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APPLICATION OF THE (%/)-EXPANSION METHOD FOR

(24+1)-DIMENSIONAL BOUSSINESQ EQUATION AND
KADOMTSEV-PETVIASHVILI EQUATION

Bin Zheng!

By using the (%I)—expansion method proposed recently, we de-
rive the exact traveling wave solutions of two nonlinear evolution equations
in this paper. As a result, the traveling wave solutions with three arbitrary
functions are obtained including hyperbolic function solutions, trigonometric
function solutions and rational solutions. The computation for the method
can be fulfilled by the general mathematical software. So the method appears
to gain an advantage over the traditional method.
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1. Introduction

During the past four decades or so searching for explicit solutions of
nonlinear evolution equations by using various different methods have been the
main goal for many researchers, and many powerful methods for constructing
exact solutions of nonlinear evolution equations have been established and
developed such as the inverse scattering transform, the Backlund/ Darboux
transform, the tanh-function expansion and its various extension, the Jacobi
elliptic function expansion, the homogeneous balance method, the sine-cosine
method, the rank analysis method, the exp-function expansion method and
so on [1-17], but there is no unified method that can be used to deal with all
types of nonlinear evolution equations.

!
In [18], Mingliang Wang proposed a new method called (G )
method. The main ideas of the proposed method are that the traveling wave
solutions of a nonlinear evolution equation can be expressed by a polynomial in

(%), where G = G(§) satisfies a second order LODE, G' = %ég),ﬁ = ¢(x,t)
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or £ = ¢(x,y,t), and the degree of the polynomial can be determined by con-
sidering the homogeneous balance between the highest order derivatives and
nonlinear terms appearing in a given nonlinear evolution equation. Then the
coefficients of the polynomial can be obtained by solving a set of algebraic
equations. Based on its simplicity and validity, this method has soon been
applied to get the exact solution of many nonlinear equations by several re-
searchers [19-22].

In this paper, we will consider the (2+1) dimensional Boussinesq equation
23

2
Ut — Ugg — Uyy — (U )a:m — Ugzgpe = 0

and the Kadomtsev-Petviashvili equation [24]
(ug + 6utly + Uggy)s + 30Uy, =0

We will derive the traveling wave solutions of the two equations by using the

/
(%)—expansion method.
The rest of the paper is organized as follows. In Section 2, we describe

!
the (%)—expansion method for finding traveling wave solutions of nonlinear

evolution equations, and give the main steps of the method here. In the subse-
quent sections, we illustrate the method in detail with the celebrated the (2+1)
dimensional Boussinesq and the Kadomtsev-Petviashvili equations. In the last

!/
Section, the features of the (%)—expansion method are briefly summarized.

/
2. Description of the (%)-expansion method

(G/)—expansion method for finding
out the traveling wave solutions of nonlinear evolution equations.

Suppose that a nonlinear equation, say in three independent variables
x, y and t , is given by

In this section we will describe the

P(uautauxauyauttvuxtauytyux’xauyya'-') =0 (]-)

where u = u(z,y,t) is an unknown function, P is a polynomial in v = u(z,y, t)
and its various partial derivatives, in which the highest order derivatives and
nonlinear terms are involved. In the following we give the main steps of the
!/
(%)—expansion method.
Step 1. Combining the independent variables x, y and ¢ into one variable
& =¢(x, y, t), we suppose that

u(z, y, t) =u(§), &=~E&(, y, 1) (2)
the traveling wave variable (2) permits us reducing Eq. (1) to an ODE for
u=u(f)
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P(u, u',u", ...) =0. (3)
Step 2. Suppose that the solution of (3) can be expressed by a polynomial
!/
in (%) as follows:

/
u(é) = am(%)m + (4)

where G = G(§) satisfies the second order LODE in the form
G"+ NG +puG =0 (5)
Qs -, A and p are constants to be determined later, «,,, # 0. The unwritten

(%)7 the degree of which is generally equal
to or less than m — 1. The positive integer m can be determined by considering
the homogeneous balance between the highest order derivatives and nonlinear
terms appearing in (3).
Step 3. Substituting (4) into (3) and using second order LODE (5), col-
!

lecting all terms with the same order of (%) together, the left-hand side of

!
(G ). Equating each coefficient
of this polynomial to zero, yields a set of algebraic equations for a,, ..., A and pu.

part in (4) is also a polynomial in

Eq. (3) is converted into another polynomial in

Step 4. Assuming that the constants «,,,...,A and p can be obtained
by solving the algebraic equations in Step 3, since the general solutions of
the second order LODE (5) have been well known for us, substituting a,y, ...
and the general solutions of Eq.(5) into (4) we can obtain the traveling wave
solutions of the nonlinear evolution equation (1).

