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MULTITIME DIFFERENTIABLE STOCHASTIC PROCESSES,
DIFFUSION PDES, TZITZEICA HYPERSURFACES

Constantin UDRISTE!, Virgil DAMIAN!, Laura MATE® and Ionel TEVY?

In aceastd lucrare eztindem teoria integrabilitatii complete la sisteme dife-
rentiale stochastice multitemporale, utilizand integrale curbilinii independente de
drum. Rezultatele principale includ procesele stochastice multitemporale cu depen-
denta volumetricd, derivata unui proces stochastic in raport cu un proces Wiener
multitemporal si descrierea lor prin EDP de difuzie, polinoame Hermite si hiper-
suprafete Tzitzeica. Orice proces stochastic multitemporal diferentiabil admite o
dezvoltare in serie de polinoame Hermite. Geometric, mulfimile de nivel constant
ale proceselor stochastice multitemporale cu dependenta volumetrica sunt reuniuni
de hipersuprafete Tzitzeica. Rezultatele principale pot fi utilizate pentru amelio-
rarea tehnicilor de spirometrie.

In this paper we address the problem of extending the complete integra-
bility theory to multitime stochastic differential systems, using path independent
curvilinear integrals. The main results include the multitime stochastic processes
with volumetric dependence, the derivative of a stochastic process with respect
to a multitime Wiener process and their description via the multitime diffusion
PDEs, Hermite polynomials and Tzitzeica hypersurfaces. Any differentiable mul-
titime stochastic process admits an expansion in series of Hermite polynomials.
Geometrically, the constant level sets of multitime stochastic processes with volu-
metric dependence are union of Tzitzeica hypersurfaces. The main results can be
used to improve the spirometry techniques.
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sion PDEs, Hermite polynomials, Tzitzeica hypersurfaces, spirometry.
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1. Introduction

The paper [2] described the possibility of introducing stochastic curvilinear
integrals along all sufficiently smooth curves in R’'. The most simple situation
is that of increasing curves. Our papers [9], [13] extended this point of view to
stochastic curvilinear integrals and to completely integrable stochastic differential
systems in R’ (non-negative orthant of R™ defined via the product order). These
research trends and the original results are based on Ito-Udriste stochastic calculus
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rules [13]
AW dWP = 69 ¢, (t)dt®, dW dt® = dt® dW = 0,dt™ dt® = 0,

for any a,b = 1,d;, 8 = 1, m, where t = (t!,...,t™) € R” means the multitime,
5% is the Kronecker symbol v =t'...t™ is the volume of the hyperparallelepiped
Qot C R, colt) = 8ta and the tensorlal product 6% ¢, (t) represents the correlation
coefficients.

Section 2 studies differentiable multitime stochastic processes, highlighting
their volumetric character. Section 3 describes the differentiable multitime stochastic
processes as solutions of multitime backward diffusion PDEs or as sums of series of
Hermite polynomials. Section 4 studies unions of Tzitzeica hypersurfaces and their
connection to differentiable multitime stochastic processes. Section 5 underlines
possible applications in Thermodynamics, Biology, Chemistry, Medicine etc.

2. Multitime differentiable stochastic processes

Let (Wy)i, t = (t',...,t™) € RT be a multitime Wiener process [9] and let
f(t,x),t = (t',..,t™) € R”, = € R be a real-valued function, with f(¢,0) = 0,
which has continuous partial derivatives of the first order with respect to t*, a = 1,m
and of the second order in . Such a function defines a stochastic process

yt:f(t,Wt), tERT

By It6-Udriste Lemma [13], the foregoing process is involved in the associated sto-
chastic equation

of
ot

(t, Wt)> e+ 2L wyam, (1)

2 02

10%f
i = (5 g (W0 () + o

1. Multitime backward diffusion PDE

In order that the stochastic process y; be a martingale, the drift coefficients
in formula (1) must vanish, i.e., f is a solution of the backward diffusion-like system

1 82f aof
ot
Theorem 2.1. The solution f of the diffusion system (2) depends on the point

(t',...,t™) only through the product of components t'---t™, i.e., it is a function of
the volume v = t' ---t™ of the hyperparallelepiped Qo C R7?

