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AN OPTIMIZED FAULT-TOLERANT SCHEDULING 
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As the circuit density continues to increase, the possibility of charged element 

radiation turnover increases, so that the probability of transient failure in the 

execution of the computer task increases, resulting in unexpected errors in the 

operation results. Traditional Three Mode Redundancy (TMR) is the main method to 

solve the transient fault of the processor, which is characterized by low efficiency and 

high power consumption, this paper proposes a Fault Tolerant scheduling algorithm 

with High-performance and Low-power consumption for Heterogeneous multi-core 

processors based on Grouping strategy (FTHLHG) while ensuring system reliability. 

According to the task attributes, the Directed Acyclic Graph (DAG) task model is 

established to determine the priority, and the tasks are divided into two groups 

with/without fault tolerant requirements. For the tasks requiring fault tolerance, this 

paper proposes the Fault Tolerant Scheduling Algorithm based on the Speculation 

(FTSAS). For the tasks that do not require fault tolerance, this paper proposes the 

Competition Scheduling Algorithm (CSA). Simulation experiments show that the 

average performance of FTHLHG is 16.9% higher than that of the traditional fault 

tolerant method when executing test cases before injecting errors. When injected 200, 

2000 and 6000 errors respectively, FTHLHG's fault tolerance was similar to that of 

the most advanced methods, but the average performance of the FTHLHG algorithm 

was improved by 11.7% and the average power consumption was reduced by 21.1%. 

Keywords: Fault Tolerant; Grouping; Heterogeneous multicore; Processors; 

Simulation 

1. Introduction 

In recent years, the rapid development of society has put forward more urgent 

requirements for high-performance computers, and high-performance computers 

depend on high-performance processors. In the past, high-performance processors 

relied on highly integrated transistors on a single chip, which has entered the limits 

of development. Now, they have turned to single-chip&multi-core processors, and 

the number of high-integration transistors has increased exponentially [1]. Multi-

core chips have become the mainstream of processors, which is another way Moore's 

law continues. For a long time, homogeneous multi-core has always been the main 

architecture of processors, but in practice, the homogeneous big-core processor 
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leads to low execution efficiency for threads with low priority and complexity, and 

homogeneous small-core processor will cause the decrease of throughput of the 

single thread execution [2,3], so either homogeneous big-core or small-core will 

cause low execution efficiency of program, which is not conducive to optimization 

of overall throughput and power consumption[4]. Heterogeneous multi-core 

processors (HMP) is composed of a single core with different performance. 

According to the characteristics of different cores, it can be dynamically adjusted 

for different applications to further optimize system performance and reduce power 

consumption. Therefore, the application range is gradually promoted, for example, 

ARM's big.LITTLE [5], NVidia's Tegra [6], Intel's QuickIA [7,8] and Huawei’s 

Kirin-9000[9] are all the HMP. 

On the other hand, the density of the circuit increases and the gate charge 

decreases in critical of the transistor, which raises the probability of radiation flip of 

electrically charged components [10]. BTI (Bias Temperature Instability) [11], HCI 

(Hot Carrier Injection) [12], and other integrated circuit aging [13] can induce the 

increase of the processor's transient fault which is the main reason for the 70-80% 

processor failure [14]. Therefore, both homogeneous and heterogeneous multi-core 

processors need to be improved reliability and it is important to make the system 

fault tolerance especially for the key tasks at important nodes, and to ensure that the 

system can produce correct results even when errors occur in the execution. 

Compared with the study on the reliability of homogeneous multi-core, there is less 

research on the reliability of HMP. This paper is to carry out research on fault-

tolerant scheduling for HMP. A fault-tolerant system must be redundant, and the 

system’s reliability can be improved by redundant modules. 