In the subsequent sections we will illustrate the proposed method in detail
by applying it to various nonlinear evolution equations.

3. (241) dimensional Boussinesq Equation

In this section, we will consider the (241) dimensional Boussinesq equa-
tion:
Ut — Ugy — Uyy — (uQ)zx — Uggar = (6)

In order to obtain the traveling wave solutions of Eq.(6), we suppose that

w(z, y, t) =u(§), E=kx+ly+mt+d (7)
k, I, m, d are constants that to be determined later.
By using (7), (6) can be converted into an ODE

(m? — k2 — )" — 2k*(W? + ") — K*u™® =0 (8)
Integrating the ODE (8) with respect to £ once, we obtain

(m* — k* — P/ — 2K (ud) — k™" =g 9)
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where ¢ is the integration constant that can be determined later.
Suppose that the solution of (9) can be expressed by a polynomial in
!
(%) as follows:

m

G,
u(©) =Y al %) (10)
i=0
where a; are constants, G = G(§) satisfies the second order LODE in the form:

G"+ MG +pG =0 (11)
where \ and p are constants.
Balancing the order of uu’ and v in (9), we have m+m+1=m+3 =
m = 2. So Eq.(10) can be rewritten as
G’ G’
u({) :a2(6)2+a1(6)+a0, a9 7é0 (12)

as, ai, ag are constants to be determined later. Then it follows

W (€) = —202(%) + (—ar — 2020 (%) + (~aid — 2a0)(F) — anp

~—

(%)3 + (SGz,u + a1\ + 4@2)\2)(%)2

/

W(€) = 6ax(F) + (21 + 1007

Q

+(6as A + 2a1 0 + a1 N?) () + a1 + ag A\

o

() = —24as( G )P+ (—54azA—6ar)(F )+ (—12a; A~ 38a A2~ d0azu) (& )?

!

+(—=52a A\t — Ta; A? — 8ag\? — 8a1u)(%)2 + (—14aa Ny — ag A3

!/

—16asu® — 8a1)\u)(%) — ay N2 — 2a1 1% — 6ag\y?
Substituting Eq.(12) into (9) and collecting all terms with the same power
G/

of (@) together, equating each coefficient to zero, yields a set of simultaneous
algebraic equations as follows:

(%/)0 o —mPayp + 2kta p? + Krayp + 6ktas i + Payp + ka2 — g
+2k%apai =0
(%/)1 o Ak2agasp + 8krai A + 14ktao N2 + 21%agu + 2k*a? i + k*ay )\
+2k%2agar A\ ag A—2m2aspu+16k*as pi® +2k 2 as pi—m2a A+ kta A3 = 0
G,)2 : Pay + 212a9\ — mPaq + 4k agas\ + 2K as\ + 52k*as  p + k2ay

+2k%aga; + Tk*a A2 + 8k*aip — 2m2as\ + 8ktas\3 + 2k2a3 \
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+6k%aasu =0
!
(%)3 0 2Kk2ay + 12k*a N + 4k2a2p — 2mPag + 40k agpu + 2k%a2 + 21%ay
+6k2a1a2)\ + 38k4a2)\2 + 4k2a0a2 =0
!
(G sakAar) + 4k%a3\ + 6k'ay + 6k2ara5 = 0
G/
() + 24k%az + 4k?*a3 = 0
Solving the algebraic equations above, yields:

LR+ E*DN2 8k —m? + 12
A9 = —6k2,&1 = —6]€2)\, ag — —= + + a mt
k2

k=kl=l,m=m,d=d g=20 (13)

where k, [, m,d are arbitrary constants.

Substituting (13) into (12), we get that

G’ G TR+ RN 8k —m?® + 12
:_k2_2_ ]C2)\— _ =
E=kr+ly+mt+d (14)

where k, [, m,d are arbitrary constants.

Substituting the general solutions of Eq.(11) into (14), we can obtain the
traveling wave solutions of (3.1) as follows:
Case (a): when A\? —4u > 0

1 1 2
(1 sinh 5\/)\2 — 4p€ + C5 cosh 5\/)\2 —4u€

1 1
C1 cosh 5\/)\2 — 4pu€ 4+ Cysinh 5\/)\2 — 4ué

1E* + B2 4+ 8k — m? + 2
- 5

w1 (€) = 3K =3k (N2 —4p)

where ¢ = kx +ly +mt +d, k,l,m,d, Cy, Cy are arbitrary constants. In
particular, if C; =1, Cy, =0, u =0, A\=1, k=1l=m = d =1, then we have

1 3 1
u(@,y,t) =5 — gltanh (e +y+ ¢+ 1)]2.

