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OPTIMALITY CONDITIONS FOR A FAMILY OF CURVES

Oltin Dogaru!, Mihai Postolache?, Madalina Constantinescu®

Fie multimea deschisd D in RP gi a un punct in D. Fie I'(a) familia
curbelor parametrizate ce trec prin punctul a. Aceasta lucrare introduce conditiile
pe care trebuie sd le satisfacd I' (a) pentru ca doud probleme de extrem sa devind
echivalente: problema de extrem local i problema de extrem local restrictionata
de familia T (a), pentru o functie arbitrard f: D — R. La final, sunt enuntate
doud probleme deschise.

Let be given D an open set in RP, and a a point in D. Also, let I" (a) be a
family of parametrized curves passing through the point a. This work introduces
a set of conditions to be satisfied by T (a) in order that two extremum problems
become equivalent: the local extremum problem and the extremum problem con-
strained by family T (a), for an arbitrary function f: D — R. Finally, two open
problems are stated.
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1. Introduction and preliminaries
Let us consider the extremum problem
min f (z), subject to x € M,

where M is a subset of RP. If M is an open set, then the extremum problem is called
unconstrained. Otherwise, the extremum problem is called constrained. In several
recent works [1], [2], [4], [8]+[11], it was shown that the above type of problem is
related to extremum problems constrained by a family of parametrized curves. This
work develop further this relationship from a different perspective: we investigate
the conditions that a family of parametrized curves has to satisfy such that a local
extremum problem be equivalent to an extremum problem constrained by this family
of parametrized curves.

Definition 1.1. Let I C R be an interval. A function « : I — RP of class C™,
m > 1, is called parametrized curve of class C". We shall say that the curve a:
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1) passes through the point a € RP if there exists tg € I such that a (tp) =

2) is regular at the point a = a (to) if o/ (to) # 0;

3) has a tangent at the point a = « (to) if there exists k& = 1,m such that
0) #

Mt

Throughout this work, we shall refer to a function f: D — R, where D is an
open subset in RP.

Definition 1.2. Let f: D - R, let a € D, and o : I — D be a parametrized curve
passing through a. We say that a is minimum point for f constrained by « if for
any to € I, with a (t9) = a, it follows

f(a) = f(a(t)) < f(a(t), Vt€lto,to+¢) € .

This Definition is more general than that used in works [1], [2] and [3], where
the above inequality is valid for all ¢ € (tg —e,tg +¢) C I.

Definition 1.3. Let I' (a) be a family of parametrized curves passing through the
point a € RP. We say that a is minimum point of f constrained by the family T (a)
if @ is minimum point of f constrained by each curve of the family I" (a).

It is obvious that any local minimum point of f is also a minimum point of f
constrained by I' (a).

2. Curves subordinate to a certain sequence

Let a be a point in R and S (a) be a family of sequences with elements from
RP, convergent to a.

Definition 2.1. A parametrized curve a passing though a (a (tp) = a) is called
subordinate to the sequence (x,) € S (a) if there exist a subsequence (z,,) and a
decreasing sequence of real numbers (tx), tx — to, such that a (t;) = x,,, Vk € N*.

Let (x,) € S (a) and « a parametrized curve having a tangent at the point a
and subordinate to the sequence (z,). Then, the direction of the tangent of « at a

Tp—a

is one of the limit points of the sequence Hni” Indeed, let us assume that « is
Tp—a

of C™-class and has a tangent at the point a = a(tg), that is there exists k = 1,m

such that a(®) (tg) # 0. It follows lim La(kto) = a® (ty). For t > to we get
t—to (t _ to)
a(t) —a(ty) k) (tg)
im =
t=to [l (t) —a(to)[| — [a® (to)]]"

Definition 2.2. Let I' (a) be a family of parametrized curves passing through the
point a in RP. The family I"(a) is called S(a)-subordinate if for each (x,) € S (a)
there exists a € I' (a) subordinate to the sequence (x,) .

