U.P.B. Sci. Bull., Series C, Vol. 86, Iss. 4, 2024 ISSN 2286-3540

AN OPTIMIZED FAULT-TOLERANT SCHEDULING
ALGORITHM BASED ON GROUPING STRATEGY FOR
HETEROGENEOUS MULTI-CORE PROCESSORS

Shigan YU'?, Bing XIANG?, Yuliang BIAN?, Hui LIUY"

As the circuit density continues to increase, the possibility of charged element
radiation turnover increases, so that the probability of transient failure in the
execution of the computer task increases, resulting in unexpected errors in the
operation results. Traditional Three Mode Redundancy (TMR) is the main method to
solve the transient fault of the processor, which is characterized by low efficiency and
high power consumption, this paper proposes a Fault Tolerant scheduling algorithm
with High-performance and Low-power consumption for Heterogeneous multi-core
processors based on Grouping strategy (FTHLHG) while ensuring system reliability.
According to the task attributes, the Directed Acyclic Graph (DAG) task model is
established to determine the priority, and the tasks are divided into two groups
with/without fault tolerant requirements. For the tasks requiring fault tolerance, this
paper proposes the Fault Tolerant Scheduling Algorithm based on the Speculation
(FTSAS). For the tasks that do not require fault tolerance, this paper proposes the
Competition Scheduling Algorithm (CSA). Simulation experiments show that the
average performance of FTHLHG is 16.9% higher than that of the traditional fault
tolerant method when executing test cases before injecting errors. When injected 200,
2000 and 6000 errors respectively, FTHLHG's fault tolerance was similar to that of
the most advanced methods, but the average performance of the FTHLHG algorithm
was improved by 11.7% and the average power consumption was reduced by 21.1%.

Keywords: Fault Tolerant; Grouping; Heterogeneous multicore; Processors;
Simulation

1. Introduction

In recent years, the rapid development of society has put forward more urgent
requirements for high-performance computers, and high-performance computers
depend on high-performance processors. In the past, high-performance processors
relied on highly integrated transistors on a single chip, which has entered the limits
of development. Now, they have turned to single-chip&multi-core processors, and
the number of high-integration transistors has increased exponentially [1]. Multi-
core chips have become the mainstream of processors, which is another way Moore's
law continues. For a long time, homogeneous multi-core has always been the main
architecture of processors, but in practice, the homogeneous big-core processor

1 School of Information Engineering, Fuyang Normal University, Fuyang 236041, Anhui, China
2 School of Computer and Information Engineering, Fuyang Normal University, Fuyang 236041,
Anhui, China
*Corresponding author: Hui Liu, E-mail: liuhuiyeah@yeah.net

60 Shigan Yu, Bing Xiang, Yuliang Bian, Hui Liu

leads to low execution efficiency for threads with low priority and complexity, and
homogeneous small-core processor will cause the decrease of throughput of the
single thread execution [2,3], so either homogeneous big-core or small-core will
cause low execution efficiency of program, which is not conducive to optimization
of overall throughput and power consumption[4]. Heterogeneous multi-core
processors (HMP) is composed of a single core with different performance.
According to the characteristics of different cores, it can be dynamically adjusted
for different applications to further optimize system performance and reduce power
consumption. Therefore, the application range is gradually promoted, for example,
ARM's big.LITTLE [5], NVidia's Tegra [6], Intel's QuickIA [7,8] and Huawei’s
Kirin-9000[9] are all the HMP.

On the other hand, the density of the circuit increases and the gate charge
decreases in critical of the transistor, which raises the probability of radiation flip of
electrically charged components [10]. BTI (Bias Temperature Instability) [11], HCI
(Hot Carrier Injection) [12], and other integrated circuit aging [13] can induce the
increase of the processor's transient fault which is the main reason for the 70-80%
processor failure [14]. Therefore, both homogeneous and heterogeneous multi-core
processors need to be improved reliability and it is important to make the system
fault tolerance especially for the key tasks at important nodes, and to ensure that the
system can produce correct results even when errors occur in the execution.
Compared with the study on the reliability of homogeneous multi-core, there is less
research on the reliability of HMP. This paper is to carry out research on fault-
tolerant scheduling for HMP. A fault-tolerant system must be redundant, and the
system’s reliability can be improved by redundant modules.

The traditional method usually uses the TMR method to solve the transient
fault of the processor. After all the three modules have completed the task, the
majority rule is adopted. When the two modules are consistent, the wrong result of
the inconsistent module is shielded, and the wrong module is synchronized to the
correct state. After that, the entire TMR system starts to execute the next task from
the same state simultaneously. This homogeneous TMR mainly adopts the spatial
redundancy for the reliability of processor system. Each task is executed three times
on a homogeneous system with three modules, which features low efficiency and
high power consumption and are unable to make full use of the characteristic of the
diversity of tasks. Because different cores have different properties, HMP have
different high efficiency when processing different tasks.

In order to take full advantage of the characteristics of each core, this paper
proposes a fault-tolerant scheduling method based on grouping strategy for HMP,
which can improve the system reliability and realize high-performance and low-
power scheduling at the same time. The contributions of this paper are summarized
as follows.

An optimized fault-tolerant scheduling algorithm based on grouping strategy for heterogeneous... 61

(1) The shortcomings of existing TMR are analyzed in detail, and an optimal
scheduling method FTSAS based on speculation mechanism is proposed.

(2) On the basis of studying the different properties of heterogeneous
multicore and the existing tasks to be processed, a high performance HMP
scheduling method CSA based on competition mechanism is proposed.

(3) According to the different characteristics of the tasks to be processed, a
high performance HMP fault-tolerant scheduling method FTHLHG based on
grouping strategy is proposed.

(4) The proposed FTHLHG method and other fault-tolerant methods are
evaluated, and the experimental results show that FTHLHG can achieve higher
performance and lower power consumption while ensuring reliability.

The rest of this paper is organized as follows. Section 2 reviews the related
works. Section 3 introduces the System model. The System working mechanism is
presented in Section 4. Section 5 describes the system scheduling implementation.
Section 6 evaluates the proposed method. Section 7 concludes the paper and plans
the future work.