Case (b): when A2 —4pu <0
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u(€) = SN -3k (4u—N)

1 1
—(C sin 5\/4u — A2€ + (5 cos 5\/4u — N\

1 1
(' cos 5\/4u — A2+ (O sinix/él,u — N2

LR+ N 48k — m? 4 12
- 3

where ¢ = kx +ly+mt +d, k,l,m,d,Cy, Cy are arbitrary constants. In
particular, if C; =1, Cy, =0, p=0, A=1, k=1l=m =d =1, then

9
u(w,y,t) = Gftan(z +y + 1+ P = 2.

Case (c): when \? — 4 =0
6K°C5  1K* + KM +8k* — m?* + 2
(C) + Cy)* 2 k?
where £ = kx + ly + mt + d, k,l,m,d,C,Cy are arbitrary constants. In
particular, if C; =Co =1, p=1, A\=2, k=1=m =d =1, then we have

( ) 1 6
w(x,y,t) =—= — :
Y 2 (z+y+t+2)’

us(€) = 3K2N? —

4. Kadomtsev-Petviashvili Equation
In this section, we will consider the Kadomtsev-Petviashvili equation
(us + 6UUy + Uggy)z + 30Uy, =0 (15)
Suppose that
u(z, y, t) =u(§), E=c+y—ct (16)

¢ is a constant that to be determined later.
By (16), Eq.(15) can be converted into an ODE

—cu” 4 6(u)? + 6ur” + uY + 30u” =0 (17)
Integrating the ODE (17) once, we obtain

(—c+30)u +u® + 6uu’ =g (18)
where ¢ is the integration constant that can be determined later.
Suppose that the solution of (18) can be expressed by a polynomial in
!
(%) as follows:
m G/ )
u(©) =Y ad Sy (19)
i=0
where a; are constants, and G = G(§) satisfies the second order LODE in the
form:

G" + AG' + uG =0 (20)

2
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where A and p are constants.
Balancing the order of wu’ and «” in Eq.(18), we have m +m + 1 =
m+3 = m=2. So Eq.(19) can be rewritten as
G G

u(€) = ax P + () +ap, @ #0 (21)

as, ai, ag are constants to be determined later.
Substituting Eq.(21) into (18) and collecting all terms with the same
G/

power of (ﬁ) together, equating each coefficient to zero, yields a set of simul-
taneous algebraic equations as follows:
!

(%)0 o —6ag\u? — g — 3oaipu + cayp — 2a, 42 — 6agapp — a; N2 =0

i —30ay A — 8aiA\u + 2casp — 6agag A — 6a%y — 14a, X1 — 12agasp

G
+ear A — 16agu® — 60asp — ar X3 =0
/
(%)2 . —18ajasp — 60as\ — 12apas\ — Ta;\? — 30a; — Saipu — 6agay

—6a2\ — 8as\® — 52as A\t + cay + 2cas\ = 0
(G —6a3 + 2caz — 1203 — 12, A — 40az)1 — 380577 — 18ay05\
—12agas — 60as =0
)4 —5das\ — 18ajas — 12a3\ — 6a; = 0
) : —12a2 — 24as = 0

Solving the algebraic equations above, yields:
ay = —2, a; = =2\, ag = ag, ¢ =8+ 30 + 6ag, g =0 (22)

where ag, A, p are arbitrary constants.

Substituting (22) into (21), we get that

G’ G’
u(§) = —2(5)2 — 2/\<E) + ag
E=x+y— (8u+ 30+ 6ag)t (23)

Substituting the general solutions of (20) into (23), we can obtain the
traveling wave solutions of (15) as follows:

Case (a): when A2 —4p > 0
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1 1

Ch sinh§\/)\2 —4pu& + C5 cosh 5\/)\2 —4u&
1 1

C' cosh 5\/)\2 — 4pué + Cy sinh 5\/)\2 —4pu&

u(€) = $A2- 3 (A2—4p)

+ap
where £ =z +y — (8u + 30 + 6ag)t, ag, C1, Cy are arbitrary constants.

Case (b): when A\* —4p <0
1 1

—(Csin 5\/4u — A2 4+ Cy cos 5\/4,u — N2
1 1

(' cos 5\/4u—)\2§—|—028in§\/4u—/\2§

u(€) = SN =L (4p—22)

+ag
where £ =z +y — (8u + 30 + 6ag)t, ag, C1, Cy are arbitrary constants.
Case (c): when A\ —4p =0

205
(Cy + C5¢)

where £ =z +y — (8u + 30 + 6ag)t, ag, C1, Cy are arbitrary constants.

U3(£) = %)\2 - + Qo

5. Conclusions

In this paper we have seen that the traveling wave solutions of the (2+1)
dimensional Boussinesq equation and the Kadomtsev-Petviashvili equation are

successfully found out by using the (%/)
summarize the method in the following.

