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DYNAMICS OF ANGELES’S QUASIMORO MOBILE ROBOT 
USING PRINCIPLE OF VIRTUAL POWERS 

Şt. STAICU * 

We report the analysis of the dynamics of a two-wheeled mobile robot of 
Angeles, which comprises an intermediate body. The mathematical model of the 
robot is formulated using the principle of virtual powers, but it is possible to verify 
the results in the framework of the Lagrange equations with its multipliers. The 
dynamic model of this mechanical system is crucial for the design and control in 
real-time of the robot at hand.  

Lucrarea analizează dinamica unui robot mobil al lui Angeles, care este  
prevăzut cu două roţi şi cu un corp intermediar. Modelul matematic al robotului 
este formulat pe baza principiului puterilor virtuale, dar rezultatele pot fi verificate 
cu modelul de lucru al ecuaţiilor şi multiplicatorilor lui Lagrange. Modelul dinamic 
al acestui sistem mecanic este crucial pentru construcţia şi controlul mişcării 
robotului în timp real. 

Keywords: dynamics, mobile robot, virtual powers 

Introduction        

Mobile robots are pre-programmable multi-functional systems designed to 
move material, parts, tools or specialized devices through variable programmed 
motions for performance of a variety of tasks. They consist of a mobile platform 
and some cylindrical wheels, which have a rolling with friction motion on a fixed 
or mobile surface. 

The condition of rolling motion without slipping and side-slipping between 
the wheels and the contact surface demands the presence of nonholonomic 
constraints, which represent the kinematic model particularity of this kind of 
robot. The nonholonomic constraints reduce the mobile robot’s instantaneous 
velocity degrees of freedom, and hence most robots have only two actuated joints: 
the two driven wheels. 

Wheeled mobile robots are needed nowadays in various applications: transport 
for  material or tools over distances much larger than their dimensions, using in 
inaccessible places and in some agricultural workings, entertainment robots, 
service robots for domestic chores and for special medical proceedings, assistive 
devices for the mobility-challenged and rovers for interplanetary exploration. This 
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is why the dynamic studies of these mobile machineries acquired more and more 
importance. 

Angeles’s Quasimoro mobile robot [1] is a quasiholonomic mechanical 
system, which comprises two driving wheels and an intermediate body carrying 
the payload. The robot is currently under design, its novelty lying in the ease with 
which it can be controlled. The mass center of the robot is particularly placed on 
the vertical passing through the midpoint of the line joining the wheel centers. 
Moreover, in order to cope with instability, the mass center of the intermediate 
body is placed below the above-mentioned line. 

The two main tasks of this robot are: positioning and orienting the payload, 
supported by the intermediate body on a flat surface (locomotion task) and 
stabilizing the oscillation of the intermediate body (stabilization task). 

A literature survey on two-wheeled robots led to three different systems: 
SCOUT [2], Ginger-Segway [3] and JOE [4]. The mass center of the robot being 
placed below the line joining the wheel centers and non using any gyro to sense 
the inclination of central body, Quasimoro operates under a simpler control 
system than the ones of Segway and JOE. 

In his paper, Angeles [9] studied some aspects of the mobile robots dynamics 
using the Lagrange equations. Other authors (Colbaugh et al., [11]) gave an 
interesting characterization of a mechanic nonholonomic system. Volterra, Appel 
and Ceaplighin used also the Lagrange equations and multipliers formalism in the 
dynamics of motion with nonholonomic constraints. 

The mathematical model of a robotic mechanical system is essential to predict, 
in simulation, the robot dynamics and to properly design and control to robot [5], 
[6], [8], [12]. 

In the present paper we are going to establish a dynamic model for the motion 
of Angeles’s Quasimoro mobile robot using a matrix approach. We will consider 
that the coordinates of mass center of the robot, the orientation angle,  the angular 
displacements of the wheels and the rotation angle of the intermediate body 
determine the position and orientation  of the robot. 

