainly used for error detection

and error correction of data.

3. Models

3.1 System definition

Definition 1, Reliability R(t): It refers to the probability that a complete

system performs the expected function within a time range [0,t] in a running state.

When a system with M modules, there are errors in E(t) modules at the end of the

time range of [0, t], the other modules produces the desired results, the system

unreliability UR(t) and reliability of R(t) can be calculated in accordance with the

following definition(1) and (2).

M

tE
tUR

)(
)(= (1)

)(1
)(

1
))((

)(tUR
M

tE

M

tEM
tR −=−=

−
= (2)

Definition 2, Failure Rate Z(t): It refers to the ratio between the number of

the wrong module and normal module within the time range of [0, t]. For a module,

Z(t) represents the failure probability within the working time range [0, t].

According to the actual statistics, the relationship between the failure rate Z(t) and

time t are shown in Fig. 1.

An optimized fault-tolerant scheduling algorithm based on grouping strategy for heterogeneous… 63

Fig 1. Relationship between module failure efficiency and time.

Fig. 1 can be divided into three phases, among which the first and the third

section of the failure rate is higher, the second section of the failure rate is stable

and lower. Therefore, the working time of the system should be set in the process

of the second stage, which can improve the reliability of the system, reduce

uncontrollable factors, and make the system work within our expected range. In the

second stage Z(t)= λ is usually given. It is generally assumed that the Mean time

Between Failures of the system is MTBF. and λ is 1/MTBF, which is usually x*10-

6/hour.

The relationship between the system reliability and the module's failure rate

proved to be exponential as equation (3), the reliability of the system can be obtained

from formula (4), which provides a basis for further design.

)](ln[

)(

)(
t

)(

0
tR

tR

tdRtR

−=−=  (3)

)exp()(ttR −= (4)

Definition 3: In heterogeneous multi-core systems, the task can be defined as

the DAG model. As a research object, it is a common method for researchers [29].

This paper defined DAG task model as Γ=(M, V, E , A , T , W).

M={m0, m1, m2, ..., mi} represents the set of core, mi represents i-th core in

the system.

V={v0, v1, ..., vn} represents the set of nodes in Γ, each node viΓ represents

a task. The pre(vi) represents the immediate predecessor of the current task vi.

Succ(vi) represents the immediate successor to the current task vi. The first task with

no pre(vi) is defined as ventry, and the last task with no succ(vi) is defined as vexit.

E={ei,j} represents the set of edges, ei,jΓ means the WCRT (worst case

response time) between vi and vj if they are not assigned to the same core and the ei,j

is 0 if they are assigned to the same core. All the ei,j are known during the analysis

and design phase.

A={a0, a1, ..., an} indicates whether the task has fault-tolerant properties,

ai={0,1}, where ai=1 indicates that the task is resilient task, which does not need fault

64 Shigan Yu, Bing Xiang, Yuliang Bian, Hui Liu

tolerance, and ai=0 indicates that the task is sensitive to errors, which requires fault

tolerance to improve reliability.

T= {t0, t1, ..., tn} is the set of reliability thresholds, ti represents the reliability

threshold of each task.

W={wj,k} represents the WCET (worst execution time) of vj running on corek.

Each viΓ has different WCET values on different processors due to heterogeneity

of cores. All the wj,k are known during analysis and design phase.

The system task flow based on DAG is shown in Fig. 2. When executing tasks,

the system need to sort the DAG task nodes by descending order method [30,31],

and the calculation method is shown in formula 5 and 6.

 exitexit cv =)(sort (5)

)}v(emax{)(sort , jjiii sortcv ++= (6)

Where cexit and ci represent the time at which the tail tasks node and the i-th

task node are executed by the core, respectively, and vj is the successor of task vi.

Fig 2. the task flow graph

3.2 System Reliability

λmi represents the failure rate of the core mi, The reliability R(vi , mj) that

the i-th task is executed on the j-th processor can be calculated according to formula

(7)[32,33]. If R(vi, mj) is greater than the current node reliability threshold ti, it

indicates that the execution result of the task is satisfactory. The first node is called

Ventry, whose reliability is calculated by the formula (8). The system reliability can

be calculated according to formula (9) when the i-th node is executed. If R(Γi) is

higher than expectation of reliability, it shows that the system reliability is

satisfactory until the current node.

An optimized fault-tolerant scheduling algorithm based on grouping strategy for heterogeneous… 65

)exp(),(,kimji wmvR

j
−=  (7)

),exp(),(kventryientry

entry
wvmvR −=  (8)

),(),()),v(()(

0
)(Pr

,i kentryjii

a
ie

kii mvRmvRamRR

i

= 




 (9)

4. Methods

4.1 Traditional TMR mechanism

The fault-tolerant architecture of the traditional TMR is shown in Fig. 3,

which consists of three redundant modules, U1, U2, U3, and a Voter. The task Ti is

input into three modules, U1, U2 and U3 at the same time. After the three modules

have completed the tasks, the results of the execution are sent to the Voter

respectively.