(t, Wi) o (t) + (t,W;) =0, for a = 1,m. (2)

Proof From (2) it follows

of

9
o) gia :

The general solution of this PDEs system is f(t) = p(t!---t™, W), t € R

Let us take into account the shape of volumetric features, recalling that a vol-
umetric function is invariant under the subgroup of central equi-affine (i.e., volume-
preserving with no translation) transformations, where the determinant of the rep-
resenting matrix is 1.

(t, W) = ca(t) 7375
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If v =th---t™ is the volume of Qg C R and g (v, ) def % (tl . --tm,:L‘) has
continuous partial derivatives of the first order in v and of the second order in =z,
then from (2) it follows that ¢ satisfies the backward multitime heat PDE

dg 10%

—+-—=0. 3

ov T3 Ox? )
Consequently, the relation (1) reduces to

0
dg (v, W) = aTi (v, Wy) dW,.

2
Thus, if E [(gg (v, Wt)> ] is bounded with respect to t, in bounded subsets of R'?,

then the stochastic process g (v, W;) is differentiable with the stochastic derivative
% (/Uv Wt)

2.2. Path independent stochastic curvilinear integral

The foregoing theory suggests introducing the notion of multitime differen-
tiable stochastic processes. For this purpose we need a multitime Wiener process
(Wt)t7 t= (tl, ...,tm) € RT’

Definition 2.1. Let yo; C R be an increasing curve joining the points 0,t € R’
A multitime stochastic process ®; = ®(t,W;), t € R is called differentiable with
respect to Wy, on R, if there exists a multitime adapted measurable process ¢y =
o(t,Wy), t € R such that E [qb?] is bounded for t in compact sets of R} and

Q=0+ | ¢sdWs, (4)
Yot
where the stochastic curvilinear integral is path independent.

In terms of stochastic differentials, the multitime stochastic process ®; is dif-
ferentiable if the stochastic system

Ay = ¢y AW

is completely integrable, i.e., ®(¢) is a function of v = t!---#™ and hence ¢(t) is a
function of v [13].

The multitime process ¢; is called the derivative of the multitime process ®;
with respect to W; (see also [2], [3]).

Remark A differentiable multitime stochastic process has properties similar
to those of a holomorphic function: a differentiable process has a differentiable de-
rivative, the curvilinear integral primitive of a differentiable process is differentiable,
and each differentiable process admits a power series expansion.

3. Hermite polynomials and stochastic processes

There is a special class of solutions of the backward multitime heat equation
which will be particularly interesting in stochastic problems. These are the Hermite
polynomials (e.g., [1], [4]). Denote by H, (v,z) the n'* Hermite polynomial of two
variables v and z, i.e.,

)" 2 9n 22
SO U -5 (5)

v e
n! ox"

H, (v,z) =
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Examples:
15 1 1, 1, 1 4

1
Hy(v,z) = §($2 —v); Hz(v,x) = g% ~ 5%v; Hy(v,x) = 2 e v+ PRt

For t = (t',...,t™) € R? and v = t'---t™, the sequence {H (v,)}02, is a

complete orthogonal system with respect to the weight (27v) 2 2 e3v . The orthogo-
nality means

0, ifm #n,
E [Hyn (0, W) H (v, W))] = {v"ifm:n (6)
n!’ '

Now, let us use the generating function expansion
1 2 >
e 2 =" H,(v,2)¢", 1, €R, v € Ry,

Taking the partial derivatives with respect to v and x, we replace the exponential
by the corresponding series, and equating the coefficients of both series, we find

0 1 0

‘g -_-g ., =

ov " 27" oy
Consequently each Hermite polynomial H,(v,z) is a solution of the backward mul-
titime heat PDE. Thus

H,=H, ;.