Theorem 2.1. Let f: D — R and a be a point in D. Consider C (a) the family of
all sequences of distinct elements from the open set D converging to a. Assume that
I (a) is C (a)-subordinate. Then, a is local minimum point for f if and only if a is
minimum for f constrained by T (a) .
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Proof. Let us assume that a is a minimum point for f constrained by the family
I'(a). By reductio ad absurdum, suppose that a is not a local minimum point for
the function f. Then, there exists a sequence of distinct elements (z,,) from D such
that z, — a and f (x,) < f (a), Vn € N. Since the family I' (a) is C' (a)-subordinate,
we can find a sequence (z, ), a parametrized curve a € I' (a) (a (tg) = a) and a
decreasing sequence of real numbers (i) where t; — tg, so that o (ty) =z, , for all
k in N*. Therefore f (a(tx)) < f(a), Vk € N*, which contradicts the hypothesis
that a is a minimum constrained by I" (a) . O

Let g = (¢',...,9°) : D — R® be a Cl-class function. We set a in D such
that g(a) = 0. Let Cy(a) be the family of all sequences (z,) of distinct points
from D which satisfy the relations g (x,) > 0 and =, — a. Let I'y (a) be a family
of parametrized curves « passing through the point a, with the property that if
a(ty) = a, then g (a(t)) > 0, for all t € [to,to + €).

Theorem 2.2. Let f : D — R and a be a point in D. Assume that the family 'y (a)
is Cy4 (a)-subordinate. Then, a is local minimum for f constrained by g > 0 if and
only if a is minimum point for f constrained by the family I'y (a).

The proof is similar to those in Theorem 2.1.

3. Families of parametrized curves

We shall prove that there exist families of parametrized curves C (a)-subordinate.

Lemma 3.1. Let a, b, ¢, and d be real numbers with a < b and m € N*. There
exists a function ¢ : R—=R of class C*° strictly monotonic on [a,b] such that:

¥ (a) =6 Qo(b) =d, SO(Z) (a) = 30(2) (b) =0,i=1m (1)

o0 @) < b=

where k; are constants that do not depend on a, b, ¢, and d.

i=1,m, (2)

Proof. We shall prove that the interpolation Hermite polynomial ¢ for the data in
(1) is appropriate for our purpose. From (1), we have

P (z)=Ax—a)" (z—-b", AcR.

We shall show that ¢ satisfies conditions (2). First of all, ¢ is strictly monotonic on
[a,b]. Now

go(x):A/m(t—a)m(t—b)mdtJrB.

From ¢ (a) = c and ¢ (b) = d we get
d—c

B=c A=—;

(x —a)" (z —0)"dx

a
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Calculating the integral, we obtain

d— 2 !
A k0= here k= (1 21!
(b—a)™ (m!)
From |(z — a) (z — b)| < (b—a)?, Vz € [a, D], it follows
d— 2 H!
‘(p' (x)‘ <|Al(b- a,)Qm = k1|b— CCL’, where k1 = ( 7(71—62)
By Leibniz’s law we obtain
. d—
o ()] <k A= i — 7,
(b—a)
k; being constants not depending on a, b, ¢, and d. O

Remark 3.1. Keeping in mind the value of A in the above, if ¢ < d, then the
function ¢ is strictly increasing.

Lemma 3.2. [1] Let (z,,) be a sequence of real numbers such that:
1) &y, #0, Ty # Tpi1, for alln € N;

2) there exists X > 0 with In_ _ 1‘ > A\, for allm € N.

Tn41
If (yn) is a sequence of real numbers such that

3) there exists lim Yn _ r,

n—00 Tp,
then the sequence Intl 7 Yn convergent to .
Tn+1 — Tn
1
Lemma 3.3. If (z,,) is a sequence of positive real numbers and Tp41 < om T
Vn € N, where m € N*| then there exists u > 0 such that
Tn — Tnt1
(1/m 1/m>m§u,Vn€N.
A |
Proof. Denote t, = m}/ ™ We have
To—@ner _ fp =ty T AR 4+
(93711/’” — xiﬁﬂm (tn — tnr1)™ (tn — tns1)™
1 1 m—1 1 m
tmfl 1 _ e -
(i) o)
< =
— 1 m 1 m o
(1 — = 1—=
= (-3) (:-2)
and the statement is proved. O