Fig 3. The basic structure of TMR

After the Voter receiving all three results, the majority rule is used to

determine the output. When the three results are identical, Voter outputs Ri directly;

When both are consistent in three modules, the inconsistent result is shielded and

the system outputs the result of consistent modules. In this way, when an error

occurs in system execution, the result of the system is free from interference by the

wrong module and the fault-tolerant function can be realized.

Since it is a small probability event that the error occurs in two or three

modules at the same time, thus, the output of TMR can be defined by logical

expression Result_i= R1R2||R2R3||R1R3, which is a majority voting function. If

only one error occurs in R1, R2, or R3, the output Result_i is right. The traditional

TMR is shown in algorithm 1.

Algorithm 1: Traditional TMR Algorithm (TMR)

Input: every task Ti

Output: result_i of every task Ti

1.If the current task Ti is not a new one, it is finished,

2. Input the current task to each module at the same time;

3. Each module processes the current task Ti separately

66 Shigan Yu, Bing Xiang, Yuliang Bian, Hui Liu

4. outputs the execution results R1, R2, and R3 to Voter at the same time.

5. If both or three among R1,R2, and R3 are consistent, the voter output results.

6. If R1, R2 and R3 are different, the current task is given as a new task attribute,

 goto Step1 to continue.

4.2 Speculation working mechanism

Speculation technique has made important contributions to the

parallelization of serial processor tasks so as to improve the execution efficiency of

serial tasks and has become an important technology in the micro-architecture of

multi-core processors. In addition, speculation techniques are also widely used in

network communication [34], performance optimization of big data [35], and

aviation trajectory judgment [36]. Generally speaking, speculation technology has

developed rapidly in recent years, but it is rarely involved in the field of fault

tolerance.

When solving the transient fault of the processor, TMR features low

efficiency and high power consumption, which is mainly due to the fact that all

three cores are always working at the same time. After each core has executed tasks,

the voting module selects the correct result to output, and then all three cores start

to implement the next stage of the task.

Due to differences in the architecture and properties, the faster core in HMP

will wait for the backward core until the completion of the backward core when the

system adopts TMR fault tolerance mechanism.

In order to take advantage of the characteristics of HMP and ensure system

reliability to meet the requirements, a fault-tolerant scheduling algorithm with high

performance and low power consumption based on the speculation mechanism is

proposed.

Firstly, according to the DAG model, the program to be executed is divided

into an ordered task sequence T1,T2, ...,Tn ,whose priority is determined by formulas

(5) and (6). At the beginning of the program, the same task Ti (0≤i≤n) was assigned

to the three cores, and they started to execute the task Ti at the same time. Since

each core has a different execution speed, the result of the fastest core C1 is

temporarily saved, denoted as R1 and assigned the next task Ti+1 to core C1 to

continue, then the system saves the result of the second completed core C2 as R2

and assigns the next task Ti+1 to core C2 to continue. If R1 is equal to R2, the slowest

core C3 is immediately terminated, and it is synchronized to R2’s state, otherwise,

the system waits for the result R3 of the slowest core. If R3 is equal to R1, the value

of R1 is submitted, and core C2 is withdrawn and Ti+1 is executed by core C2 and

core C3 simultaneously. If R3 is equal to R2, the value of R2 is submitted, core C1

is withdrawn and the next task Ti+1 is performed by core C1 and core C3

simultaneously. If R1, R2, and R3 are not equal with each other, then the core C1

is withdrawn so that the three cores re-execute the task Ti simultaneously (this is a

An optimized fault-tolerant scheduling algorithm based on grouping strategy for heterogeneous… 67

small probability event). If the system still don't get the right result from the three

core by the next time, the processor hardware may fail and need to be overhauled

until all tasks are completed. The above implementation is shown in algorithm 2.

Algorithm 2: FTSAS (Fault-Tolerant Scheduling Algorithm with Speculative
method)
Input: task flow Ti
Output: the result of task flow
1.Initialize the reliability of task and reliability threshold of the cores, respectively ;
2.Check the reliability of each core, replace the core if it fails to meet reliability
threshold;
3.Set several fixed time Pj to save temporary results for synchronizing;
4.Assign every task Ti to each core and they start to execute the task Ti;
5.Record the result of the fastest core as C1 at Pj, save the result of C1 as R1, and
C1 continues to execute Ti+1 speculatively without waiting for the backward core.
6.Record result of the second core C2 at Pj, save the result of C2 as R2, and C2
continues to execute Ti+1 speculatively without waiting for the slowest core.
7.If R1==R2, then Interrupt the slowest core C3 immediately and synchronize C3
to the state of C2 and start to execute task Ti+1 at Pj ;
8. else Record C3’s result as R3 when C3 executes Ti to time Pj;
9. If R3==R1, then synchronize C2 to C3 and perform the next task Ti+1
simultaneously.
10. If R3==R2, then synchronize C1 to C3 and they execute the next task Ti+1
simultaneously.
11. else C1 and C2 will be withdrawn and re-execute the current task Ti, and
then go to Step5;
12. If all the tasks in the task flow have been completed, then Output the final result;
13. else go to step5.