2. Related works

In order to improve the reliability of the system, fault-tolerant technology
has been valued in different degrees and forms in the development of computers,
which causes academia and industry to invest the important energy in this aspect of
research. Traditional fault-tolerant technologies have redundant methods such as
DMR(Dual Mode Redundancy) [15], TMR [16], Multi-version technology [17],
LOCKSTEP [18], PB(Primary and Backup version) [19], SMT (Simultaneous
Multi-threading) [20], checkpoint technology [21] and other Redundancy Check
fault tolerance such as ECC (Error Correcting Code) [22], CRC (Cyclic
Redundancy Check)[23], PCC(Parity Check Code) [24], HC(Hamming Code) [25].
Among these fault-tolerant methods, TMR has been used much longer and more
widely, which has the effect of error detection and fault tolerance, but TMR method
can correct only one error at a time. DMR can only detect errors without fault-
tolerant ability, and NMR (N>3) can correct multiple errors at a time. Multi-version
technology mainly focuses on using multiple versions of a part of software to realize
fault tolerance. LOCKSTEP technology processes the same instructions by the
redundant hardware at the same time and is realized by the method of redundant
hardware to execute tasks repeatedly, which can keep multiple CPUs and memory
exactly synchronized and execute the same instructions within the correct clock
cycle. PB fault-tolerant technology means a task contains a primary version and a
backup version which can work in the active mode, passive mode, and overlapping
mode and the system schedules the primary version and the backup version to
different processors. The result of the backup version will be adopted as the final

62 Shigan Yu, Bing Xiang, Yuliang Bian, Hui Liu

output when there are errors during the execution of the primary version. During
the specific execution, tasks need to be divided first and a detection module needs
to be added to judge results, which increases the scheduling overhead. SMT fault-
tolerant technology is a chip multiprocessor technology that assigns each task to
each independent thread, and has a separate pipeline [26,27]. It is a fine-grained
fault-tolerant technology to realize fault tolerance by comparing the results of each
thread. Checkpoint fault-tolerant technology saves the system in a different state as
checkpoints during the different implementation stages. When an error occurs, the
system rolls back to the previous checkpoint and re-executes the tasks from the
checkpoint that is mainly used in the processing faults of fail-stop [28]. This method
requires the setting of system checkpoints at irregular intervals, which causes
inefficient in execution. The redundancy check bit is mainly used for error detection
and error correction of data.

3. Models
3.1 System definition

Definition 1, Reliability R(t): It refers to the probability that a complete
system performs the expected function within a time range [0,t] in a running state.
When a system with M modules, there are errors in E(t) modules at the end of the
time range of [0, t], the other modules produces the desired results, the system
unreliability UR(t) and reliability of R(t) can be calculated in accordance with the
following definition(1) and (2).

_E®
UR®) =~ 1)
_(M-E®) _, E® _,_
R(t) = v =1 Y =1-UR(t) (@)

Definition 2, Failure Rate Z(t): It refers to the ratio between the number of
the wrong module and normal module within the time range of [0, t]. For a module,
Z(t) represents the failure probability within the working time range [O, t].
According to the actual statistics, the relationship between the failure rate Z(t) and
time t are shown in Fig. 1.

An optimized fault-tolerant scheduling algorithm based on grouping strategy for heterogeneous... 63

»

Z(t)

—»
0 ty t t

Fig 1. Relationship between module failure efficiency and time.

Fig. 1 can be divided into three phases, among which the first and the third
section of the failure rate is higher, the second section of the failure rate is stable
and lower. Therefore, the working time of the system should be set in the process
of the second stage, which can improve the reliability of the system, reduce
uncontrollable factors, and make the system work within our expected range. In the
second stage Z(t)= A is usually given. It is generally assumed that the Mean time
Between Failures of the system is MTBF. and A is I/MTBF, which is usually x*10
$/hour.

The relationship between the system reliability and the module's failure rate
proved to be exponential as equation (3), the reliability of the system can be obtained
from formula (4), which provides a basis for further design.

__(fodR(®) _
Jt = jo 20 IN[R(t)] (3)
R(t) = exp(—At) 4

Definition 3: In heterogeneous multi-core systems, the task can be defined as
the DAG model. As a research object, it is a common method for researchers [29].
This paper defined DAG task model as '=(M, V,E, A, T, W).

M={mo, m1, my, ..., m;} represents the set of core, m; represents i-th core in
the system.

V={Vo, V1, ..., Vn} represents the set of nodes in I', each node viel represents
a task. The pre(vi) represents the immediate predecessor of the current task vi.
Succ(vi) represents the immediate successor to the current task vi. The first task with
no pre(vi) is defined as Ventry, and the last task with no succ(v;) is defined as Vexit.

E={ei;} represents the set of edges, eijel’ means the WCRT (worst case
response time) between vi and v;j if they are not assigned to the same core and the ej
is O if they are assigned to the same core. All the ei; are known during the analysis
and design phase.

A={ao, a1, ..., an} indicates whether the task has fault-tolerant properties,
ai={0,1}, where a;j=1 indicates that the task is resilient task, which does not need fault

64 Shigan Yu, Bing Xiang, Yuliang Bian, Hui Liu

tolerance, and a=0 indicates that the task is sensitive to errors, which requires fault
tolerance to improve reliability.

T= {to, t1, ..., ta} is the set of reliability thresholds, ti represents the reliability
threshold of each task.

W={w;j«} represents the WCET (worst execution time) of v;j running on core.
Each viel has different WCET values on different processors due to heterogeneity
of cores. All the wjk are known during analysis and design phase.

The system task flow based on DAG is shown in Fig. 2. When executing tasks,
the system need to sort the DAG task nodes by descending order method [30,31],
and the calculation method is shown in formula 5 and 6.

sort (Vexit) = Cexit (5)
sort(v;) =c; + max{e, ; +sort(v;)} (6)

Where cexit and ci represent the time at which the tail tasks node and the i-th
task node are executed by the core, respectively, and vj is the successor of task vi.

