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MAGNETIC FIELD SIMULATIONS IN FLYWHEEL
ENERGY STORAGE SYSTEM WITH SUPERCONDUCTING
BEARING

Asma SAMOH?, Chitnarong SIRISATHITKUL?, Sampart CHEEDKET?,
Sorasak DANWORAPHONG*

Magnetic fields between a permanent magnetic flywheel ring and a
superconducting bearing are simulated using COMSOL Multiphysics and compared
to analytical results. The flux distribution around a Neodymium Iron Boron ring of
20 mm in inner radius, 80 mm in outer radius, and 23 mm in thickness can be
visualized and compared in radial and axial directions. The flux density simulated
along the angular direction at the outer radius is 0.34-0.14 T at 5-20 mm away from
the ring. Furthermore, the flux exclusion by the superconducting bearing required
for lifting flywheel rings of different geometries are demonstrated.
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1. Introduction

Flywheel energy storage systems (FESS) have been under research and
development to retrieve the dispensed energy for subsequent uses. The electrical
input accelerates the flywheel by using the built-in motor and return the electrical
energy by using this same motor as a generator. With this operation, energy is
stored in forms of the rotation of flywheel ring. Their operations have long cycle
life and minimal environment footprint [1]. Such devices are currently
implemented in wind turbine generators [2] and power systems [3]. Like
electromagnetic regenerative shock absorbers [4], it can be employed in vehicles
[1]. Either mechanical or magnetic bearings are employed to minimize the
friction. Without mechanical contact, the latter is attractive for its low loss and
maintenance cost. A high speed (up to 40,000 rpm) and energy storage (around 10
MJ) FESS was built with magnetic bearings [5].
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Magnetic levitation has been analysed by using different approaches [6-
13] and substantial repulsive forces due to Meissner effect in high temperature
superconductors have found applications in rail transportation, motor/generator as
well as FESS [13-15]. Interactions between superconducting bearings and
permanent magnets have been simulated in 2D and 3D models using the finite
element method [14,15]. Magnetic flux density and repulsive force were studied
on different magnetic flywheels including an array of small magnets [16] and a
three-magnet multi-surface system [17]. In addition to permanent magnetic
flywheels, superconducting bearings have been used with superconducting
flywheels [18,19]. The levitation force differs with the variation in materials and
geometry. Such variations lead to a variety of FESS applications ranging from
miniature devices to high power storage [20].

This report aims to analyze the magnetic flux distribution between
flywheel rings with superconducting bearing for storing excess energy in
machinery in forms of the kinetic energy. The hollow cylindrical shape is
commonly produced and implemented in the rotation. Various cylindrical magnets
including the Halbach geometry have been used for generating magnetic field
with high efficiency [21]. However, the previous implementations in flywheel
concentrate on the simulation of levitation force as a function of the distance.
Moreover, the appropriate dimensions of the permanent magnetic flywheel ring in
each system still requires the investigation for comparison with the flux from
superconducting coils [18,19]. The magnetic field analysis in this report is useful
for optimizing the design of novel miniature devices for energy harvesting and
storage.

2. Methodology

As shown by the diagram in Fig.. 1, the energy storage system in a
vacuum chamber is composed of a permanent magnetic flywheel ring,
superconducting bearings and motor/generator. Neodymium Iron Boron is
selected as a permanent magnet since its remanent flux density is commonly 1.3
T. The geometry of this flywheel ring is varied into three series as listed in Table

1.
Table 1
Three variations in height (HO), inner radius (Ri) and outer radius (Ro) of the permanent
magnetic flywheel rings used in the simulation.

Series HO (mm) Ri (mm) Ro (mm)
1 23.0 20.0 80.0
2 115 20.0 80.0
3 23.0 20.0 53.0
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Whereas the height and radius of the flywheel differ in this study, the
dimensions of superconducting Yttrium Barium Copper Oxide bearing are fixed
with the height, inner and outer radii of 5, 20 and 80 mm, respectively.

Vacuum chamber‘

Fig. 1 Components of flywheel energy storage systems.

Numerical simulations were carried out by finite element method using
COMSOL Multiphysics version 5.2 program [22]. COMSOL has successfully
been used to simulate a variety of devices [15,23-25]. In this work, free triangular
elements were implemented in 2D axisymmetric for a half of model. The
magnetic flux density (B) generated by the magnetic flywheel ring was computed
from the magnetic vector potential (A).

B=VxA (1)
with the boundary condition;

nxA=0 (2)
where n is the outward normal vector.

Variations in the magnetic flux density with its geometry and the presence
of the superconducting bearing was displayed. Moreover, the axial and radial
components of the magnetic flux density were plotted as functions of the distance
and angle.

3. Results and Discussions

A profile of magnetic flux density exemplified in Fig. 2 is generated by the
flywheel ring of 20 mm in inner radius, 80 mm in outer radius and 23 mm in
thickness (Series 1). Magnetic field lines and directions are varied corresponding
to the contour lines and vectors, respectively. Colors represent the magnetic flux
density ranging from red (the highest) to blue (the lowest). The magnetic flux is
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concentrated on both right and left edges of the flywheel ring. The magnetic flux
density is predictably reduced in areas away from the magnet, displayed as the
blue zone. Inside the flywheel ring, magnetic field direction is rather constant as
shown by parallel magnetic field lines but its magnitude is varied as discussed in
Figs. 3-4.
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Fig. 2. Profile of magnetic flux density generated by the flywheel ring (Series 1).