4.3 Competition mechanism

The system architecture of HMP using a competition mechanism [37] is

shown in Fig. 4, where three cores are selected for the convenience of introducing

the mechanism of TMR in this system. The competition mechanism proposed in

this paper for HMP’s system is shown in Fig. 5.

Due to the different tasks, the speed of each core will be different at the end

of each time Pj, the system chooses the result of the fastest core as a standard and

synchronizes the backward cores, which improves the disadvantage that the fastest

core needs to wait for the backward cores.

68 Shigan Yu, Bing Xiang, Yuliang Bian, Hui Liu

Fig 4. HMP’s architecture

Fig 5. Competition mechanism between cores

When the system executes the current task Ti to the time Pj as it needs to

synchronize, the state of each core is shown in Fig. 5. Every core has a different

speed and the core C executes the task Ti fastest if the core C matches the current

task, and then the core C stores the results in the relevant registers or storage cells,

and the laggard cores discard the unfinished tasks and accept the results of core C.

Then, the system uses the status of core C as the starting stage of the next task Ti+1,

instead of waiting for the completion of the slower A and B so that three cores can

start to work from the same state at the beginning of the next phase, which can take

advantage of different cores, and the core matching the task will lead again and then

the leader core synchronizes the laggard until the program is completed. Therefore,

the overall performance of the system can be improved obviously. In addition, the

laggard core accepts the result of the fastest core and terminates the unfinished task

directly, the power consumption of the system can be reduced to a certain extent.

An optimized fault-tolerant scheduling algorithm based on grouping strategy for heterogeneous… 69

The implementation algorithm of the competition mechanism is shown in

Algorithm 3.

Algorithm 3: CSA(Competition Scheduling Algorithm)

Input: task Ti

Output: result of Ti, Result_i.

1. Set synchronization time Pj;

2. System begins to execute Ti;

3. If the system reaches time Pj, save the results of each core individually;

4. Select result of the fastest core as Result_i and terminates the unfinished task;

5. Synchronize laggard cores to the state of fastest core;

6. Else each core continue to execute the current task until time Pj, and go to step3;

5. Implementation

5.1 System hypothesis

It is assumed that no more than one error is allowed to occur in three cores

when each task Ti is executed. Each core can execute tasks independently and can

communicate with each other. Each core can broadcast the results to other cores via

the bus, and can receive the results of other cores at each time period. If there are

more than three cores, the system can be set to select three of them to perform tasks.

5.2 System scheduling mechanism

In today's computer system applications, there are two types of tasks

including flexible tasks with ability of fault tolerance and sensitive tasks without

ability of fault tolerance. A flexible task of an application is the one in which some

calculations are not executed with 100% accuracy and the final output is still

acceptable. Such applications exist in many fields, such as digital signal processing,

image, audio and video processing, wireless transmission, web search, data analysis

[38], etc. Therefore, no additional fault tolerance measures are required for these

applications. However, there are some fault-sensitive control flow tasks. Serious

errors may occur if fault-tolerant method is not adopted in the execution. The

execution of the entire application will be wrong and even cause system crash.

Therefore, a new fault-tolerant scheduling algorithm is proposed in this paper to

improve the system execution efficiency while ensuring the system features high

reliability and lower power consumption.

First of all, the reliability R(t) of the core detected by formula 4 should be

higher than the threshold, or the new core should be replaced. Then, the system

executes the task without fault-tolerant requirements by the algorithm CSA. At the

end of each fixed detection time Pj, the result of the fastest core is used as the output.

The system will execute the task again by the Algorithm FTSAS if the result fails

to meet the reliability requirements. For sensitive tasks with fault-tolerant

requirements, the algorithm FTSAS is used to execute the task directly, which not

70 Shigan Yu, Bing Xiang, Yuliang Bian, Hui Liu

only achieves the goal of reliability requirements, but also makes full use of the

characteristics of HMP to improve performance and reduce power consumption.

Combined with the speculative mechanism and the competition mechanism, the

FTHLHG (Fault-Tolerant scheduling algorithm with High performance and Low

power consumption for Heterogeneous multi-core processor based on Grouping

strategy) is proposed in Fig. 6:

Fig 6. System execution flow

An optimized fault-tolerant scheduling algorithm based on grouping strategy for heterogeneous… 71

And implementation is shown in algorithm 4.