Sensitive,
°. task -

Fig 2. the task flow graph

3.2 System Reliability

Am; represents the failure rate of the core m;, The reliability R(vi, m;) that
the i-th task is executed on the j-th processor can be calculated according to formula
(M[32,33]. If R(vi, m;) is greater than the current node reliability threshold t;, it
indicates that the execution result of the task is satisfactory. The first node is called
Ventry, Whose reliability is calculated by the formula (8). The system reliability can
be calculated according to formula (9) when the i-th node is executed. If R(I') is
higher than expectation of reliability, it shows that the system reliability is
satisfactory until the current node.

An optimized fault-tolerant scheduling algorithm based on grouping strategy for heterogeneous... 65

R(Vi J mj) = eXp(_ﬂ'mj \le) (7
R(Ventry' mi) = eXp(_ﬂ“Ventry W, ety 'K) (8)
R =([TR(:M,)-2) R, M,) RV, m,) ©)

Pre(i)el’
a;#0

4. Methods

4.1 Traditional TMR mechanism

The fault-tolerant architecture of the traditional TMR is shown in Fig. 3,
which consists of three redundant modules, U1, U2, U3, and a VVoter. The task Ti is
input into three modules, U1, U2 and U3 at the same time. After the three modules
have completed the tasks, the results of the execution are sent to the Voter
respectively.

» Ul
R1
-
Input Ti U2 R2 Result 1
< " Voter *
v
» U3 R3

Fig 3. The basic structure of TMR

After the Voter receiving all three results, the majority rule is used to
determine the output. When the three results are identical, VVoter outputs Ri directly;
When both are consistent in three modules, the inconsistent result is shielded and
the system outputs the result of consistent modules. In this way, when an error
occurs in system execution, the result of the system is free from interference by the
wrong module and the fault-tolerant function can be realized.

Since it is a small probability event that the error occurs in two or three
modules at the same time, thus, the output of TMR can be defined by logical
expression Result_i= R1R2||R2R3||R1R3, which is a majority voting function. If
only one error occurs in R1, R2, or R3, the output Result_i is right. The traditional
TMR is shown in algorithm 1.

Algorithm 1: Traditional TMR Algorithm (TMR)

Input: every task Ti

Output: result_i of every task Ti
1.1f the current task Ti is not a new one, it is finished,
2. Input the current task to each module at the same time;
3. Each module processes the current task Ti separately

66 Shigan Yu, Bing Xiang, Yuliang Bian, Hui Liu

4. outputs the execution results R1, R2, and R3 to Voter at the same time.

5. If both or three among R1,R2, and R3 are consistent, the voter output results.

6. If R1, R2 and R3 are different, the current task is given as a new task attribute,
goto Stepl to continue.

4.2 Speculation working mechanism

Speculation technique has made important contributions to the
parallelization of serial processor tasks so as to improve the execution efficiency of
serial tasks and has become an important technology in the micro-architecture of
multi-core processors. In addition, speculation techniques are also widely used in
network communication [34], performance optimization of big data [35], and
aviation trajectory judgment [36]. Generally speaking, speculation technology has
developed rapidly in recent years, but it is rarely involved in the field of fault
tolerance.

When solving the transient fault of the processor, TMR features low
efficiency and high power consumption, which is mainly due to the fact that all
three cores are always working at the same time. After each core has executed tasks,
the voting module selects the correct result to output, and then all three cores start
to implement the next stage of the task.

Due to differences in the architecture and properties, the faster core in HMP
will wait for the backward core until the completion of the backward core when the
system adopts TMR fault tolerance mechanism.

In order to take advantage of the characteristics of HMP and ensure system
reliability to meet the requirements, a fault-tolerant scheduling algorithm with high
performance and low power consumption based on the speculation mechanism is
proposed.

Firstly, according to the DAG model, the program to be executed is divided
into an ordered task sequence Ty, T2, ..., Tn ,whose priority is determined by formulas
(5) and (6). At the beginning of the program, the same task T; (0<i<n) was assigned
to the three cores, and they started to execute the task T; at the same time. Since
each core has a different execution speed, the result of the fastest core C1 is
temporarily saved, denoted as R1 and assigned the next task Ti+1 to core C1 to
continue, then the system saves the result of the second completed core C2 as R2
and assigns the next task Ti+1 to core C2 to continue. If R1 is equal to R2, the slowest
core C3 is immediately terminated, and it is synchronized to R2’s state, otherwise,
the system waits for the result R3 of the slowest core. If R3 is equal to R1, the value
of R1 is submitted, and core C2 is withdrawn and Ti+1 is executed by core C2 and
core C3 simultaneously. If R3 is equal to R2, the value of R2 is submitted, core C1
is withdrawn and the next task Ti+1 is performed by core C1 and core C3
simultaneously. If R1, R2, and R3 are not equal with each other, then the core C1
is withdrawn so that the three cores re-execute the task Ti simultaneously (this is a

An optimized fault-tolerant scheduling algorithm based on grouping strategy for heterogeneous... 67

small probability event). If the system still don't get the right result from the three
core by the next time, the processor hardware may fail and need to be overhauled
until all tasks are completed. The above implementation is shown in algorithm 2.

Algorithm 2: FTSAS (Fault-Tolerant Scheduling Algorithm with Speculative
method)

Input: task flow T;

Output: the result of task flow

1.Initialize the reliability of task and reliability threshold of the cores, respectively ;
2.Check the reliability of each core, replace the core if it fails to meet reliability
threshold,;

3.Set several fixed time P;j to save temporary results for synchronizing;

4.Assign every task Ti to each core and they start to execute the task Tj;

5.Record the result of the fastest core as C1 at Pj, save the result of C1 as R1, and
C1 continues to execute Ti+1 speculatively without waiting for the backward core.
6.Record result of the second core C2 at Pj, save the result of C2 as R2, and C2
continues to execute Ti+1 speculatively without waiting for the slowest core.