The traditional method usually uses the TMR method to solve the transient 

fault of the processor. After all the three modules have completed the task, the 

majority rule is adopted. When the two modules are consistent, the wrong result of 

the inconsistent module is shielded, and the wrong module is synchronized to the 

correct state. After that, the entire TMR system starts to execute the next task from 

the same state simultaneously. This homogeneous TMR mainly adopts the spatial 

redundancy for the reliability of processor system. Each task is executed three times 

on a homogeneous system with three modules, which features low efficiency and 

high power consumption and are unable to make full use of the characteristic of the 

diversity of tasks. Because different cores have different properties, HMP have 

different high efficiency when processing different tasks.  

In order to take full advantage of the characteristics of each core, this paper 

proposes a fault-tolerant scheduling method based on grouping strategy for HMP, 

which can improve the system reliability and realize high-performance and low-

power scheduling at the same time. The contributions of this paper are summarized 

as follows. 
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(1) The shortcomings of existing TMR are analyzed in detail, and an optimal 

scheduling method FTSAS based on speculation mechanism is proposed. 

(2) On the basis of studying the different properties of heterogeneous 

multicore and the existing tasks to be processed, a high performance HMP 

scheduling method CSA based on competition mechanism is proposed. 

(3) According to the different characteristics of the tasks to be processed, a 

high performance HMP fault-tolerant scheduling method FTHLHG based on 

grouping strategy is proposed.  

(4) The proposed FTHLHG method and other fault-tolerant methods are 

evaluated, and the experimental results show that FTHLHG can achieve higher 

performance and lower power consumption while ensuring reliability. 

The rest of this paper is organized as follows. Section 2 reviews the related 

works. Section 3 introduces the System model. The System working mechanism is 

presented in Section 4. Section 5 describes the system scheduling implementation. 

Section 6 evaluates the proposed method. Section 7 concludes the paper and plans 

the future work. 

2. Related works   

In order to improve the reliability of the system, fault-tolerant technology 

has been valued in different degrees and forms in the development of computers, 

which causes academia and industry to invest the important energy in this aspect of 

research. Traditional fault-tolerant technologies have redundant methods such as 

DMR(Dual Mode Redundancy) [15], TMR [16], Multi-version technology [17], 

LOCKSTEP [18], PB(Primary and Backup version) [19], SMT (Simultaneous 

Multi-threading) [20], checkpoint technology [21] and other Redundancy Check 

fault tolerance such as ECC (Error Correcting Code) [22], CRC (Cyclic 

Redundancy Check)[23], PCC(Parity Check Code) [24], HC(Hamming Code) [25]. 

Among these fault-tolerant methods, TMR has been used much longer and more 

widely, which has the effect of error detection and fault tolerance, but TMR method 

can correct only one error at a time. DMR can only detect errors without fault-

tolerant ability, and NMR (N>3) can correct multiple errors at a time. Multi-version 

technology mainly focuses on using multiple versions of a part of software to realize 

fault tolerance. LOCKSTEP technology processes the same instructions by the 

redundant hardware at the same time and is realized by the method of redundant 

hardware to execute tasks repeatedly, which can keep multiple CPUs and memory 

exactly synchronized and execute the same instructions within the correct clock 

cycle. PB fault-tolerant technology means a task contains a primary version and a 

backup version which can work in the active mode, passive mode, and overlapping 

mode and the system schedules the primary version and the backup version to 

different processors. The result of the backup version will be adopted as the final 
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output when there are errors during the execution of the primary version. During 

the specific execution, tasks need to be divided first and a detection module needs 

to be added to judge results, which increases the scheduling overhead. SMT fault-

tolerant technology is a chip multiprocessor technology that assigns each task to 

each independent thread, and has a separate pipeline [26,27]. It is a fine-grained 

fault-tolerant technology to realize fault tolerance by comparing the results of each 

thread. Checkpoint fault-tolerant technology saves the system in a different state as 

checkpoints during the different implementation stages. When an error occurs, the 

system rolls back to the previous checkpoint and re-executes the tasks from the 

checkpoint that is mainly used in the processing faults of fail-stop [28]. This method 

requires the setting of system checkpoints at irregular intervals, which causes 

inefficient in execution. The redundancy check bit is mainly used for error detection 

and error correction of data.  

3. Models 

3.1  System definition 

Definition 1, Reliability R(t): It refers to the probability that a complete 

system performs the expected function within a time range [0,t] in a running state. 