Algorithm 4: FTHLHG (Fault-Tolerant scheduling algorithm with High

performance and Low power consumption for Heterogeneous multi-core processor

based on Grouping strategy)

Input: Task flow vi

Output: The result of each task vi

1.Initialize reliability threshold of tasks and each core;

2. Check the reliability of each core, replace the core if it fails to meet reliability

threshold;

3. Divide the current task into task flow (v0,v1, ..., vn), including sensitive tasks and

flexible tasks;

4. Set DAG-based task flow sequence by formula 5 and 6;

5. Execute task flow vi;

6. If vi is a sensitive task, system execute vi by FTSAS, record the result as Result_i;

7. If vi is a flexible task, system execute vi by CSA, record the result as Result_i;

8. If Result_i fail to meet reliability threshold according to formulas 9 , re-execute

the task vi by FTSAS and save the result as Result_i;

9. Synchronize the result Result_i to the other two cores as the initial state for

next task Ti+1 and output Result_i;

10. If the task flow does not end, then go to Step5 to continue;

11. else, output the final result;

6. Experimental results

6.1 Experimental setup

Heterogeneous processor simulation platform is a real simulation of

computer with a very close execution effect, which is a common approach to study

the properties of processors. Therefore, this paper adopts heterogeneous multi-

core simulator platform to execute each test case to realize the verification of the

optimization algorithm.

The Simplescalar simulator designed by Intel is open source and an important

simulator for high-performance processor architecture[39,40]. It features

simulation function including executing drive, explanation execution, assembly

line and instructions with out-of-order execution, system compiler, system test,

and supports a variety of instruction sets such as PISA, ARM, X86, etc. Therefore,

the HMP consisting of PISA, ARM1 and ARM2(same instruction set, different

performance configurations) was selected to build the experimental platform

based on the Simplescalar simulator, as shown in Fig. 7.

The simulator of HMP is configured in the experimental environment as

shown in Table 1[41]. Using System C as a development tool, C++ adds class

library, introduces concurrency, timing events and hardware data types, simulates

72 Shigan Yu, Bing Xiang, Yuliang Bian, Hui Liu

the core, defines hardware and software components, and models the hardware.

The core communicates and realizes synchronization with each other through

shared storage units, and SimOutorder is adopted for functional simulation.

Fig 7. Architecture of HMP

Table 1.

Configuration table of HMP

Test cases consisting of SPEC2000, matrix multiplication, and sorting

algorithms were selected for system testing, in which SPEC2000 was selected as

an integer (denoted as SPEC2000_int) to test and take the average value; the scale

of matrix multiplication was 64*64(denoted as MM64), and sorting algorithm was

Core Type PISA ARM1 ARM2

Fetch/Issue/commit 4/4/4 4/2/2

ROB/LSQ Entries 128/64 64/32

Int/Fp units 4/4 2/3

RUU Size 16

Pipeline width 5

FUs
3 int add, 1 int mult, 1 int div,

1 fp add, 1 fp mult , 1 fp div

ITLB
16-way, 4096 byte page, 4-way LRU

30 cycle miss penalty

DTLB
32-way, 4096 byte page, 4-way LRU

30 cycle miss penalty

Branch Prediction
Gshare: 9, pht:4096, BTB:512, 2-way group-

mapped, Random

L1 Icache 64KB, 2-way group-mapped, Random

L1 Dcache 64KB, 2-way group-mapped, Random

An optimized fault-tolerant scheduling algorithm based on grouping strategy for heterogeneous… 73

used to sort 600 numbers (denoted as SORT600).

TPFTRM[42], which has the highest scheduling performance among PB

fault tolerant methods at present, is adopted. After the execution time of each test

case is standardized, the execution time of TMR, DMR and PB methods is

compared with the proposed algorithm, and the efficiency of the same test case

under different methods is obtained.

As FTSAS method has a fault-tolerant function, and the individual CSA

method does not have fault-tolerant ability, the fault-tolerant experiment of

FTSAS based on the speculative mechanism, and FTHLHG based on the grouping

strategy were completed respectively. By comparing the performance and power

consumption of existing fault-tolerant algorithms, the FTHLHG algorithm can be

found to have prominent advantages.

6.2 Results and performance analysis

Fig. 8 shows the performance difference between the fault-tolerant

algorithm of FTHLHG proposed in this paper and the fault-tolerant algorithm of

TMR, DMR, PB and FTSAS. When executing the test cases of SPEC2000_int,

MM64 and SORT600, the average performance of the FTHLHG algorithm was

16.9% higher than that of TMR, DMR, PB and FTSAS. Compared with other

algorithms, FTHLHG yields the highest optimization performance than traditional

TMR, especially when SPEC2000_int is executed, the performance of FTHLHG

is improved to 27.2%. Because TMR needs to wait until all three modules have

completed the task comparison before the next task can be performed, which

reduces the performance of TMR algorithm.