7.1f R1==R2, then Interrupt the slowest core C3 immediately and synchronize C3
to the state of C2 and start to execute task Ti+1 at P; ;

8. else Record C3’s result as R3 when C3 executes T; to time Pj;

9. If R3==R1, then synchronize C2 to C3 and perform the next task Ti+1
simultaneously.

10. If R3==R2, then synchronize C1 to C3 and they execute the next task Ti+1
simultaneously.

11. else C1 and C2 will be withdrawn and re-execute the current task Ti, and
then go to Step5;

12. If all the tasks in the task flow have been completed, then Output the final result;
13. else go to step5.

4.3 Competition mechanism

The system architecture of HMP using a competition mechanism [37] is
shown in Fig. 4, where three cores are selected for the convenience of introducing
the mechanism of TMR in this system. The competition mechanism proposed in
this paper for HMP’s system is shown in Fig. 5.

Due to the different tasks, the speed of each core will be different at the end
of each time Pj, the system chooses the result of the fastest core as a standard and
synchronizes the backward cores, which improves the disadvantage that the fastest
core needs to wait for the backward cores.

68 Shigan Yu, Bing Xiang, Yuliang Bian, Hui Liu

Shared Memory)

e,

Corel Core2 Core3

| 1 1

4

‘ BUS (Arbiter or Switch) ‘

!

ICACHE ‘

DCACHE

ICACHE ‘ DCACHE

Main Memory

Fig 4. HMP’s architecture

<—D)1mmic instruction flow=—
EEELCECEER

out in
2 }47 Core A

@ n
4 out 3 }‘ Core B

@ out ;
in
4 4 }1 Core C

Fig 5. Competition mechanism between cores

When the system executes the current task T; to the time P; as it needs to
synchronize, the state of each core is shown in Fig. 5. Every core has a different
speed and the core C executes the task T; fastest if the core C matches the current
task, and then the core C stores the results in the relevant registers or storage cells,
and the laggard cores discard the unfinished tasks and accept the results of core C.
Then, the system uses the status of core C as the starting stage of the next task Ti+1,
instead of waiting for the completion of the slower A and B so that three cores can
start to work from the same state at the beginning of the next phase, which can take
advantage of different cores, and the core matching the task will lead again and then
the leader core synchronizes the laggard until the program is completed. Therefore,
the overall performance of the system can be improved obviously. In addition, the
laggard core accepts the result of the fastest core and terminates the unfinished task
directly, the power consumption of the system can be reduced to a certain extent.

An optimized fault-tolerant scheduling algorithm based on grouping strategy for heterogeneous... 69

The implementation algorithm of the competition mechanism is shown in
Algorithm 3.

Algorithm 3: CSA(Competition Scheduling Algorithm)

Input: task T

Output: result of Ti, Result_i.

1. Set synchronization time Pj;

2. System begins to execute Tj;

3. If the system reaches time Pj, save the results of each core individually;

4. Select result of the fastest core as Result_i and terminates the unfinished task;
5. Synchronize laggard cores to the state of fastest core;

6. Else each core continue to execute the current task until time Pj, and go to step3;

5. Implementation

5.1 System hypothesis

It is assumed that no more than one error is allowed to occur in three cores
when each task Tj is executed. Each core can execute tasks independently and can
communicate with each other. Each core can broadcast the results to other cores via
the bus, and can receive the results of other cores at each time period. If there are
more than three cores, the system can be set to select three of them to perform tasks.

5.2 System scheduling mechanism

In today's computer system applications, there are two types of tasks
including flexible tasks with ability of fault tolerance and sensitive tasks without
ability of fault tolerance. A flexible task of an application is the one in which some
calculations are not executed with 100% accuracy and the final output is still
acceptable. Such applications exist in many fields, such as digital signal processing,
image, audio and video processing, wireless transmission, web search, data analysis
[38], etc. Therefore, no additional fault tolerance measures are required for these
applications. However, there are some fault-sensitive control flow tasks. Serious
errors may occur if fault-tolerant method is not adopted in the execution. The
execution of the entire application will be wrong and even cause system crash.
Therefore, a new fault-tolerant scheduling algorithm is proposed in this paper to
improve the system execution efficiency while ensuring the system features high
reliability and lower power consumption.

First of all, the reliability R(t) of the core detected by formula 4 should be
higher than the threshold, or the new core should be replaced. Then, the system
executes the task without fault-tolerant requirements by the algorithm CSA. At the
end of each fixed detection time Pj, the result of the fastest core is used as the output.
The system will execute the task again by the Algorithm FTSAS if the result fails
to meet the reliability requirements. For sensitive tasks with fault-tolerant
requirements, the algorithm FTSAS is used to execute the task directly, which not

70 Shigan Yu, Bing Xiang, Yuliang Bian, Hui Liu

only achieves the goal of reliability requirements, but also makes full use of the
characteristics of HMP to improve performance and reduce power consumption.
Combined with the speculative mechanism and the competition mechanism, the
FTHLHG (Fault-Tolerant scheduling algorithm with High performance and Low
power consumption for Heterogeneous multi-core processor based on Grouping
strategy) is proposed in Fig. 6:

< Input task flow Ti >

\ 4
Initialize reliability thresholds
of tasks and core

il

Replace the
next core

Check whether the reliability’
of core meets requirement

Divide tasks into two groups

v

Set priority of task

Y Execute Ti
) by FTSAS

N

Execute Ti by CSA

“T'est whether the reliability
of task meets requirements

Save result of Ti as result i

Judge whether Ti is the last task

Output result_i

Execute the next task T;y

Fig 6. System execution flow

An optimized fault-tolerant scheduling algorithm based on grouping strategy for heterogeneous... 71

And implementation is shown in algorithm 4.

Algorithm 4: FTHLHG (Fault-Tolerant scheduling algorithm with High
performance and Low power consumption for Heterogeneous multi-core processor
based on Grouping strategy)

Input: Task flow vi

Output: The result of each task vi

L.Initialize reliability threshold of tasks and each core;

2. Check the reliability of each core, replace the core if it fails to meet reliability
threshold,;

3. Divide the current task into task flow (vo,v1, ..., Vn), including sensitive tasks and
flexible tasks;

4. Set DAG-based task flow sequence by formula 5 and 6;

5. Execute task flow v;;

6. If vi is a sensitive task, system execute vi by FTSAS, record the result as Result_i;
7. If vi is a flexible task, system execute vi by CSA, record the result as Result_i;
8. If Result_i fail to meet reliability threshold according to formulas 9, re-execute
the task vi by FTSAS and save the result as Result_i;

9. Synchronize the result Result_i to the other two cores as the initial state for
next task Ti+1 and output Result_i;

10. If the task flow does not end, then go to Step5 to continue;

11. else, output the final result;

6. Experimental results
6.1 Experimental setup

Heterogeneous processor simulation platform is a real simulation of
computer with a very close execution effect, which is a common approach to study
the properties of processors. Therefore, this paper adopts heterogeneous multi-
core simulator platform to execute each test case to realize the verification of the
optimization algorithm.