When a system with M modules, there are errors in E(t) modules at the end of the 

time range of [0, t], the other modules produces the desired results, the system 

unreliability UR(t) and reliability of R(t) can be calculated in accordance with the 

following definition(1) and (2).  
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Definition 2, Failure Rate Z(t): It refers to the ratio between the number of 

the wrong module and normal module within the time range of [0, t]. For a module, 

Z(t) represents the failure probability within the working time range [0, t]. 

According to the actual statistics, the relationship between the failure rate Z(t) and 

time t are shown in Fig. 1.  
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Fig 1. Relationship between module failure efficiency and time. 

Fig. 1 can be divided into three phases, among which the first and the third 

section of the failure rate is higher, the second section of the failure rate is stable 

and lower. Therefore, the working time of the system should be set in the process 

of the second stage, which can improve the reliability of the system, reduce 

uncontrollable factors, and make the system work within our expected range. In the 

second stage Z(t)= λ is usually given. It is generally assumed that the Mean time 

Between Failures of the system is MTBF.  and λ is 1/MTBF, which is usually x*10-

6/hour. 

The relationship between the system reliability and the module's failure rate 

proved to be exponential as equation (3), the reliability of the system can be obtained 

from formula (4), which provides a basis for further design. 
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Definition 3: In heterogeneous multi-core systems, the task can be defined as 

the DAG model. As a research object, it is a common method for researchers [29]. 

This paper defined DAG task model as Γ=(M, V, E , A , T , W). 

M={m0, m1, m2, ..., mi} represents the set of core, mi represents i-th core in 

the system. 

V={v0, v1, ..., vn} represents the set of nodes in Γ, each node viΓ represents 

a task. The pre(vi) represents the immediate predecessor of the current task vi. 

Succ(vi) represents the immediate successor to the current task vi. The first task with 

no pre(vi) is defined as ventry, and the last task with no succ(vi) is defined as vexit. 

E={ei,j} represents the set of edges, ei,jΓ means the WCRT (worst case 

response time) between vi and vj if they are not assigned to the same core and the ei,j 

is 0 if they are assigned to the same core. All the ei,j are known during the analysis 

and design phase.   

A={a0, a1, ..., an} indicates whether the task has fault-tolerant properties, 

ai={0,1}, where ai=1 indicates that the task is resilient task, which does not need fault 
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tolerance, and ai=0 indicates that the task is sensitive to errors, which requires fault 

tolerance to improve reliability. 

T= {t0, t1, ..., tn} is the set of reliability thresholds, ti represents the reliability 

threshold of each task. 

W={wj,k} represents the WCET (worst execution time) of vj running on corek. 

Each viΓ has different WCET values on different processors due to heterogeneity 

of cores. All the wj,k are known during analysis and design phase. 

The system task flow based on DAG is shown in Fig. 2. When executing tasks, 

the system need to sort the DAG task nodes by descending order method [30,31], 

and the calculation method is shown in formula 5 and 6. 

                      exitexit cv =)(sort                                      (5) 
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Where cexit and ci represent the time at which the tail tasks node and the i-th 

task  node are executed by the core, respectively, and vj is the successor of task vi.  

 

Fig 2. the task flow graph 

3.2  System Reliability 

λmi represents the failure rate of the core mi, The reliability R(vi , mj) that 

the i-th task is executed on the j-th processor can be calculated according to formula 

(7)[32,33]. If R(vi, mj) is greater than the current node reliability threshold ti, it 

indicates that the execution result of the task is satisfactory. The first node is called 

Ventry, whose reliability is calculated by the formula (8). The system reliability can 

be calculated according to formula (9) when the i-th node is executed. If R(Γi) is 

higher than expectation of reliability, it shows that the system reliability is 

satisfactory until the current node.  
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4. Methods 

4.1 Traditional TMR mechanism 

The fault-tolerant architecture of the traditional TMR is shown in Fig. 3, 

which consists of three redundant modules, U1, U2, U3, and a Voter. The task Ti is 

input into three modules, U1, U2 and U3 at the same time. After the three modules 

have completed the tasks, the results of the execution are sent to the Voter 

respectively.  