Fig 8. performance comparison between FTHLHG and other algorithms before injecting errors

74 Shigan Yu, Bing Xiang, Yuliang Bian, Hui Liu

Compared with other test cases, FTHLHG has a higher performance when

executing SPEC2000_int. SPEC2000_int contains a variety of integer tasks, which

makes it easier to give play to the characteristics of HMP, highlighting the

advantages of grouping competitive calls. The core can execute the task faster when

the attribute of a task matches the core’s characteristics. Since each task’s type is

similar, the advantage of the FTHLHG method is diminishing when executing the

MM64 and SORT600. This shows that the proposed algorithm FTHLHG is more

suitable for the diversity of tasks and can make full use of HMP to improve the

system execution efficiency.

In order to truly simulate the environment in which the error occurred in the

system, the method of data modification in the storage space with a certain

probability of simulating the transient fault of the processor is adopted[43,44]. After

200, 2000, and 6000 errors were injected, SPEC2000_int, MM64 and SORT600

were executed to compare the performance of various fault-tolerant algorithm

scheduling, respectively. It can be found that DMR can only detect errors but cannot

correct errors by experiments. Therefore, the performance of FTHLHG scheduling

is compared with that of TMR, PB and FTSAS scheduling. The reliability of TMR,

PB and FTSAS can be obtained after error injection.

As it can be seen from Fig. 9, the reliability of TMR, PB, FTSAS and

FTHLHG is higher than the preset goal and these algorithms have similar fault-

tolerant ability.

As shown in Fig. 10-12, it is found that the average performance of

FTHLHG is improved by 11.7% compared with that of TMR, PB and FTSAS, when

SPEC2000_int, MM64 and SORT600 are executed after injecting 200, 2000, and

6000 errors.

Fig 9. Reliability comparison of different fault-tolerant algorithms

An optimized fault-tolerant scheduling algorithm based on grouping strategy for heterogeneous… 75

Fig 10. After injecting a different number of errors, performance comparison of fault-tolerant

algorithms when executing test case SPEC_2000

Fig 11. After injecting a different number of errors, performance comparison of fault-tolerant

algorithms when executing test case MM64

Fig 12. After injecting a different number of errors, performance comparison of fault-tolerant

algorithms when executing test case SORT600

76 Shigan Yu, Bing Xiang, Yuliang Bian, Hui Liu

It can be found that the advantage of FTHLHG is reducing with the increase

of injection error. More errors weakened the role of competition mechanism and

the number of tasks requiring speculative scheduling is increasing, especially when

6000 errors are injected, the average performance of FTHLHG is reduced to 6.5%,

which is very rare in practical application. If so many errors occur during system

execution, there must be a failure in the hardware module, which needs to be

checked and replaced with the right core module.

6.3 Power consumption analysis

In order to better display the performance advantages of FTHLHG, it is

necessary to analyze the power consumption of FTHLHG, TMR, PB and FTSAS

in the same system environment. Wattch [45,46] is used to analyze the power

consumption on the basis of Simplescalar, and the power consumption of FTHLHG,

TMR, PB and FTSAS is calculated by modifying the Simplescalar simulator in

combination method of J.Xu [47] and Ahmed [48]. As the number of injection

errors increases, fewer tasks need to be competitive scheduling during the execution

of FTHLHG, so the corresponding power consumption is increasing and the power

consumption advantage of FTHLHG is weakening.

As shown in Fig. 13, when 200 errors are injected, the average power

consumption of FTHLHG is 21.1% lower than that of TMR, PB and FTSAS,

respectively. When 6000 errors are injected, the average power advantage of

FTHLHG decreases to 10.8%.

Fig 13. Power consumption relationship of the three algorithms after injecting error

However, 6000 errors occur in the system is a small probability event during

system execution, therefore, the FTHLHG algorithm not only improves the

performance, but also reduces the total power of the system, which fully shows the

performance and power advantage of FTHLHG.

An optimized fault-tolerant scheduling algorithm based on grouping strategy for heterogeneous… 77

7. Conclusion and future work

As the density of the integrated circuit increases and the critical gate charge

of the transistor decreases, the probability of radiative flip of the charged element

increases, which leads to the increase of the transient fault probability of the

computer during the execution of the task, causing unexpected errors. In order to

ensure the reliable and efficient execution of the task of the system, the existing

fault-tolerant scheduling method needs to be optimized. This paper is to carry out

research work under such background. HMP is an important component of high

performance computer. HMP shows different performance when executing

different tasks, the execution speed of matched tasks is accelerated, and the

execution speed of unmatched tasks is slowed down. Therefore, this paper proposes

a fault-tolerant scheduling algorithm for HMP based on Grouping strategy. The

tasks to be executed are divided into fault-tolerant requirements and fault-tolerant

requirements. FTSAS method and CSA method are used for scheduling,

respectively. Simulation results show that FTHLHG has better performance and

lower power consumption than the existing fault-tolerant algorithms.