Lemma 3.4. Let (x,) and (y,) be two sequences of real numbers such that (x,) is

strictly monotonic, x, — 0, y, — 0 and LUNENGS Then, for any m € N* there exist
n
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two functions f,g € C™ (R), two subsequences (xy,) and (yn,) and a sequence of
real numbers (t) such that ty, — 0 strictly monotonic and

f(tr) = Zng, 9(tk) = Yng, YEEN, fD(0)=0, Vi=T,m — 1,

gV (0) =0, Vi=Tm, f'™(0) #0.
Moreover, f does not depend on (yn), and, if y, > 0,¥Yn € N, then f is increasing.

Proof. Let us assume, for instance, that z, > 0, Yn € N. Replacing (x,) by one

. 1
of its subsequences, we can assume x,y1 < 2—m:cn, Vn € N. Let t, = xn/ ™ be a

strictly decreasing sequence. Clearly, the function f (x) = 2™ satisfies the hypothe-

ses. We proceed by constructing the function g. From Lemma 3.2 it follows that

Ynt1 = Yn — 0. Hence

In+l — Tn

Yn+l —Yn _ Ynt+l — Yn Tntl — Tpn

(tn—i-l - tn)m Tn+l — T (tn—i-l - tn)m

Now, we can apply Lemma 3.3: % is bounded, therefore
n+1l — in
Yn+1 — Yn
= 0. 3
(it — )" (3)

Then, for any n € N we consider for a = t,+1, b = tht1, ¢ = Yn+1 and d = y,, in
Lemma 3.1 and we obtain a function ¢, € C* (R) such that:

Pn (tn) = Yn, Pn (tn—&-l) = Yn+1, %(f) (tn) = ‘Pg) (tn+1) =0, Vi=1m

and
o) (@) < ko=l o (4)
(tn - tn—i—l)

where k; are constants that do not depend on ¢,, and y,.
Let

0, if <0

g(a:) = Pn (ZC), if MRS [tn+17tn]
Yo, if = > tg.

It is clear that g is a C'*°-class function on R\ 0. From (3) and (4) we conclude that
g is a C™-class function on R and ¢(¥) (0) =0, i = 1, m. Furthermore, according to
Remark 3.1, if y,, > 0 for all n € N, then g is increasing. O

Theorem 3.1 in the following is a refinement of a result in [3], since in the
conclusion the sequence (tj) is strictly decreasing.

Theorem 3.1. Let (x,) be a sequence of distinct points of RP, convergent to a € RP.
Then, for any m € N*, exist a subsequence (zy, ), a C™-class parametrized curve o,
with a (0) = a, having a tangent at a, and a strictly decreasing sequence (ty) of real
numbers with ty, — 0 such that a (ty) = xp, for all k € N.
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x
Proof. By a translation, we can suppose a = (0,...,0) € RP. Clearly u, = ﬁ is
Tn
bounded. Considering it as a subsequence, we can assume without loss of generality
that u, — u € RP. By a rotation, we can assume u = (1,0, ...,0). Consequently, if

Ty = (a:l xn) it follows

Ty,
2\ 2 P 2
xr X
x}L|\/1+<x’f> ++<$?>
n n

Hence z,, > 0 for a large enough value of n and x—? — 0, for all 7 = 2,p. Obviously,
xn

1
there exists a subsequence (zy,) such that z;, > 0 and xnkﬂ < 2—$nk, for all
1

k € N. Applying Lemma 3.4 to the pair of sequences z;, and xnk, i = 2,p, we
can find non decreasing functions ¢; : R—RP, i = 1,p, of class C™ and a strictly

decreasing sequence (t;) of real numbers such that t;, — 0, gpl (tk) = aznk, =1,p,

gpﬁj)( 0)=0,i=1p, j=1m—1, ¢ )(0), z—2pandg0 ()7&0 Then, the
parametrized curve « (t) = (1 (t), ..., p (), t € R, has the required properties. [

Denote (RE)™ = {z=(a',...,2F) |29t >0,...,2P > 0}.