The Simplescalar simulator designed by Intel is open source and an important
simulator for high-performance processor architecture[39,40]. It features
simulation function including executing drive, explanation execution, assembly
line and instructions with out-of-order execution, system compiler, system test,
and supports a variety of instruction sets such as PISA, ARM, X86, etc. Therefore,
the HMP consisting of PISA, ARM1 and ARM2(same instruction set, different
performance configurations) was selected to build the experimental platform
based on the Simplescalar simulator, as shown in Fig. 7.

The simulator of HMP is configured in the experimental environment as
shown in Table 1[41]. Using System C as a development tool, C++ adds class
library, introduces concurrency, timing events and hardware data types, simulates

72 Shigan Yu, Bing Xiang, Yuliang Bian, Hui Liu

the core, defines hardware and software components, and models the hardware.
The core communicates and realizes synchronization with each other through
shared storage units, and SimOutorder is adopted for functional simulation.

Shared memory Controller

System C
Lever

Simplescalar

C Local
Lever 2
Mem ARMI Mem ARM2 Mem
Application Application Application Application
Lever Code Code Code

Fig 7. Architecture of HMP

Table 1.
Configuration table of HMP
Core Type PISA ARM1 ARM2
Fetch/Issue/commit 4/4/4 4/2/2
ROB/LSQ Entries 128/64 64/32
Int/Fp units 4/4 2/3
RUU Size 16
Pipeline width 5

3intadd, 1 intmult, 1intdiv,

FUs 1fpadd, 1fp mult, 1fp div
16-way, 4096 byte page, 4-way LRU
ITLB .
30 cycle miss penalty
DTLB 32-way, 4096 byte page, 4-way LRU

30 cycle miss penalty
Gshare: 9, pht:4096, BTB:512, 2-way group-
mapped, Random
L1 Icache 64KB, 2-way group-mapped, Random
L1 Dcache 64KB, 2-way group-mapped, Random

Branch Prediction

Test cases consisting of SPEC2000, matrix multiplication, and sorting
algorithms were selected for system testing, in which SPEC2000 was selected as
an integer (denoted as SPEC2000 _int) to test and take the average value; the scale
of matrix multiplication was 64*64(denoted as MM64), and sorting algorithm was

An optimized fault-tolerant scheduling algorithm based on grouping strategy for heterogeneous... 73

used to sort 600 numbers (denoted as SORT600).

TPFTRMI42], which has the highest scheduling performance among PB
fault tolerant methods at present, is adopted. After the execution time of each test
case is standardized, the execution time of TMR, DMR and PB methods is
compared with the proposed algorithm, and the efficiency of the same test case
under different methods is obtained.

As FTSAS method has a fault-tolerant function, and the individual CSA
method does not have fault-tolerant ability, the fault-tolerant experiment of
FTSAS based on the speculative mechanism, and FTHLHG based on the grouping
strategy were completed respectively. By comparing the performance and power
consumption of existing fault-tolerant algorithms, the FTHLHG algorithm can be
found to have prominent advantages.

6.2 Results and performance analysis
Fig. 8 shows the performance difference between the fault-tolerant
algorithm of FTHLHG proposed in this paper and the fault-tolerant algorithm of
TMR, DMR, PB and FTSAS. When executing the test cases of SPEC2000 int,
MM®64 and SORT600, the average performance of the FTHLHG algorithm was
16.9% higher than that of TMR, DMR, PB and FTSAS. Compared with other
algorithms, FTHLHG yields the highest optimization performance than traditional
TMR, especially when SPEC2000 _int is executed, the performance of FTHLHG
is improved to 27.2%. Because TMR needs to wait until all three modules have
completed the task comparison before the next task can be performed, which
reduces the performance of TMR algorithm.
15

SPEC2000_int ~ TMM64 [JSORT600

-
'S

-
w

-
~

—
[

—

Average execution time

(=]
w

0.8

Fig 8. performance comparison between FTHLHG and other algorithms before injecting errors

74 Shigan Yu, Bing Xiang, Yuliang Bian, Hui Liu

Compared with other test cases, FTHLHG has a higher performance when
executing SPEC2000_int. SPEC2000 _int contains a variety of integer tasks, which
makes it easier to give play to the characteristics of HMP, highlighting the
advantages of grouping competitive calls. The core can execute the task faster when
the attribute of a task matches the core’s characteristics. Since each task’s type is
similar, the advantage of the FTHLHG method is diminishing when executing the
MM®64 and SORT600. This shows that the proposed algorithm FTHLHG is more
suitable for the diversity of tasks and can make full use of HMP to improve the
system execution efficiency.

In order to truly simulate the environment in which the error occurred in the
system, the method of data modification in the storage space with a certain
probability of simulating the transient fault of the processor is adopted[43,44]. After
200, 2000, and 6000 errors were injected, SPEC2000_int, MM64 and SORT600
were executed to compare the performance of various fault-tolerant algorithm
scheduling, respectively. It can be found that DMR can only detect errors but cannot
correct errors by experiments. Therefore, the performance of FTHLHG scheduling
is compared with that of TMR, PB and FTSAS scheduling. The reliability of TMR,
PB and FTSAS can be obtained after error injection.

As it can be seen from Fig. 9, the reliability of TMR, PB, FTSAS and
FTHLHG is higher than the preset goal and these algorithms have similar fault-
tolerant ability.

As shown in Fig. 10-12, it is found that the average performance of
FTHLHG is improved by 11.7% compared with that of TMR, PB and FTSAS, when
SPEC2000_int, MM64 and SORTG600 are executed after injecting 200, 2000, and
6000 errors.