 

Fig 3.  The basic structure of TMR 

After the Voter receiving all three results, the majority rule is used to 

determine the output. When the three results are identical, Voter outputs Ri directly; 

When both are consistent in three modules, the inconsistent result is shielded and 

the system outputs the result of consistent modules. In this way, when an error 

occurs in system execution, the result of the system is free from interference by the 

wrong module and the fault-tolerant function can be realized.  

Since it is a small probability event that the error occurs in two or three 

modules at the same time, thus, the output of TMR can be defined by logical 

expression Result_i= R1R2||R2R3||R1R3, which is a majority voting function. If 

only one error occurs in R1, R2, or R3, the output Result_i is right. The traditional 

TMR is shown in algorithm 1. 

Algorithm 1:  Traditional TMR Algorithm (TMR) 

Input:  every task Ti 

Output: result_i of every task Ti 

1.If the current task Ti is not a new one, it is finished,  

2. Input the current task to each module at the same time; 

3. Each module processes the current task Ti separately  
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4.  outputs the execution results R1, R2, and R3 to Voter at the same time. 

5. If both or three among R1,R2, and R3 are consistent, the voter output results. 

6. If R1, R2 and R3 are different, the current task is given as a new task attribute,  

  goto Step1 to continue. 

4.2  Speculation working mechanism 

Speculation technique has made important contributions to the 

parallelization of serial processor tasks so as to improve the execution efficiency of 

serial tasks and has become an important technology in the micro-architecture of 

multi-core processors. In addition, speculation techniques are also widely used in 

network communication [34], performance optimization of big data [35], and 

aviation trajectory judgment [36]. Generally speaking, speculation technology has 

developed rapidly in recent years, but it is rarely involved in the field of fault 

tolerance.  

When solving the transient fault of the processor, TMR features low 

efficiency and high power consumption, which is mainly due to the fact that all 

three cores are always working at the same time. After each core has executed tasks, 

the voting module selects the correct result to output, and then all three cores start 

to implement the next stage of the task.  

Due to differences in the architecture and properties, the faster core in HMP 

will wait for the backward core until the completion of the backward core when the 

system adopts TMR fault tolerance mechanism.  

In order to take advantage of the characteristics of HMP and ensure system 

reliability to meet the requirements, a fault-tolerant scheduling algorithm with high 

performance and low power consumption based on the speculation mechanism is 

proposed. 

Firstly, according to the DAG model, the program to be executed is divided 

into an ordered task sequence T1,T2, ...,Tn ,whose priority is determined by formulas 

(5) and (6). At the beginning of the program, the same task Ti (0≤i≤n) was assigned 

to the three cores, and they started to execute the task Ti at the same time. Since 

each core has a different execution speed, the result of the fastest core C1 is 

temporarily saved, denoted as R1 and assigned the next task Ti+1 to core C1 to 

continue, then the system saves the result of the second completed core C2 as R2 

and assigns the next task Ti+1 to core C2 to continue. If R1 is equal to R2, the slowest 

core C3 is immediately terminated, and it is synchronized to R2’s state, otherwise, 

the system waits for the result R3 of the slowest core. If R3 is equal to R1, the value 

of R1 is submitted, and core C2 is withdrawn and Ti+1 is executed by core C2 and 

core C3 simultaneously. If R3 is equal to R2, the value of R2 is submitted, core C1 

is withdrawn and the next task Ti+1 is performed by core C1 and core C3 

simultaneously. If R1, R2, and R3 are not equal with each other, then the core C1 

is withdrawn so that the three cores re-execute the task Ti simultaneously (this is a 
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small probability event). If the system still don't get the right result from the three 

core by the next time, the processor hardware may fail and need to be overhauled 

until all tasks are completed. The above implementation is shown in algorithm 2. 