The axial (z) and radial (r) components of magnetic flux density are
plotted as a function of distance from the center in Fig. 3. The z-component is
maximum at the center of the ring and approaches zero with the increasing
distance away from the surface. The flux density switches its sign, from negative
to positive, around the inner radius and the flux density becomes rather constant
from 30 to 60 mm. By contrast, the r-component of magnetic flux density is
approximately zero at the center of the ring and reaches the maximum at the inner
radius. The flux density then monotonically rises with the increasing distance as
the field lines switch their sign to positive. The magnetic flux density is maximum
at the outer radius consistent with the right edge in Fig. 2. Such variations are
similar in all four displacements from the surface (Z = 5, 10, 15, and 20 mm)
compared in Fig. 3 with the decrease in magnitude away from the surface. The
magnetic flux density in both, z- and r-direction, can also be analytically found.
Given a constant magnetization, magnetic flux density is independent of induced
current density. The induced surface current density is the only term contributing
to the flux density. The solution can be found in terms of elliptical integral of

first, K (k(r,z)) second, E(k(r,z)) and third kind, Pi(g(r),k(r,z)). The flux
density, r- and z- component, can be written in terms of r and z as;

5 -2y 3 (Cymn__Fa L (k(r.2)-2)K (K(r,2))+2E (K(r.2))

T n=0m=0 Hnm(r’z) k(r,z)
)
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Hpm (1, 2) is expressed as [LJ +(Rn)2+(Zm(z))2+2(RLjRn while

Ra a

a( R, 4
Dy (r) is RLa+ Ry. g(r) is (DRafz)zand k(r,z) is H(T

By substituting all known variables, i.e., thickness, inner and outer radius,
remanant flux density, the flux density evaluated by Equations (3) and (4) in both
directions are in good agreement with those simulated by the finite difference
method, as shown in Figs. 3 (a), (b), (c), and (d).
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Fig. 3. Magnetic flux density of the flywheel ring in (a) z-component and (b) r-component
simulated along the radial direction from the center to the right side of the ring. (c) and (d)
represent the magnetic flux density analytically determined by Equations 3 and 4.

Since the system possesses azimuthal symmetry, both components of
magnetic flux density are angularly constant for each height (z) as shown in Fig.
4. This numerical simulation is also in accordance with the analytical result by the
modified critical state model [7]. Furthermore, the simulated fields by COMSOL
are also comparable to the measurement of magnetic field from Neodymium Iron
Boron disk of 12.7 mm in both diameter and thickness [11], indicating that this
magnetic ring can be used in the flywheel energy storage system.
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Fig. 4. Magnetic flux density of the flywheel ring in (a) z-component and (b) r-component
measured along the angular direction at radius 80 nm. Four different displacements from the
surface (Z =5, 10, 15, and 20 mm) are compared.
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Fig. 5. Profiles of magnetic flux density of the magnetic flywheel rings ((a) Series 1, (b) Series 2,
(c) Series 3) at 5 mm displacement above the superconductor bearing.
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Spatial distributions of magnetic flux density shown in Fig. 5, demonstrate
interaction between the magnetic flywheel ring and the superconducting bearing.
For all three series, the magnetic flux remains concentrated on both left and right
sides of the flywheel. The effect of the superconducting bearing is demonstrated
as the surrounding magnetic flux is repelled. Such magnetic flux profile creates
the levitation force acting on the flywheel ring for practical energy harvesting and
storage devices. For a different configuration with switching positions of a
superconductor and a permanent magnet, Zheng recently used COMSOL to
simulate levitation and guidance force acting on a floating superconducting disk
above the permanent magnetic guideway [25]. Despite the size difference, the
magnetic flux density away from the permanent magnets exhibit a similar trend to
that observed in Fig. 3(a).

4. Conclusions

Magnetic flux density distribution from a Neodymium Iron Boron
magnetic ring of 20 mm in inner radius, 80 mm in outer radius, and 23 mm in
thickness with a remanent magnetic flux density of 1.3 T was initially simulated
with COMSOL Multiphysics program. Along the angular direction from 0°-45°,
both axial and radial components of magnetic flux densities are uniform. As
shown in Fig. 4(a), the z-component of magnetic flux density is between -0.09 T
and -0.06 T when the displacement from the ring surface is 5-20 mm. The r-
component is much higher with the maximum close to 0.35 T in the case of 5 mm
from the surface. This implies that one can use such magnetic ring for energy
storage when levitated at large displacements. This numerical simulation was
consistent with the analytical method. Simulations then demonstrated the
interaction of flywheel rings of three varying sizes with an Yttrium Barium
Copper Oxide superconducting ring of 20 mm in inner radius, 80 mm in outer
radius, and 5 mm in thickness. The result from this unique geometry indicates that
the repulsive force useful for stable flywheel energy storage systems can be
obtained in practical use of miniature devices.
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