1

0.995
0.994

=
N4
=]
wn

0.993

Reliability

0.99

0.985

reliability goal PB FTSAS FTHLHG

Fig 9. Reliability comparison of different fault-tolerant algorithms

An optimized fault-tolerant scheduling algorithm based on grouping strategy for heterogeneous... 75

14

E200 [32000 E6000

13

12

1.095
11 1.084 1075

Average execution time

0.9

0.8
TMR PB FTSAS FTHLHG

Fig 10. After injecting a different number of errors, performance comparison of fault-tolerant
algorithms when executing test case SPEC_2000

—
w

1259

B200 E12000 E6000
=

—
(5

—
[

—

Average execution time

e
e

0.8

FTHLHG

Fig 11. After injecting a different number of errors, performance comparison of fault-tolerant
algorithms when executing test case MM64

13

200 (12000 E 6000

—
~

—
—_

—

Average execution time

S
=)

0.8
TMR PB FISAS FTHLHG

Fig 12. After injecting a different number of errors, performance comparison of fault-tolerant
algorithms when executing test case SORT600

76 Shigan Yu, Bing Xiang, Yuliang Bian, Hui Liu

It can be found that the advantage of FTHLHG is reducing with the increase
of injection error. More errors weakened the role of competition mechanism and
the number of tasks requiring speculative scheduling is increasing, especially when
6000 errors are injected, the average performance of FTHLHG is reduced to 6.5%,
which is very rare in practical application. If so many errors occur during system
execution, there must be a failure in the hardware module, which needs to be
checked and replaced with the right core module.

6.3 Power consumption analysis

In order to better display the performance advantages of FTHLHG, it is
necessary to analyze the power consumption of FTHLHG, TMR, PB and FTSAS
in the same system environment. Wattch [45,46] is used to analyze the power
consumption on the basis of Simplescalar, and the power consumption of FTHLHG,
TMR, PB and FTSAS is calculated by modifying the Simplescalar simulator in
combination method of J.Xu [47] and Ahmed [48]. As the number of injection
errors increases, fewer tasks need to be competitive scheduling during the execution
of FTHLHG, so the corresponding power consumption is increasing and the power
consumption advantage of FTHLHG is weakening.

As shown in Fig. 13, when 200 errors are injected, the average power
consumption of FTHLHG is 21.1% lower than that of TMR, PB and FTSAS,
respectively. When 6000 errors are injected, the average power advantage of
FTHLHG decreases to 10.8%.

1.6

1.5

—
w

E200 [12000 B 6000

P
Ky

1.345

—_
w

—
[

ey
—

—

Average power consumption

=
=

=
)

TMR PB FTSAS FTHLHG
Fig 13. Power consumption relationship of the three algorithms after injecting error

However, 6000 errors occur in the system is a small probability event during
system execution, therefore, the FTHLHG algorithm not only improves the
performance, but also reduces the total power of the system, which fully shows the
performance and power advantage of FTHLHG.

An optimized fault-tolerant scheduling algorithm based on grouping strategy for heterogeneous... 77

7. Conclusion and future work

As the density of the integrated circuit increases and the critical gate charge
of the transistor decreases, the probability of radiative flip of the charged element
increases, which leads to the increase of the transient fault probability of the
computer during the execution of the task, causing unexpected errors. In order to
ensure the reliable and efficient execution of the task of the system, the existing
fault-tolerant scheduling method needs to be optimized. This paper is to carry out
research work under such background. HMP is an important component of high
performance computer. HMP shows different performance when executing
different tasks, the execution speed of matched tasks is accelerated, and the
execution speed of unmatched tasks is slowed down. Therefore, this paper proposes
a fault-tolerant scheduling algorithm for HMP based on Grouping strategy. The
tasks to be executed are divided into fault-tolerant requirements and fault-tolerant
requirements. FTSAS method and CSA method are used for scheduling,
respectively. Simulation results show that FTHLHG has better performance and
lower power consumption than the existing fault-tolerant algorithms.

The background of this paper is to improve the performance of single-
threaded execution and reduce the overall power consumption of the system while
ensuring the system’s reliability under the von neumann architecture. According to
Amdahl theorem, the parallel execution acceleration of the program depends on the
performance of the serial application. This approach can be extended to parallel
computing and high reliability and high-performance system fault tolerance, such
as distributed systems and cloud computing fault tolerance.

In future studies, the characteristics of different core architectures and
different tasks will be further analyzed, and tasks will be grouped and assigned to
the matched core, so as to further improve system reliability and execution
efficiency and reduce power consumption.

Acknowledgment

The work was supported in part by Quality project of Anhui Province with
Grant number 2020zdxsjg260, 2022sx111 and 2021sx117, and in part by Talent
research launch start-up project of Fuyang Normal University under grant
2019kyqd0018, and in part by Anhui Province university key research project under
grant number 2022AH052820.

REFERENCES

[1] C. McNairy. “Exascale fault tolerance challenge and approaches”. IEEE International Reliability
Physics Symposium (IRPS), Burlingame, CA, USA, 2018:3C.4.1-3C.4.10.

[2] X. Wen, G. Liu, D. Li,et al, "Federated Scheduling Optimization Scheme for Typed Tasks With Power
Constraints in Heterogeneous Multicore Processor Architectures,” in IEEE Access, vol. 11, pp.
85728-85746, 2023.

78 Shigan Yu, Bing Xiang, Yuliang Bian, Hui Liu

[3] V.Chau, C.K.K.Fong , S.Liu, et al. “Minimizing Energy on Homogeneous Processors with Shared
Memory”. In: Li, M. (eds) Frontiers in Algorithmics. FAW 2020. Lecture Notes in Computer
Science, vol 12340.

[4] K. Baital, A. Chakrabarti. “Dynamic Scheduling of Real-Time Tasks in Heterogeneous Multicore
Systems”. IEEE Embedded Systems Letters.2018:1-4.