Firstly, we assume the /solution of the ODE can be expressed by an m-
(%)
as integration, where G = G(§) is the general solutions of a second order
LODE, and the positive integer m is determined by the homogeneous balance
between the highest order partial derivatives and nonlinear terms appearing
in the reduced ODE. Then the coefficients of the polynomial can be obtained
by solving a set of simultaneous algebraic equations resulted from the process
of using the method.

Secondly, it is important to solve the algebraic equations resulted. We
can use the MATHEMATICA or MAPLE to find out a useful solution of the
algebraic equations.

-expansion method. Now we briefly

th degree polynomial in by using the traveling wave variable as well

!
In all, the (%)—expansion method has its own advantages: direct, concise,
elementary, and it can be used for many other nonlinear evolution equations.



/
Application of the (%)-expansion method for (2+1)-dimensional Boussinesq equation and Kadomtsev-Petviashvili equationl

6. Acknowledgements

I would like to thank the anonymous referees for their useful and valuable
suggestions.

REFERENCES

1] M.J. Ablowitz, P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse
Scattering Transform, Cambridge Univ. Press, Cambridge, 1991.

[2] C. Rogers, W.F. Shadwick, Backlund Transformations, Academic Press, New York,
1982.

[3] M. Wadati, H. Shanuki, K. Konno, Prog. Theor. Phys., 53(1975), 419.

[4] V.A. Matveev, M.A. Salle, Darboux Transformation and Solitons, Springer, Berlin,
1991.

[5] G.T. Liu, T.Y. Fan, New applications of developed Jacobi elliptic function expansion
methods, Phys. Lett. A, 345(2005), 161-166.

[6] M.J. Ablowitz, H. Segur, Solitons and Inverse Scattering Transform, STAM, Philadel-
phia, 1981.

[7] R. Hirota, The Direct Method in Soliton Theory, Cambridge University Press, Cam-
bridge, 2004.

[8] M.L. Wang, Exact solutions for a compound KdVCBurgers equation, Phys. Lett. A,
213(1996), 279-287.

[9] J.H. He, The homotopy perturbation method for nonlinear oscillators with discontinu-
ities, Appl. Math. Comput., 151(2004), 287-292.

[10] Z.Y. Yan, An improved algebra method and its applications in nonlinear wave equa-
tions, Chaos Solitons Fractals, 21(2004), 1013-1021.

[11] G.W. Bluman, S. Kumei, Symmetries and Differential Equations, Springer-Verlag, New
York, 1989.

[12] G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method,
Kluwer, Boston, 1994.

[13] C.T. Yan, A simple transformation for nonlinear waves, Phys. Lett. A, 224(1996),
77-84.

[14] W. Malfliet, W. Hereman, The tanh method I: Exact solutions of nonlinear evolution
and wave equations, Phys. Scr., 54(1996), 563-568.

[15] M.A. Abdou, The extended F-expansion method and its application for a class of non-
linear evolution equations, Chaos Solitons Fractals, 31(2007), 95-104.

[16] J.H. He, X.H. Wu, Exp-function method for nonlinear wave equations, Chaos Solitons
Fractals, 30(2006), 700-708.

[17] T. Ovzis, I. Aslan, Exact and explicit solutions to the (3 + 1)-dimensional JimboMiwa
equation via the Exp-function method, Phys. Lett. A, 372(2008), 7011-7015.

[18] Mingliang Wang, Xiangzheng Li, Jinliang Zhang, The (%/)—expansion method and trav-
elling wave solutions of nonlinear evolution equations in mathematical physics, Physics
Letters A, 372(2008), 417-423.

[19] Mingliang Wang, Jinliang Zhang, Xiangzheng Li, Application of the (%)—expansion
to travelling wave solutions of the Broer-Kaup and the approximate long water wave
equations, Appl. Math. Comput., 206(2008), 321-326.



184

Bin Zheng

[20]
[21]
[22]
[23]

[24]

Ismail Aslan, Exact and explicit solutions to some nonlinear evolution equations by
/

utilizing the (%)-expansion method, Appl. Math. Comput., in press, (2009).

G/

<)

ear evolution equations, Appl. Math. Comput., in press, (2009).

Xun Liu, Lizin Tian, Yuhai Wu, Application of -expansion method to two nonlin-

Ismail Aslan, Turgut Ozis, Analytic study on two nonlinear evolution equations by

using the (%)—expansion method, Appl. Math. Comput.,209(2009), 425-429.

Zhenya Yan, Similarity transformations and exact solutions for a family of higher-
dimensional generalized Boussinesq equations, Phys. Lett. A, 361(2007), 223C230.
B.B. Kadomtsev, V.I. Petviashvili, On the stability of solitary waves in weakly disper-
sive media, Sov. Phys. Dokl., 15(1970), 539C541.