Algorithm 2: FTSAS (Fault-Tolerant Scheduling Algorithm with Speculative 
method) 
Input:  task flow Ti 
Output: the result of task flow 
1.Initialize the reliability of task and reliability threshold of the cores, respectively ; 
2.Check the reliability of each core, replace the core if it fails to meet reliability 
threshold; 
3.Set several fixed time Pj to save temporary results for synchronizing; 
4.Assign every task Ti to each core and they start to execute the task Ti; 
5.Record the result of the fastest core as C1 at Pj, save the result of C1 as R1, and 
C1 continues to execute Ti+1 speculatively without waiting for the backward core. 
6.Record result of the second core C2 at Pj, save the result of C2 as R2, and C2 
continues to execute Ti+1 speculatively without waiting for the slowest core. 
7.If R1==R2, then Interrupt the slowest core C3 immediately and synchronize C3 
to the state of C2 and start to execute task Ti+1 at Pj ; 
8.   else Record C3’s result as R3 when C3 executes Ti to time Pj; 
9.       If R3==R1, then synchronize C2 to C3 and perform the next task Ti+1 
simultaneously.  
10.     If R3==R2, then synchronize C1 to C3 and they execute the next task Ti+1  
simultaneously. 
11.         else C1 and C2 will be withdrawn and  re-execute the current task Ti, and 
then go to Step5; 
12. If all the tasks in the task flow have been completed, then Output the final result; 
13.   else go to step5. 

4.3  Competition mechanism 

The system architecture of HMP using a competition mechanism [37] is 

shown in Fig. 4, where three cores are selected for the convenience of introducing 

the mechanism of TMR in this system. The competition mechanism proposed in 

this paper for HMP’s system is shown in Fig. 5.  

Due to the different tasks, the speed of each core will be different at the end 

of each time Pj, the system chooses the result of the fastest core as a standard and 

synchronizes the backward cores, which improves the disadvantage that the fastest 

core needs to wait for the backward cores. 
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Fig 4.  HMP’s architecture 

 

Fig 5.  Competition mechanism between cores 

When the system executes the current task Ti to the time Pj as it needs to 

synchronize, the state of each core is shown in Fig. 5. Every core has a different 

speed and the core C executes the task Ti fastest if the core C matches the current 

task, and then the core C stores the results in the relevant registers or storage cells, 

and the laggard cores discard the unfinished tasks and accept the results of core C. 

Then, the system uses the status of core C as the starting stage of the next task Ti+1, 

instead of waiting for the completion of the slower A and B so that three cores can 

start to work from the same state at the beginning of the next phase, which can take 

advantage of different cores, and the core matching the task will lead again and then 

the leader core synchronizes the laggard until the program is completed. Therefore, 

the overall performance of the system can be improved obviously. In addition, the 

laggard core accepts the result of the fastest core and terminates the unfinished task 

directly, the power consumption of the system can be reduced to a certain extent. 
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The implementation algorithm of the competition mechanism is shown in 

Algorithm 3.  

Algorithm 3:   CSA(Competition Scheduling Algorithm) 

Input: task Ti 

Output: result of Ti, Result_i. 

1. Set synchronization time Pj; 

2. System begins to execute Ti; 

3. If the system reaches time Pj, save the results of each core individually; 

4.     Select result of the fastest core as Result_i and terminates the unfinished task;  

5.     Synchronize laggard cores to the state of fastest core;  

6. Else each core continue to execute the current task until time Pj, and go to step3; 

 

5. Implementation 

5.1  System hypothesis 

It is assumed that no more than one error is allowed to occur in three cores 

when each task Ti is executed. Each core can execute tasks independently and can 

communicate with each other. Each core can broadcast the results to other cores via 

the bus, and can receive the results of other cores at each time period. If there are 

more than three cores, the system can be set to select three of them to perform tasks. 