[5] A. Butko, F. Bruguier, A.bdoulaye, et al., "Full-System Simulation of big.LITTLE Multicore
Avrchitecture for Performance and Energy Exploration,” 2016 IEEE 10th International Symposium
on Embedded Multicore/Many-core Systems-on-Chip (MCSOC), Lyon, France, 2016, pp. 201-
208,

[6] K. -Y. Yeh, H.-J. Cheng, J. Ye, et al. "Constructing a GPU cluster platform based on multiple NVIDIA
Jetson TK1," 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM),
Shenzhen, China, 2016, pp. 917-922,

[7] N. Chitlur, Ganapati, G. Srinivasa,, et al. “QuickIA: Exploring heterogeneous architectures on real
prototypes”. IEEE International — Symposium on High-Performance = Computer
Architecture(HPCA), New Orleans, LA, USA, 2012,1-8.

[8] A. O. Munch, N. Nassif, C. L. Molnar, et al. "2.3 Emerald Rapids: 5th-Generation Intel® Xeon®
Scalable Processors," 2024 IEEE International Solid-State Circuits Conference (ISSCC), San
Francisco, CA, USA, 2024, pp. 40-42.

[9] Jani A. KIRIN 9000 IS HUAWEI'S FIRST 5NM CHIP[J].Microprocessor report, 2020(12):34.

[10] A. Naithani; S. Eyerman; L. Eeckhout. “Optimizing Soft Error Reliability Through Scheduling on
Heterogeneous Multicore Processors”. IEEE Transactions on Computers, 2018,67(6):830-846.

[11] T. -T. Kuo,Y.-C. Chen,Y.-S. Chien, et al. "A Comprehensive Negative Bias Temperature Instability
Model for Gallium-nitride Metal-insulator-semiconductor High Electron Mobility Transistors
From 77K to 393K," 2021 IEEE International Symposium on the Physical and Failure Analysis
of Integrated Circuits (IPFA), Singapore, Singapore, 2021, pp. 1-4,

[12] P. Dherbecourt, O.Latry, K.Dehais, et al. “Aging Power Transistors in Operational Conditions”.
Embedded Mechatronic System 2 (Second Edition) ,2020,pp23-49.

[13] P.Chowdhury, U. Guin. “Estimating Operational Age of an Integrated Circuit”.J Electron
Test 37, 25-40 (2021).

[14] J. Karlsson, P. Liden, P. Dahlgren, et al. “Using Heavy-ion Radiation to Validate Faulthandling
Mechanisms”. IEEE Micro, 1994:14(1): 8-23.

[15] X. Wang, K. Xu and Y. Xu. "Design of Airborne Bus Communication Platform based on Isomorphic
Dual Redundancy Channels," 2023 7th International Conference on Electrical, Mechanical and
Computer Engineering (ICEMCE), Xi'an, China, 2023, pp. 1-6.

[16] Z. Pan, Y. Hu and S. Zhu. "Fault Redundancy Active Removal Fault-tolerant Strategy for Triple-
redundancy PMSMs," 2023 IEEE 6th Student Conference on Electric Machines and Systems
(SCEMS), HuZhou, China, 2023, pp. 1-7.

[17]Y. Xiong, J. Zhou, L. Su, W. Wang, et,al., "ECCH: Erasure Coded Consistent Hashing for Distributed
Storage Systems," 2021 IEEE Intl Conf on Parallel & Distributed Processing with Applications,
Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing &
Networking (ISPA/BDCloud/Social Com/SustainCom), New York City, NY, USA, 2021, pp. 177-
184,

[18] K. Liu, Y. Li and L. Ouyang, "Fast recoverable heterogeneous quad-core lockstep architecture,” 2021
International Conference on Advanced Computing and Endogenous Security, Nanjing, China,
2022, pp. 1-6,

[19] A. Roy, H. Aydin, D.K. Zhu. “Energy-aware primary/backup scheduling of periodic real-time tasks
on heterogeneous multicore systems”,Sustainable Computing: Informatics and Systems,Vol. 29,
Part A,2021.

[20] M. Barbirotta, A. Cheikh, A. Mastrandrea,et,al. "A Fault Tolerant soft-core obtained from an
Interleaved-Multi- Threading RISC- V microprocessor design,” 2021 IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), Athens,
Greece, 2021, pp. 1-4.

An optimized fault-tolerant scheduling algorithm based on grouping strategy for heterogeneous... 79

[21] D. A. Santos, P.M. Aviles, A.M. Mattos, et al. "Hybrid Hardening Approach for a Fault-Tolerant
RISC-V System-on-Chip," in IEEE Transactions on Nuclear Science, 27 May 2024.

[22] S. T. Ahmed, S. Hemaram and M. B. Tahoori."NN-ECC: Embedding Error Correction Codes in
Neural Network Weight Memories using Multi-task Learning,” 2024 IEEE 42nd VLSI Test
Symposium (VTS), Tempe, AZ, USA, 2024, pp. 1-7,

[23] D.D. Sharma and S. Choudhary. "Pipelined and Partitionable Forward Error Correction and Cyclic
Redundancy Check Circuitry Implementation for PCI Express 6.0 and Compute Express Link
3.0," in IEEE Micro, vol. 44, no. 2, pp. 50-59, March-April 2024.

[24] A. M. Ahmed, A. Patel and M. Z. A. Khan, "Parity Check Coded Super-MAC for Reliability
Enhancements in Next-Generation Networks,” 2024 16th International Conference on
COMmunication Systems & NETworkS (COMSNETS), Bengaluru, India, 2024, pp. 1116-1121.

[25] M. R. Alom, M. N. Shakib and M. A. Rahaman, "Enhanced Hamming Codes: Reducing Redundant
Bit for Efficient Error Detection and Correction,” 2023 5th International Conference on
Sustainable Technologies for Industry 5.0 (STI), Dhaka, Bangladesh, 2023, pp. 1-6.

[26] Z.S.Li, X.C.Xu , WW,Hu, etal. “Design of the Simultaneous Multi-threading Godson-2
Processor”. CHINESE Journal of computers,2009,32(11):2265-2273.

[27] K. -C. Hsu and H. -W. Tseng. "Simultaneous and Heterogenous Multithreading,"56th IEEE/ACM
International Symposium on Microarchitecture (MICRO), Toronto, ON, Canada, 2023, pp. 137-
152.