The background of this paper is to improve the performance of single-

threaded execution and reduce the overall power consumption of the system while

ensuring the system’s reliability under the von neumann architecture. According to

Amdahl theorem, the parallel execution acceleration of the program depends on the

performance of the serial application. This approach can be extended to parallel

computing and high reliability and high-performance system fault tolerance, such

as distributed systems and cloud computing fault tolerance.

In future studies, the characteristics of different core architectures and

different tasks will be further analyzed, and tasks will be grouped and assigned to

the matched core, so as to further improve system reliability and execution

efficiency and reduce power consumption.

Acknowledgment

The work was supported in part by Quality project of Anhui Province with

Grant number 2020zdxsjg260, 2022sx111 and 2021sx117, and in part by Talent

research launch start-up project of Fuyang Normal University under grant

2019kyqd0018, and in part by Anhui Province university key research project under

grant number 2022AH052820.

R E F E R E N C E S

[1] C. McNairy. “Exascale fault tolerance challenge and approaches”. IEEE International Reliability

Physics Symposium (IRPS), Burlingame, CA, USA, 2018:3C.4.1-3C.4.10.

[2] X. Wen, G. Liu, D. Li,et al, "Federated Scheduling Optimization Scheme for Typed Tasks With Power

Constraints in Heterogeneous Multicore Processor Architectures," in IEEE Access, vol. 11, pp.

85728-85746, 2023.

78 Shigan Yu, Bing Xiang, Yuliang Bian, Hui Liu

[3] V.Chau, C.K.K.Fong , S.Liu, et al. “Minimizing Energy on Homogeneous Processors with Shared

Memory”. In: Li, M. (eds) Frontiers in Algorithmics. FAW 2020. Lecture Notes in Computer

Science, vol 12340.

[4] K. Baital, A. Chakrabarti. “Dynamic Scheduling of Real-Time Tasks in Heterogeneous Multicore

Systems”. IEEE Embedded Systems Letters.2018:1-4.

[5] A. Butko, F. Bruguier, A.bdoulaye, et al., "Full-System Simulation of big.LITTLE Multicore

Architecture for Performance and Energy Exploration," 2016 IEEE 10th International Symposium

on Embedded Multicore/Many-core Systems-on-Chip (MCSOC), Lyon, France, 2016, pp. 201-

208,

[6] K. -Y. Yeh, H. -J. Cheng, J. Ye, et al. "Constructing a GPU cluster platform based on multiple NVIDIA

Jetson TK1," 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM),

Shenzhen, China, 2016, pp. 917-922,

[7] N. Chitlur, Ganapati, G. Srinivasa,, et al. “QuickIA: Exploring heterogeneous architectures on real

prototypes”. IEEE International Symposium on High-Performance Computer

Architecture(HPCA), New Orleans, LA, USA, 2012,1-8.

[8] A. O. Munch, N. Nassif, C. L. Molnar, et al. "2.3 Emerald Rapids: 5th-Generation Intel® Xeon®

Scalable Processors," 2024 IEEE International Solid-State Circuits Conference (ISSCC), San

Francisco, CA, USA, 2024, pp. 40-42.

[9] Jani A. KIRIN 9000 IS HUAWEI'S FIRST 5NM CHIP[J].Microprocessor report, 2020(12):34.

[10] A. Naithani; S. Eyerman; L. Eeckhout. “Optimizing Soft Error Reliability Through Scheduling on

Heterogeneous Multicore Processors”. IEEE Transactions on Computers, 2018,67(6):830-846.

[11] T. -T. Kuo,Y.-C. Chen,Y.-S. Chien, et al. "A Comprehensive Negative Bias Temperature Instability

Model for Gallium-nitride Metal-insulator-semiconductor High Electron Mobility Transistors

From 77K to 393K," 2021 IEEE International Symposium on the Physical and Failure Analysis

of Integrated Circuits (IPFA), Singapore, Singapore, 2021, pp. 1-4,

[12] P. Dherbecourt, O.Latry, K.Dehais, et al. “Aging Power Transistors in Operational Conditions”.

Embedded Mechatronic System 2 (Second Edition) ,2020,pp23-49.

[13] P.Chowdhury, U. Guin. “Estimating Operational Age of an Integrated Circuit”. J Electron

Test 37, 25–40 (2021).

[14] J. Karlsson, P. Liden, P. Dahlgren, et al. “Using Heavy-ion Radiation to Validate Faulthandling

Mechanisms”. IEEE Micro, 1994:14(1): 8-23.

[15] X. Wang, K. Xu and Y. Xu. "Design of Airborne Bus Communication Platform based on Isomorphic

Dual Redundancy Channels," 2023 7th International Conference on Electrical, Mechanical and

Computer Engineering (ICEMCE), Xi'an, China, 2023, pp. 1-6.