5.2   System scheduling mechanism 

In today's computer system applications, there are two types of tasks 

including flexible tasks with ability of fault tolerance and sensitive tasks without 

ability of fault tolerance. A flexible task of an application is the one in which some 

calculations are not executed with 100% accuracy and the final output is still 

acceptable. Such applications exist in many fields, such as digital signal processing, 

image, audio and video processing, wireless transmission, web search, data analysis 

[38], etc. Therefore, no additional fault tolerance measures are required for these 

applications. However, there are some fault-sensitive control flow tasks. Serious 

errors may occur if fault-tolerant method is not adopted in the execution. The 

execution of the entire application will be wrong and even cause system crash. 

Therefore, a new fault-tolerant scheduling algorithm is proposed in this paper to 

improve the system execution efficiency while ensuring the system features high 

reliability and lower power consumption.  

First of all, the reliability R(t) of the core detected by formula 4 should be 

higher than the threshold, or the new core should be replaced. Then, the system 

executes the task without fault-tolerant requirements by the algorithm CSA. At the 

end of each fixed detection time Pj, the result of the fastest core is used as the output. 

The system will execute the task again by the Algorithm FTSAS if the result fails 

to meet the reliability requirements. For sensitive tasks with fault-tolerant 

requirements, the algorithm FTSAS is used to execute the task directly, which not 



70                                          Shigan Yu, Bing Xiang, Yuliang Bian, Hui Liu 

only achieves the goal of reliability requirements, but also makes full use of the 

characteristics of HMP to improve performance and reduce power consumption. 

Combined with the speculative mechanism and the competition mechanism, the 

FTHLHG ( Fault-Tolerant scheduling algorithm with High performance and Low 

power consumption for Heterogeneous multi-core processor based on Grouping 

strategy) is proposed in Fig. 6: 

 

 
Fig 6. System execution flow 

 



An optimized fault-tolerant scheduling algorithm based on grouping strategy for heterogeneous… 71 

And implementation is shown in algorithm 4.  

Algorithm 4: FTHLHG (Fault-Tolerant scheduling algorithm with High 

performance and Low power consumption for Heterogeneous multi-core processor 

based on Grouping strategy) 

Input: Task flow vi 

Output: The result of each task vi 

1.Initialize reliability threshold of tasks and each core; 

2. Check the reliability of each core, replace the core if it fails to meet reliability 

threshold; 

3. Divide the current task into task flow (v0,v1, ..., vn), including sensitive tasks and 

flexible tasks; 

4. Set DAG-based task flow sequence by formula 5 and 6; 

5. Execute task flow vi; 

6. If vi is a sensitive task, system execute vi by FTSAS, record the result as Result_i; 

7. If vi is a flexible task,  system execute vi by CSA, record the result as Result_i; 

8.    If Result_i fail to meet reliability threshold according to formulas 9 , re-execute 

the task vi by FTSAS and save the result as Result_i; 

9.     Synchronize the result Result_i to the other two cores as the initial state for 

next task Ti+1 and output Result_i; 

10.    If the task flow does not end, then go to Step5 to continue; 

11.      else, output the final result; 

 

6. Experimental results 

6.1  Experimental setup 

Heterogeneous processor simulation platform is a real simulation of 

computer with a very close execution effect, which is a common approach to study 

the properties of processors. Therefore, this paper adopts heterogeneous multi-

core simulator platform to execute each test case to realize the verification of the 

optimization algorithm. 

The Simplescalar simulator designed by Intel is open source and an important 

simulator for high-performance processor architecture[39,40]. It features 

simulation function including executing drive, explanation execution, assembly 

line and instructions with out-of-order execution, system compiler, system test, 

and supports a variety of instruction sets such as PISA, ARM, X86, etc. Therefore, 

the HMP consisting of PISA, ARM1 and ARM2(same instruction set, different 

performance configurations) was selected to build the experimental platform 

based on the Simplescalar simulator, as shown in Fig. 7. 

The simulator of HMP is configured in the experimental environment as 

shown in Table 1[41]. Using System C as a development tool, C++ adds class 

library, introduces concurrency, timing events and hardware data types, simulates 
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the core, defines hardware and software components, and models the hardware. 

The core communicates and realizes synchronization with each other through 

shared storage units, and SimOutorder is adopted for functional simulation. 