Theorem 3.2. Let (x,) be a sequence of distinct points of (]Rg)+ convergent to the
point 0 € (REY". Then, for any m € N*, there exist a subsequence (@), a C™-class
parametrized curve o with o (0) = 0, having a tangent at 0, and a strictly decreasing
sequence (tr) of real numbers, with ty, — 0, such that a (tg) = xp,, for allk € N and
a(t) e (RN, forallt € ]0,¢).

Proof. Tt is enough to prove the following statement: if the sequence (z,) has
the property g(xh) > 0, for all n € N, then the parametrized curve a (t) =
(2 (t),...,aP (t)) given by Theorem 3.1 has the same property, for t € [0,£). We
can suppose that zh > 0; if (z,,) contains a subsequence (z,,) with z,, = 0, then
we can define zP (t) = 0. Let us consider u,, = x,/ ||x,||, which being bounded, can
be assumed to be convergent to a unit vector u = (ul, cee up). We have uP > 0.
THE CASE wP = 0. By a rotation in the subspace zP = 0 we can assume
= (1,0,...,0) . Then, by following the proof of Theorem 3.1 we have uf, — 0 and
xL/||zn|l = 1, hence x1 > 0. By the same Theorem, we get o (t) = (¢! (2), ..., ¢P (t)),
where ¢’ are nondecreasing functions and therefore, the parametrized curve « is the
required one.
THE CASE u” > 0. By a rotation we can suppose that v = (1,0,...,0). By
this rotation the halfspace 2P > 0 becomes the halfspace h (xl, ...,xp) > 0, where

P
h (a;l, ...,a:p) = Zczx’ We have , in this case, ¢; = h (u) > 0.
i=1
By a change of parameter, the parametrized curve « as in Theorem 3.1 has the
properties a® (0) =0, k=T1,m — 1 and o™ (0) = u. Let ¢ (t) = h(a(t)). Then
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Y®) (0) =0, k=T,m — 1 and (™ (0) = ¢; > 0. It results h (a (t)) > 0, Vt € (0,¢)
and so « has the required properties. ]

Corollary 3.1. Consider D be an open set in RP. Let g': D — R, i = ¢+ 1,p,
o 7

be C-class functions with rank [8‘(13 (a)} =p—gq. Let a be a point in D such that
x

g'(a) =0,i=q+1,p, and a sequence (x,) C D of distinct points, x, — a, with

the property g* (x,) > 0,1 = q+ 1,p, n € N. Then, for any m in N* there exist a

subsequence (xy, ) , a strictly decreasing sequence ti, — 0 of numbers and a C™-class

parametrized curve o passing through a, which has a tangent at the point a, such

that a (0) = a, a () = T, and g' (a(t)) >0,i=q+ 1,p, n €N, for all t € [0,¢).
Proof. Consider the change of variable y = G (z),
Yt = ', fori <qori>gq+1andg‘(a)>0
y' = g'(z), fori>q+1and ¢’ (a) =0,
which is a diffeomorphism. Now we apply Theorem 3.2. O
4. Optimal families of curves
Consider D an open set in R? and a point in D. Let g = (¢%,...,q°): D = R®

be a C'-class vector function such that rank [ggj (a)] = s and g (a) > 0. Let C (a)
x

be the family of all sequences of distinct element from D convergent to a and Cj (a)
be the family of all sequences (z,,) of distinct elements of D such that g (z,) > 0
and x, — a.

Definition 4.1. Let I' (a) a family of parametrized curves passing through a. The
family T (a) is called optimal if for any function f : D — R having a as minimum
point constrained by I' (a), it follows that a is also a local minimum point for f.

Definition 4.2. Let I'y (a) be a family of parametrized curves a passing through
the point a, with the property: if a(t9) = a, then g(a (t)) > 0, Vt € [to,to + €).
The family I'y (a) is called optimal if, given a function f : D — R for which a is a
minimum point constrained by I'y (a) , a is also a minimum point for the function f
constrained by g > 0.

The following two corollaries are consequences of Theorem 2.1 and Theorem
2.2.

Corollary 4.1. IfT' (a) is C (a)-subordinate family, then T (a) is an optimal family.

Corollary 4.2. If I'y(a) is Cy4(a)-subordinate family, then I'g(a) is an optimal
family.