Using the principle of virtual works, we formulate the matrix model of 
Quasimoro rolling robot, which represents a two-input nonlinear dynamical 
system with three outputs. This model is validated by means of simulations and 
analyses of the dynamic response of the system to different inputs and initial 
conditions. 
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Fig. 1. Kinematical scheme of the rolling robot 
 

The results of the analysis are very important for the robot design and control 
of the robot. It turns out that the major disturbance in accomplishing the two tasks 
at hand is caused by the oscillation of the intermediate body. Hence, the 
introduction of design corrections and the derivation of a suitable control 
algorithm should be considered in order to render the robot performance least 
sensitive to this disturbance. 

 
1. Kinematics model of the robot 

 
Quasimoro is a mobile robot consisting of two wheels of same radius r , which 

are actuated by two independent motors, and of an intermediate body, which 
contains the control equipment, the actuation system, the power supply and the 
transmission mechanism. The robot wheels are of conventional type according to 
the classification given in [7]. During motion both robot wheels can roll without 
slipping on a horizontal planar surface and are assumed to be permanently in 
contact with this surface. 

A fictitious horizontal platform, attached to the frame 1112 zyxC  of axis 12xC  
linking the centers of the wheels, has a planar motion [15]. Its position with 
respect to an inertial reference frame 000 zyOx , with the origin O  fixed to the 
ground surface, is given by the coordinates ryx ,, 1010  and by the orientation angle 
ψ , which form the following matrices  
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         Fig. 2 Rectilinear motion: rotation angle 1θ         Fig. 3 Rectilinear motion: rotation angle 1θ  
 

Two cylindrical coaxial wheels, linked to the frames AAA zyxA 2222 and BBB zyxB 2222 , 
are coupled to an intermediate body by means of revolute joints in points 2A  and 

2B  (Fig. 1). They have known masses mmm BA == 22 and the tensors of inertia 
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A cylinder of mass MmC =2 and tensor of inertia 
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is attached to the frame CCC zyxC 2222 , which is centered at the midpoint 2C of line 
joining the mass centers of both wheels and represent the chassis of the 
intermediate body. 

Let us indicate with )2,1( =iiθ the rotation angles of the two wheels and 
with 3θ  the inclination angle of intermediate body about 12 xC . One obtains the 
following transformation matrices in the mobile reference frames: 
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Defining l  the distance between the centers of the wheels, the following 
vectors give the relative positions of points CBA GGGCBA ,,,,, 222  
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The kinematics of the three elements is completely characterized by the 
translation velocity 

                                     Tyxr ]0[ 101010 =                                                 (7) 
and by the angular velocities that are given below 
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The speed difference between the wheels generates rotation of the vehicles. 
Moreover, differentially-driven robots can rotate on the spot. 

Assuming that the two wheels roll without slipping on the surface, three 
analytical relations between the characteristic velocities of the two-degrees-of-
freedom mobile robot express the non-holonomic constraints: 
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One of three analytical constrained relations (9) have been integrated:  

                                             
l
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The above conditions of connectivity (9) can provide the expressions of 
Jacobian and characteristic velocities 
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In order to determine the relations of connectivity of accelerations we derive 
the matrix relations (9): 
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Thus, the characteristic accelerations ψ , 1010 , yx  are immediately obtained:  
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      Fig. 4 Rectilinear motion: rotation angle 3θ             Fig. 5 Rectilinear motion: rotation angle 3θ  
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To describe the kinematical state of each body 2T  with respect to fixed 
frame 000 zyOx , we express the angular velocity 20ω and the linear velocity 20v of 
the reference origin 
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Performing the derivatives with respect to time of the equations (17), we 
obtain the accelerations 20γ , 20ε : 
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and a useful square characteristic matrix (Staicu, [14]) 
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2. Equations of motion 

 
    The torques 311 umm =  and 322 umm = , which are generated by electric 

motors, transmit the motion at the two wheels. Having the direction of the 
common axis 22BA , these moments can control the motion accomplished by the 
active wheels and the intermediate body. 