[16] Z. Pan, Y. Hu and S. Zhu. "Fault Redundancy Active Removal Fault-tolerant Strategy for Triple-

redundancy PMSMs," 2023 IEEE 6th Student Conference on Electric Machines and Systems

(SCEMS), HuZhou, China, 2023, pp. 1-7.

[17] Y. Xiong, J. Zhou, L. Su, W. Wang, et,al., "ECCH: Erasure Coded Consistent Hashing for Distributed

Storage Systems," 2021 IEEE Intl Conf on Parallel & Distributed Processing with Applications,

Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing &

Networking (ISPA/BDCloud/SocialCom/SustainCom), New York City, NY, USA, 2021, pp. 177-

184.

[18] K. Liu, Y. Li and L. Ouyang, "Fast recoverable heterogeneous quad-core lockstep architecture," 2021

International Conference on Advanced Computing and Endogenous Security, Nanjing, China,

2022, pp. 1-6,

[19] A. Roy, H. Aydin, D.K. Zhu. “Energy-aware primary/backup scheduling of periodic real-time tasks

on heterogeneous multicore systems”,Sustainable Computing: Informatics and Systems,Vol. 29,

Part A,2021.

[20] M. Barbirotta, A. Cheikh, A. Mastrandrea,et,al. "A Fault Tolerant soft-core obtained from an

Interleaved-Multi- Threading RISC- V microprocessor design," 2021 IEEE International

Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), Athens,

Greece, 2021, pp. 1-4.

An optimized fault-tolerant scheduling algorithm based on grouping strategy for heterogeneous… 79

[21] D. A. Santos, P.M. Aviles, A.M. Mattos, et al. "Hybrid Hardening Approach for a Fault-Tolerant

RISC-V System-on-Chip," in IEEE Transactions on Nuclear Science, 27 May 2024.

[22] S. T. Ahmed, S. Hemaram and M. B. Tahoori."NN-ECC: Embedding Error Correction Codes in

Neural Network Weight Memories using Multi-task Learning," 2024 IEEE 42nd VLSI Test

Symposium (VTS), Tempe, AZ, USA, 2024, pp. 1-7,

[23] D. D. Sharma and S. Choudhary. "Pipelined and Partitionable Forward Error Correction and Cyclic

Redundancy Check Circuitry Implementation for PCI Express 6.0 and Compute Express Link

3.0," in IEEE Micro, vol. 44, no. 2, pp. 50-59, March-April 2024.

[24] A. M. Ahmed, A. Patel and M. Z. A. Khan, "Parity Check Coded Super-MAC for Reliability

Enhancements in Next-Generation Networks," 2024 16th International Conference on

COMmunication Systems & NETworkS (COMSNETS), Bengaluru, India, 2024, pp. 1116-1121.

[25] M. R. Alom, M. N. Shakib and M. A. Rahaman, "Enhanced Hamming Codes: Reducing Redundant

Bit for Efficient Error Detection and Correction," 2023 5th International Conference on

Sustainable Technologies for Industry 5.0 (STI), Dhaka, Bangladesh, 2023, pp. 1-6.

[26] Z.S.,Li , X.C.,Xu , W.W.,Hu, et,al. “Design of the Simultaneous Multi-threading Godson-2

Processor”. CHINESE Journal of computers,2009,32(11):2265-2273.

[27] K. -C. Hsu and H. -W. Tseng. "Simultaneous and Heterogenous Multithreading,"56th IEEE/ACM

International Symposium on Microarchitecture (MICRO), Toronto, ON, Canada, 2023, pp. 137-

152.

[28] Z. Zhang, T. Liu, Y. Shu, et,al. "Dynamic Adaptive Checkpoint Mechanism for Streaming

Applications Based on Reinforcement Learning," 2022 IEEE 28th International Conference on

Parallel and Distributed Systems (ICPADS), Nanjing, China, 2023, pp. 538-545,

[29] M. T. Rana, S. Chakraborty and M. V. Salapaka. "Causal Discovery in Electronic Circuits and Its

Application in Fault Diagnosis," 2023 62nd IEEE Conference on Decision and Control (CDC),

Singapore, Singapore, 2023, pp. 8223-8228.

[30] Benoit, M. Hakem and Y. Robert. "Multi-criteria Scheduling of Precedence Task Graphs on

Heterogeneous Platforms," in The Computer Journal, vol. 53, no. 6, pp. 772-785, July 2010

[31] Li, X. Tang, B. Veeravalli and K. Li. "Scheduling Precedence Constrained Stochastic Tasks on

Heterogeneous Cluster Systems," in IEEE Transactions on Computers, vol. 64, no. 1, pp. 191-

204, Jan. 2015.