Theorem 3.1. Fach Hermite polynomial H, (v, W) is a differentiable process and
its derivative is Hy—1(v, Wy).

It follows that finite sums of Hermite polynomials processes are differentiable
processes. We extend this statement to series of Hermite polynomials, following the
ideas of Cairoli and Walsh [2].

Theorem 3.2. Suppose {an} - is a sequence of real numbers such that
oo ’Un
E a2 — <00, forallv> 0 (the series is convergent).
n!

n=0
Then, the process ®; defined by

Z an H (v, W) (7)
1s differentiable with respect to Wy and its derivative ¢ is
(bt = Z aan—l(U7 Wt) (8)
n=1

The convergence of the series is understood in L?.

Proof. By the orthogonality relations (6), we find

2 m .
(Zan UWt> :Zai%.
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This mean value is bounded due to the convergence of the series in the right hand
member. It follows that the series (7) converges in L? and the same is true for the
series (8). Consider now the sequence of partial sums

= Z aan—l (U7 Wt) 5
n=1
and let
(I)Em)zao—i-/ ¢( )dW—ao—l—Zan (v, Wy),
it

ot n=1
where

NGt =t = T = 1 e [0, 10T = ot L =

is an increasing curve joining the points 0 and ¢, with ¢® = const > 0, § # a. It
follows
lim &™) = &, in L2,

m—0o0
To finish the proof, we need only to check that
lim d>(m dWs = / lim QS(m s, =1, m.
m—00 a m—r0o0

Again, by the orthogonahty relation (6), we have

B[(o-o)] = T g

n=m+1
=\
,y&

and consequently
2
(s — ol )dW) -
0t

&, (thgelpagetl gmyn 2,
—Htﬁ/o Z a? =) dr® = Z aim.

O

Theorem 3.3. Suppose that ¢ (v,x) has continuous partial derivatives of the first
order in v and of the second order in x, and that {¢ (v,W:)} is a differentiable
process, where v =t'---t™. Then, for eacht € R, we can write

’U Wt Zan U Wt

where the convergence is understood in L2 and, fort = (t',...,t™) € R7

n = 2 B (0, W3) H (0, W) )
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Proof. Define the process ®; = > ¢° anHy (v, Wy). Due to the convergence

o0
2 V"
E a, — < 00,
!
0 n!

the series defining ®; converges in L? and the process ®; is differentiable.
Since H, is an orthogonal sequence, we get

E [®.H, (v, W})] = E [an H2 (v, W})] = a, %

n

But, by hypothesis, E [¢ (v, W}) H,, (v, W})] = %5 a,. Thus,
E[(¢ (v, W) — @) Hy, (v, Wy)] = 0,¥n € N.
Then, ¢ (v, W;) — @ = 0. O

Remark We fix the point ¢t = (t!,...,#™) € R and the volume v = ¢! ---¢™.
Using the fact that H,, is a complete orthogonal sequence, we can define

fv,z)= Z anHy (v, ),
0

where

nl 1 +oo x?
- —— ) dx.
an = T /_OO f(v,z)exp < 21}) T

This is just another way to write the relation (9).

4. Union of Tzitzeica hypersurfaces

A hypersurface M C R, m > 3, is called Tzitzeica hypersurface, provided
there exists a constant a € R such that we have K = ad™*!, for all points ¢ =
(t',...,t™) € M, where K is the Gauss curvature of the hypersurface and d is the
distance from the origin of the space to the tangent hyperplane to the hypersurface
at the current point ¢t. Since the Gauss curvature K describes the shape of the
hypersurface, a Tzitzeica hypersurface has a bending against the tangent hyperplane
in fixed proportion to the normal component of the position vector ¢t. The simplest
Tzitzeica hypersurfaces are the constant level sets M, : t!.--t™ = ¢ in R™ (2m~!
connected components) (see, also, [5], [7], [8] or [11]).