      Fig. 6 Rectilinear motion: angular velocity 1θ      Fig. 7 Rectilinear motion: angular velocity 1θ  
 
    We will study the direct dynamic problem, in order to establish the evolution of 
the rotation angles 321 ,, θθθ  and the variation of the angular velocities 321 ,, θθθ  
during the transient motion of st 1=Δ between initial position and one, which 
correspond to other inactivated motion, knowing the torques 21, mm . Thus, we will 
use the method of virtual powers. 
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    Indeed, we assume that the two torque pulses of amplitudes 1m  and 2m  at an 
arbitrary instant are known by the functions 
                                     tmtm ii πsin)( = , ]1,0[),2,1( ∈= ti ,                             (19) 
where, for example, 1.01 =m Nm. 
    In every analysis, the system is considered initially at rest. It is noteworthy that 
the simulation runs do not account for either external dissipation such as rolling 
friction between the wheels and ground, and for internal dissipation, such as 
friction in the bearings. 
    The principle of virtual powers states that a mechanical system is under 
dynamic equilibrium if and only if the virtual powers developed by all external, 
internal and inertia forces vanish during any general virtual displacement, which 
is compatible with the kinematical constraints (Angeles, [9]; Staicu, [13]). 
    The force of inertia and the resultant moment of the forces of inertia have the 
following general form 
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where im is the mass and ∫= dmrrJ T
i

~~ˆ  the tensor of inertia of rigid body iT .    
The virtual velocities of the robot bodies result from relations (9) and (17), 
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    The following expression of the torque of the couple applied to the wheel A2 
results    
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with its analytical form 

                            
,2

319
2
218

2
11713163215

21143132121111

θθθθθθθ

θθθθθ

AAAAA

AAAAm

+++++

++++=                   (23) 

where 



Dynamics of Angeles’s Quasimoro mobile robot using principle of virtual powers 11

                    2
3

2
23

2
1

222
11 4

1)sincos()3(
2
1 MrJJmrA ++++= θθρρ  

                    2
3

2
23

2
1

222
12 4

1)sincos(
2
1 MrJJmrA ++−−= θθρρ  

                    313 cos
2
1 θMrdA =  

                    3
2

14 sinθρMrdA =  
                    3321

2
15 cossin)(2 θθρ JJA −=                                                      (24) 

                    3321
2

16 cossin)(2 θθρ JJA −−=  
                    017 =A  
                    3

2
18 sinθρMrdA −=  

                    319 sin
2
1 θMrdA −= . 

    The relations (22) represent the direct dynamic model of the mobile robot 
motion. For the moment 2m of the torque applied to the wheel B2 we obtain an 
analogous expression: 
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    The third virtual displacement of the intermediate body correspond to the 
angular velocities 
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We obtains the following differential equation  
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      Two important maneuvers can be implemented:  
      1º. Rectilinear motion, with the angles 21,0 θθψ == , two equal torques 
applied to the wheels 
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and one differential equation 
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     2º. Pure rotation about the vertical axis passing through a fixed center 2C , 
with 0,,2 3121 =−=−= θθθρθψ  and two equal torques, opposite in sign, 
applied to the wheels 
                                 11
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3. Simulation 

 
    As application, we will analyze the motion of a rolling robot, which has the 
following characteristics: 
   5.0=m kg, 5=M kg, 2.01 =J kgm2, 4.02 =J kgm2, 3.0=r m, 2.0=d m, 5.0=ρ . 
    The response of the dynamical system at hand to two different inputs has been 
studied. These inputs will be represented by torques pulses (19), actuating the 
wheels, of duration of st 1=Δ applied at 00 =t . Each simulation takes 90 s, but 
most of all outputs plots will be reported in the time window that goes from 0 s to 

3+Δt s, for example, to better show the transient response. 
     In every simulation the system is considered initially at rest. Two manoeuvres 
has been simulated: 1º rectilinear motion, while maintaining constant the 
orientation angle 0=ψ ; 2º pure rotation about the vertical axis passing through 

2C , with 03 =θ , i.e. vary the orientation angle ψ only. 