[32] H. Lim, T. Kim, D. Lee, et al. “LARECD: Low area overhead and reliable error correction DMR

architecture”. 2017 International SoC Design Conference (ISOCC). Seoul, South Korea,2018,

pp.27-28.

[33] Z. Pan , Q. Zheng, Z. Zeng. “The Signal Integrity Design and Simulation of Triple Modular

Redundant (TMR) Computer. IEEE International Conference on Cybernetics and Intelligent

Systems (CIS) and IEEE Conference on Robotics", Auto-mation and Mechatronics (RAM),

Ningbo, China,2017, pp. 758-776.

[34] Y. Zhang, L. Zhao, C. Che, et al. "SpecFL: An Efficient Speculative Federated Learning System for

Tree-based Model Training," 2024 IEEE International Symposium on High-Performance

Computer Architecture (HPCA), Edinburgh, United Kingdom, 2024, pp. 817-831

[35] Z. Wang, H. Wang and J. Li. "A Speculative Parallel Optimization Method for Industrial Big Data

Algorithms," 2019 IEEE International Conference on Industrial Internet (ICII), Orlando, FL,

USA, 2019, pp. 417-422,

[36] Q. Li, D. Du, W. Cao, et al. "A Quality Evaluation Model for Approach in Initial Flight Training

Utilizing Flight Training Data," 2023 International Conference on Computer Applications

Technology (CCAT), Guiyang, China, 2023, pp. 36-40,

[37] H. Hashem Najaf-abadi, R. Eric. “Architectural Contesting”. IEEE 15th International Symposium

on High Performance Computer Architecture, Raleigh, NC, USA, 2009:189-200.

[38] J. Yi, Q. Zhang, T. Ye , et al. “Approx Map: On task allocation and scheduling for resilient

applications” , in Proceedings of the 21th Asia South Pacific Design Automation Conference

(ASP-DAC '16), Macau, China, Jan.25-28, 2016: 318-323.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8265082
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8265082
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=
http://ieeexplore.ieee.org/document/4798254/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4795428
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4795428

80 Shigan Yu, Bing Xiang, Yuliang Bian, Hui Liu

[39] Z. Du, B. Xia, F. Qiao, et al. "System-Level Evaluation of Video Processing System Using

SimpleScalar-Based Multicore Processor Simulator,"Tenth International Symposium on

Autonomous Decentralized Systems, 2011, pp. 256-259.

[40] X. Ren, Y. Tang, T. Tang, et al. "Sim-spm: A SimpleScalar-Based Simulator for Multi-level SPM

Memory Hierarchy Architecture," 2010 IEEE 12th International Conference on High Performance

Computing and Communications (HPCC), Melbourne, VIC, Australia, 2010, pp. 17-23

[41] T. Jiang, N. Wu, F. Zhou, et al. "Design of a High Performance Branch Predictor Based on Global

History Considering Hardware Cost," 2021 IEEE 4th International Conference on Electronics

Technology (ICET), Chengdu, China, 2021, pp. 422-426.

[42] J. Wang, J.-L. Sun, X.-Y. Wang, et al. “Efficient Scheduling Algorithm for Hard Real-Time Tasks in

Primary-backup Based Multiprocessor Systems”. Chinese Journal of Software, 2009,

20(10):2628–2636.

[43] S. K. S. Hari, T. Tsai, M. Stephenson, et al. “SASSIFI: an architecture-level fault injection tool for

GPU application resilience evaluation,” in 2017 IEEE International Symposium on Performance

Analysis of Systems and Software, ISPASS 2017, Santa Rosa, CA, USA, April 24-25, 2017, 2017,

pp. 249–258.

[44] B.S, Prabakaran,M. Dave,F. Kriebel, et al. “Architectural-Space Exploration of Heterogeneous

Reliability and Checkpointing Modes for Out-of-Order Superscalar Processors”. IEEE Access,

2019, PP(99):1-1

[45] D. H. Albonesi, "2015 International Symposium on Computer Architecture Influential Paper Award,"

in IEEE Micro, vol. 36, no. 6, pp. 60-61, Nov.-Dec. 2016.

[46] M. Ansari, M. Salehi, S. Safari, et al. "Peak-Power-Aware Primary-Backup Technique for Efficient

Fault-Tolerance in Multicore Embedded Systems," in IEEE Access, vol. 8, pp. 142843-142857,

2020.

[47] J. Xu, Y. Zhu, J. Ni, et al. “A Simulator for Multicore Processor Micro-architecture Featuring Inter-

core Communication”, Power and Thermal Behavior. International Conference on Embedded

Software and Systems Symposium, 2008:237–242.

[48] K. Ahmed, S. Tasnim and K. Yoshii. "Energy-Efficient Heterogeneous Computing of Parallel

Applications via Power Capping," 2020 International Conference on Computational Science and

Computational Intelligence (CSCI), Las Vegas, NV, USA, 2020, pp. 1237-1242.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4627112
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4627112