Remark The Gauss curvature of a Cartesian implicit surface

M, : F(t',t*,t3) =¢
in R? is the function
K = [[F3(F3Fi1 — 2F 1 Fi3) + FLF3)[F3(F3Fag — 2Fy Fog) + Fi5 Fag
—  (F3(—FyFos + F3Fio — FyFy3) + F1 2 Fag)?| [F5(FE+ F5 + F§) 71,

where the indices mean partial derivatives. The surface M, is curving like a parab-
oloid if K(t) > 0, hyperboloid if K(t) < 0, or a cylinder or plane if K(¢t) = 0, near
a point t = (t1,¢2,¢3) € M..

Let us show that the constant level sets of the functions (¢! ---#™ ), with

respect to t = (t!,...,t") € R, are Tzitzeica hypersurfaces or unions of simple
Tzitzeica hypersurfaces in R’ indexed by the points .
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Theorem 4.1. If ¢ : R — R is a C? nonconstant function and c is a noncritical
value of ¢, then the constant level set N, : @(t'---t™) = c is a union of simple
Tzitzeica hypersurfaces.

Proof. Let A. be the set of the solutions of the equation ¢(v) = ¢ and
v =t'-.-t™. Then the constant level set N, is the union of the constant level sets
th.. ™ =k, k € A.. If ¢ is not a critical value of ¢, then the set N, is a union of
hypersurfaces.

Remark If ¢ is a critical value of ¢, then the set N, is a union of constant
level sets t'---t™ =k, k € A, but the level sets which correspond to ¢'(k) = 0 are
not hypersurfaces.

Theorem 4.2. (1) Each section x = c of the hypersurface H,(v,z) = 0 in R™T! =
{(t,z)} is a union of Tzitzeica hypersurfaces in R’}

(2) A cylinder v =1t -t™ = c in R™*! = {(¢, 1)} intersects alternatively the
constant level sets H,,(v,x) =0 and H,.1(v, ) = 0 in R™FL

Proof Each Hermite polynomial H,, has n roots, real, distinct, and strictly
inside the interval of orthogonality, as a polynomial in an orthogonal sequence. Also,
the roots of each polynomial in an orthogonal sequence lie strictly between the roots
of the next higher index polynomial in the sequence.

For each simple Tzitzeica hypersurface v = t'---#™ = ¢, the zeroes of the
Hermite polynomial H, (v, z) lie strictly between the simple zeroes of the Hermite
polynomial H,,1(v,z).

The constant level set E [H,, (v, W}) Hy, (v, W})] = ¢ > 0 is a simple Tzitzeica
hypersurface.

5. Volumetric functions and their applications

The applications of the foregoing theory are in domains based on volumetric
functions indexed after additional variables, such as Thermodynamics (e.g., thermo-
dynamic functions of volume and temperature), Chemistry (e.g., family of volume-
dependent interatomic pair potentials), Biology, Medicine (e.g., spirometry) etc.

One important example is Spirometry [6] (meaning the measuring of breath)
used for the Pulmonary Function Tests (PFTs), measuring Lung functions, i.e.,
functions of the amount (volume) and/or speed (flow) of air that can be inhaled and
exhaled. Spirometry is an important tool used for generating pneumotachographs
which are helpful in controlling certain ailing such as asthma, pulmonary fibrosis,
cystic fibrosis, and COPD (chronic obstructive pulmonary disease).

The spirometry test is performed using a device called a spirometer, which
comes in several different varieties. Most spirometers display the following graphs,
called spirograms:

1) a volume-time curve, showing volume (liters) along the vertical axis and
time (seconds) along the horizontal axis;

2) a flow-volume loop, which graphically depicts the rate of airflow on the
vertical axis and the total volume inspired or expired on the horizontal axis (a
graphic of the instantaneous rate of airflow during a forced expiration; it may be a
maximum expiratory flow-volume curve or a partial expiratory flow-volume curve).

A canonical prediction PDE for spirometric parameters and maximal expira-
tory flows is the diffusion PDE.
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