      Fig. 8 Rectilinear motion: angular velocity 3θ      Fig. 9 Rectilinear motion: angular velocity 3θ  
 
    1º. Rectilinear motion 
     In this simulation run, two equal torque pulses (19) of amplitude 

1.021 == mm Nm are applied to the wheels.  
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       The outputs plots are reported in the following graphs: 1θ  (Fig. 2, Fig. 3), 3θ  
(Fig. 4, Fig. 5), 1θ  (Fig. 6, Fig. 7) and 3θ  (Fig. 8, Fig. 9). 
       The angles 1θ , 2θ  and their first derivatives are equal, since the load condition 
is symmetric. Moreover, we can argue that the periodic signal 21 θθ =  (Fig. 7) is 
generated by 3θ . 

                                                    Fig. 10 Pure rotation: rotation angle 1θ            

                                                    Fig. 11 Pure rotation: rotation angle 1θ        

        From Fig. 5, where 3θ  is represented by a periodic signal, we can infer that 
the oscillation of the intermediate body in the steady state is between –0.0129 rad 
and 0.0129 rad; of course, this theoretical oscillation needs no stabilization, since 
its amplitude is not big enough to be considered a disturbance for the 



Şt. Staicu 
 
14

accomplishment of the stabilization task. However, )0(3θ might not be zero 
because of assembly and manufacturing errors; moreover, the actual surface on 
which the robot will move can be indeed slightly inclined. Hence, it is necessary 
to stabilize this oscillation by a suitable control algorithm. 
      The rectilinear trajectory is followed with high accuracy. Of course, the 
wheels will never experience the same torque in reality, which calls for a suitable 
control algorithm for accomplishment of the locomotion task. Moreover, a control 
algorithm is also needed because the velocity 110 θrx =  along the rectilinear 
trajectory is not constant in the steady state. 
        2º. Pure rotation 
      Two equal torque pulses tmmm πsin121 =−=  of amplitude 1.01 =m Nm, 
opposite in sign, are applied to the wheels, during st 1=Δ . The output plots are 
displayed in the following graphs: 1θ  (Fig. 10, Fig. 11) and 1θ  (Fig. 12, Fig. 13). 

                                                  Fig. 12 Pure rotation: angular velocity 1θ    
 
      The trajectory of point 2C reduces to a point coincident with the origin O of the 
inertia frame; moreover, the angular velocity will be constant in the steady state, 
as indicated in Fig. 13. Anyway, for what has been already stated about the errors 
affecting the construction of the robot, in reality the trajectory of point 2C will not 
be a point; hence, a control algorithm for the accomplishment of the location task 
is needed. 
      For the assigned initial conditions and the type of input, the angle 3θ  and its 
first and second derivatives will remain theoretically equal to zero during the 
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whole simulation, while 1θ , 2θ and their derivatives are equal in amplitude and 
opposite sign. 

                                          Fig. 13 Pure rotation: angular velocity 1θ  
 

Conclusions 
 

      1º. Dynamics of Angeles’s Quasimoro mobile robot, a novel quasiholonomic 
mechanical system, was discussed in the paper. 
      2º. The virtual powers method above applied, establishes three differential 
nonlinear equations for the rotation angles 321 ,, θθθ . 
      3º. We formulated the mathematical model of the system and provided a 
numerical validation of it. Numerical simulations showing the dynamical 
behaviour of each of the system variables that need to be controlled are provided 
as well [10]. This work is crucial for the design and control of the system. 
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