  

 

Fig 7. Architecture of HMP 

Table 1.   

Configuration table of HMP 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Test cases consisting of SPEC2000, matrix multiplication, and sorting 

algorithms were selected for system testing, in which SPEC2000 was selected as 

an integer (denoted as SPEC2000_int) to test and take the average value; the scale 

of matrix multiplication was 64*64(denoted as MM64), and sorting algorithm was 

Core Type PISA ARM1 ARM2 

Fetch/Issue/commit 4/4/4 4/2/2 

ROB/LSQ Entries 128/64 64/32 

Int/Fp units 4/4 2/3 

RUU Size 16 

Pipeline width 5 

FUs 
3 int add,  1 int mult,  1 int div, 

1 fp add,  1 fp mult ,  1 fp div 

ITLB 
16-way, 4096 byte page, 4-way LRU 

30 cycle miss penalty 

DTLB 
32-way, 4096 byte page, 4-way LRU 

30 cycle miss penalty 

Branch Prediction 
Gshare: 9, pht:4096, BTB:512, 2-way group-

mapped, Random 

L1 Icache 64KB, 2-way group-mapped, Random 

L1 Dcache 64KB, 2-way group-mapped, Random 
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used to sort 600 numbers (denoted as SORT600). 

TPFTRM[42], which has the highest scheduling performance among PB 

fault tolerant methods at present, is adopted. After the execution time of each test 

case is standardized, the execution time of TMR, DMR and PB methods is 

compared with the proposed algorithm, and the efficiency of the same test case 

under different methods is obtained. 

As FTSAS method has a fault-tolerant function, and the individual CSA 

method does not have fault-tolerant ability, the fault-tolerant experiment of 

FTSAS based on the speculative mechanism, and FTHLHG based on the grouping 

strategy were completed respectively. By comparing the performance and power 

consumption of existing fault-tolerant algorithms, the FTHLHG algorithm can be 

found to have prominent advantages. 

6.2   Results and performance analysis 

Fig. 8 shows the performance difference between the fault-tolerant 

algorithm of FTHLHG proposed in this paper and the fault-tolerant algorithm of 

TMR, DMR, PB and FTSAS. When executing the test cases of SPEC2000_int, 

MM64 and SORT600, the average performance of the FTHLHG algorithm was 

16.9% higher than that of TMR, DMR, PB and FTSAS. Compared with other 

algorithms, FTHLHG yields the highest optimization performance than traditional 

TMR, especially when SPEC2000_int is executed, the performance of FTHLHG 

is improved to 27.2%. Because TMR needs to wait until all three modules have 

completed the task comparison before the next task can be performed, which 

reduces the performance of TMR algorithm. 

Fig 8. performance comparison between FTHLHG and other algorithms before injecting errors 
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Compared with other test cases, FTHLHG has a higher performance when 

executing SPEC2000_int. SPEC2000_int contains a variety of integer tasks, which 

makes it easier to give play to the characteristics of HMP, highlighting the 

advantages of grouping competitive calls. The core can execute the task faster when 

the attribute of a task matches the core’s characteristics. Since each task’s type is 

similar, the advantage of the FTHLHG method is diminishing when executing the 

MM64 and SORT600. This shows that the proposed algorithm FTHLHG is more 

suitable for the diversity of tasks and can make full use of HMP to improve the 

system execution efficiency. 

In order to truly simulate the environment in which the error occurred in the 

system, the method of data modification in the storage space with a certain 

probability of simulating the transient fault of the processor is adopted[43,44]. After 

200, 2000, and 6000 errors were injected, SPEC2000_int, MM64 and SORT600 

were executed to compare the performance of various fault-tolerant algorithm 

scheduling, respectively. It can be found that DMR can only detect errors but cannot 

correct errors by experiments. Therefore, the performance of FTHLHG scheduling 

is compared with that of TMR, PB and FTSAS scheduling. The reliability of TMR, 

PB and FTSAS can be obtained after error injection.  

As it can be seen from Fig. 9, the reliability of TMR, PB, FTSAS and 

FTHLHG is higher than the preset goal and these algorithms have similar fault-

tolerant ability.  