For each m in N* we denote by I'™ (a) the family of all C"* parametrized curves
passing through the point a having a tangent at a. We denote by I'j’ (a) the family
of all parametrized curves o € I'"™ (a), with a (¢9) = a, such that g (a (¢)) > 0, for
all t € [to, o + ).

From Theorem 3.1 and Corollary 3.1 we obtain:
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Theorem 4.1. The family I'™ (a) is an optimal family.
Theorem 4.2. The family ') (a) is an optimal family.
The above theorems can be rephrased as follows:

Theorem 4.3. Let f: D — R and a € D. Then, a is local minimum point for f
if and only if a is minimum point constrained by '™ (a) .

Theorem 4.3 is more general than Theorem 3.1 in [3], since it uses the notion
of minimum point constrained by a family of parametrized curves in a more general
sense.

Theorem 4.4. Let f : D — R and a be point in D. Let g = (¢%,...,g°) : D = R® of

ox?

the function f constrained by g > 0 if and only if a is minimum point constrained
by L'y (a).

It is worth noting that no restriction is placed on the function f in the above

a 7
C*-class with rank [g (a)] = s such that g (a) = 0. Then, a is minimum point for

two theorems. Theorem 4.3 answers to one of the questions asked in [7], [12]. The-
orem 4.4 generalizes the results of [3], [6], [13]+]16].

Some remarks hold true.

1) The properties of a family of parametrized curves to be optimal or C (a)-
subordinate also hold for all families that include it. Therefore is useful to find
families of curves with these properties with as few elements as possible.

2) The optimality property of a family is not preserved for all its subfami-
lies. In R? let us consider the family I'™ (0), with m > 2. We have established
that this family is optimal. Let us define the subfamily ®™ (0) consisting in all
parametrized curves o € I'™ (0) (e (0) = 0) for which min{i [a® (0) # 0} < m — 1.
We shall prove first that ®" (0) is not C'(0)-subordinate family. The sequence

1
<xn == 3¢{m+H/m ) converges to 0. On one hand,

Yn 1
o =3 0 (5)
and on the other hand,
Yn 1/k(k+1

By reductio ad absurdum, we assume that ®™ (0) is a C (0)-subordinate family.
Then, there exist a subsequence (2, yn,) , a parametrized curve o € @ (0) (a (0) =
0) and a decreasing sequence ¢, — 0 such that a(t,) = (zn,,yn,), Vp € N*. If
a(t) = (z(t),y(t)), it is obvious that

z(t)=t"(a+tf (1), yt)=t"(0+tg(t)),

where a? + 1> >0, k <m — 1 and f, g are continuous functions.
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Ynp b+ t”pg (t”p)

Suppose that a # 0. Therefore, =
Tnp a+ t”pf (t"p)

. Using (5) we get that

b= 0. Hence,
ynp g (tnp)
= —g(0).
k+1)/k k+1)/k
x7(1p+ / (a + t”pf (t”p))( v
However, from (6), it follows that % — 00, which is a contradiction.

Tp

If a =0, then
Lnp — t"pf (t"p)
Ynp b+ t"pg (t”p)

— 0,

which contradicts (5).
Let us prove now that the family ®(0) is not optimal. In this respect, it is
enough to consider the function

PRI SR, fay) = (57— o™ (57 - 8,

which is of C*-class. The critical point (0, 0) is not a local minimum for the function
f. Following the above ideas, it can be proven that (0,0) is a minimum point for f
constrained by the family ®™(0).

5. Conclusions and further development

Inspired and motivated by the ongoing research in this area, [1]+[16], we
introduced and studied optimality conditions for a family of curves. Using essentially
the techniques of Oltin Dogaru and his research collaborators, our results propose
the conditions that a family of parametrized curves needs to satisfy such that a
local extremum problem be equivalent to an extremum problem constrained by this
family of parametrized curves.

OPEN PROBLEM 5.1. Do there exist minimal elements with respect to inclusion in
the class of all optimal families or in the class of all C' (a)-subordinate families?

OPEN PROBLEM 5.2. Do there exist optimal families of curves which are not C (a)-
subordinate?
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