[28] Z. Zhang, T. Liu, Y. Shu, et,al. "Dynamic Adaptive Checkpoint Mechanism for Streaming
Applications Based on Reinforcement Learning," 2022 IEEE 28th International Conference on
Parallel and Distributed Systems (ICPADS), Nanjing, China, 2023, pp. 538-545,

[29] M. T. Rana, S. Chakraborty and M. V. Salapaka. "Causal Discovery in Electronic Circuits and Its
Application in Fault Diagnosis,” 2023 62nd IEEE Conference on Decision and Control (CDC),
Singapore, Singapore, 2023, pp. 8223-8228.

[30] Benoit, M. Hakem and Y. Robert. "Multi-criteria Scheduling of Precedence Task Graphs on
Heterogeneous Platforms," in The Computer Journal, vol. 53, no. 6, pp. 772-785, July 2010

[31] Li, X. Tang, B. Veeravalli and K. Li. "Scheduling Precedence Constrained Stochastic Tasks on
Heterogeneous Cluster Systems," in IEEE Transactions on Computers, vol. 64, no. 1, pp. 191-
204, Jan. 2015.

[32] H. Lim, T. Kim, D. Lee, et al. “LARECD: Low area overhead and reliable error correction DMR
architecture”. 2017 International SoC Design Conference (ISOCC). Seoul, South Korea,2018,
pp.27-28.

[33] Z. Pan , Q. Zheng, Z. Zeng. “The Signal Integrity Design and Simulation of Triple Modular
Redundant (TMR) Computer. IEEE International Conference on Cybernetics and Intelligent
Systems (CIS) and IEEE Conference on Robotics”, Auto-mation and Mechatronics (RAM),
Ningbo, China,2017, pp. 758-776.

[34] Y. Zhang, L. Zhao, C. Che, et al. "SpecFL: An Efficient Speculative Federated Learning System for
Tree-based Model Training," 2024 IEEE International Symposium on High-Performance
Computer Architecture (HPCA), Edinburgh, United Kingdom, 2024, pp. 817-831

[35] Z. Wang, H. Wang and J. Li. "A Speculative Parallel Optimization Method for Industrial Big Data
Algorithms," 2019 IEEE International Conference on Industrial Internet (ICII), Orlando, FL,
USA, 2019, pp. 417-422,

[36] Q. Li, D. Du, W. Cao, et al. "A Quality Evaluation Model for Approach in Initial Flight Training
Utilizing Flight Training Data,” 2023 International Conference on Computer Applications
Technology (CCAT), Guiyang, China, 2023, pp. 36-40,

[37] H. Hashem Najaf-abadi, R. Eric. “Architectural Contesting”. IEEE 15th International Symposium
on High Performance Computer Architecture, Raleigh, NC, USA, 2009:189-200.

[38] J. Yi, Q. Zhang, T. Ye , et al. “Approx Map: On task allocation and scheduling for resilient
applications” , in Proceedings of the 21th Asia South Pacific Design Automation Conference
(ASP-DAC '16), Macau, China, Jan.25-28, 2016: 318-323.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8265082
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8265082
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=
http://ieeexplore.ieee.org/document/4798254/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4795428
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4795428

80 Shigan Yu, Bing Xiang, Yuliang Bian, Hui Liu

[39] Z. Du, B. Xia, F. Qiao, et al. "System-Level Evaluation of Video Processing System Using
SimpleScalar-Based Multicore Processor Simulator,"Tenth International Symposium on
Autonomous Decentralized Systems, 2011, pp. 256-259.

[40] X. Ren, Y. Tang, T. Tang, et al. "Sim-spm: A SimpleScalar-Based Simulator for Multi-level SPM
Memory Hierarchy Architecture,” 2010 IEEE 12th International Conference on High Performance
Computing and Communications (HPCC), Melbourne, VIC, Australia, 2010, pp. 17-23

[41] T. Jiang, N. Wu, F. Zhou, et al. "Design of a High Performance Branch Predictor Based on Global
History Considering Hardware Cost," 2021 IEEE 4th International Conference on Electronics
Technology (ICET), Chengdu, China, 2021, pp. 422-426.

[42] J. Wang, J.-L. Sun, X.-Y. Wang, et al. “Efficient Scheduling Algorithm for Hard Real-Time Tasks in
Primary-backup Based Multiprocessor Systems”. Chinese Journal of Software, 2009,
20(10):2628-2636.

[43] S. K. S. Hari, T. Tsai, M. Stephenson, et al. “SASSIFI: an architecture-level fault injection tool for
GPU application resilience evaluation,” in 2017 IEEE International Symposium on Performance
Analysis of Systems and Software, ISPASS 2017, Santa Rosa, CA, USA, April 24-25, 2017, 2017,
pp. 249-258.

[44] B.S, Prabakaran,M. Dave,F. Kriebel, et al. “Architectural-Space Exploration of Heterogeneous
Reliability and Checkpointing Modes for Out-of-Order Superscalar Processors”. IEEE Access,
2019, PP(99):1-1

[45] D. H. Albonesi, "2015 International Symposium on Computer Architecture Influential Paper Award,”
in IEEE Micro, vol. 36, no. 6, pp. 60-61, Nov.-Dec. 2016.

[46] M. Ansari, M. Salehi, S. Safari, et al. "Peak-Power-Aware Primary-Backup Technique for Efficient
Fault-Tolerance in Multicore Embedded Systems," in IEEE Access, vol. 8, pp. 142843-142857,
2020.

[47] J. Xu, Y. Zhu, J. Ni, et al. “A Simulator for Multicore Processor Micro-architecture Featuring Inter-
core Communication”, Power and Thermal Behavior. International Conference on Embedded
Software and Systems Symposium, 2008:237-242.

[48] K. Ahmed, S. Tasnim and K. Yoshii. "Energy-Efficient Heterogeneous Computing of Parallel
Applications via Power Capping," 2020 International Conference on Computational Science and
Computational Intelligence (CSCI), Las Vegas, NV, USA, 2020, pp. 1237-1242.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4627112
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4627112