As shown in Fig. 10-12, it is found that the average performance of 

FTHLHG is improved by 11.7% compared with that of TMR, PB and FTSAS, when 

SPEC2000_int, MM64 and SORT600 are executed after injecting 200, 2000, and 

6000 errors. 

 
Fig 9. Reliability comparison of different fault-tolerant algorithms 
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Fig 10. After injecting a different number of errors, performance comparison of fault-tolerant 

algorithms when executing test case SPEC_2000 

 
Fig 11. After injecting a different number of errors, performance comparison of fault-tolerant 

algorithms when executing test case MM64 

 
Fig 12. After injecting a different number of errors, performance comparison of fault-tolerant 

algorithms when executing test case SORT600 
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It can be found that the advantage of FTHLHG is reducing with the increase 

of injection error. More errors weakened the role of competition mechanism and 

the number of tasks requiring speculative scheduling is increasing, especially when 

6000 errors are injected, the average performance of FTHLHG is reduced to 6.5%, 

which is very rare in practical application. If so many errors occur during system 

execution, there must be a failure in the hardware module, which needs to be 

checked and replaced with the right core module. 

6.3  Power consumption analysis 

In order to better display the performance advantages of FTHLHG, it is 

necessary to analyze the power consumption of FTHLHG, TMR, PB and FTSAS 

in the same system environment. Wattch [45,46] is used to analyze the power 

consumption on the basis of Simplescalar, and the power consumption of FTHLHG, 

TMR, PB and FTSAS is calculated by modifying the Simplescalar simulator in 

combination method of J.Xu [47] and Ahmed [48]. As the number of injection 

errors increases, fewer tasks need to be competitive scheduling during the execution 

of FTHLHG, so the corresponding power consumption is increasing and the power 

consumption advantage of FTHLHG is weakening.  

As shown in Fig. 13, when 200 errors are injected, the average power 

consumption of FTHLHG is 21.1% lower than that of TMR, PB and FTSAS, 

respectively. When 6000 errors are injected, the average power advantage of 

FTHLHG decreases to 10.8%. 

 
Fig 13.  Power consumption relationship of the three algorithms after injecting error 

However, 6000 errors occur in the system is a small probability event during 

system execution, therefore, the FTHLHG algorithm not only improves the 

performance, but also reduces the total power of the system, which fully shows the 

performance and power advantage of FTHLHG.  
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7. Conclusion and future work 

As the density of the integrated circuit increases and the critical gate charge 

of the transistor decreases, the probability of radiative flip of the charged element 

increases, which leads to the increase of the transient fault probability of the 

computer during the execution of the task, causing unexpected errors. In order to 

ensure the reliable and efficient execution of the task of the system, the existing 

fault-tolerant scheduling method needs to be optimized. This paper is to carry out 

research work under such background. HMP is an important component of high 

performance computer. HMP shows different performance when executing 

different tasks, the execution speed of matched tasks is accelerated, and the 

execution speed of unmatched tasks is slowed down. Therefore, this paper proposes 

a fault-tolerant scheduling algorithm for HMP based on Grouping strategy. The 

tasks to be executed are divided into fault-tolerant requirements and fault-tolerant 

requirements. FTSAS method and CSA method are used for scheduling, 

respectively. Simulation results show that FTHLHG has better performance and 

lower power consumption than the existing fault-tolerant algorithms. 

The background of this paper is to improve the performance of single-

threaded execution and reduce the overall power consumption of the system while 

ensuring the system’s reliability under the von neumann architecture. According to 

Amdahl theorem, the parallel execution acceleration of the program depends on the 

performance of the serial application. This approach can be extended to parallel 

computing and high reliability and high-performance system fault tolerance, such 

as distributed systems and cloud computing fault tolerance.  

In future studies, the characteristics of different core architectures and 

different tasks will be further analyzed, and tasks will be grouped and assigned to 

the matched core, so as to further improve system reliability and execution 

efficiency and reduce power consumption. 
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