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DYNAMICS OF ANGELES’S QUASIMORO MOBILE ROBOT
USING PRINCIPLE OF VIRTUAL POWERS

St. STAICU

We report the analysis of the dynamics of a two-wheeled mobile robot of
Angeles, which comprises an intermediate body. The mathematical model of the
robot is formulated using the principle of virtual powers, but it is possible to verify
the results in the framework of the Lagrange equations with its multipliers. The
dynamic model of this mechanical system is crucial for the design and control in
real-time of the robot at hand.

Lucrarea analizeaza dinamica unui robot mobil al lui Angeles, care este
prevazut cu doud roti si cu un corp intermediar. Modelul matematic al robotului
este formulat pe baza principiului puterilor virtuale, dar rezultatele pot fi verificate
cu modelul de lucru al ecuatiilor si multiplicatorilor lui Lagrange. Modelul dinamic
al acestui sistem mecanic este crucial pentru constructia si controlul miscarii
robotului in timp real.
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Introduction

Mobile robots are pre-programmable multi-functional systems designed to
move material, parts, tools or specialized devices through variable programmed
motions for performance of a variety of tasks. They consist of a mobile platform
and some cylindrical wheels, which have a rolling with friction motion on a fixed
or mobile surface.

The condition of rolling motion without slipping and side-slipping between
the wheels and the contact surface demands the presence of nonholonomic
constraints, which represent the kinematic model particularity of this kind of
robot. The nonholonomic constraints reduce the mobile robot’s instantaneous
velocity degrees of freedom, and hence most robots have only two actuated joints:
the two driven wheels.

Wheeled mobile robots are needed nowadays in various applications: transport
for material or tools over distances much larger than their dimensions, using in
inaccessible places and in some agricultural workings, entertainment robots,
service robots for domestic chores and for special medical proceedings, assistive
devices for the mobility-challenged and rovers for interplanetary exploration. This
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is why the dynamic studies of these mobile machineries acquired more and more
importance.

Angeles’s Quasimoro mobile robot [1] is a quasiholonomic mechanical
system, which comprises two driving wheels and an intermediate body carrying
the payload. The robot is currently under design, its novelty lying in the ease with
which it can be controlled. The mass center of the robot is particularly placed on
the vertical passing through the midpoint of the line joining the wheel centers.
Moreover, in order to cope with instability, the mass center of the intermediate
body is placed below the above-mentioned line.

The two main tasks of this robot are: positioning and orienting the payload,
supported by the intermediate body on a flat surface (locomotion task) and
stabilizing the oscillation of the intermediate body (stabilization task).

A literature survey on two-wheeled robots led to three different systems:
SCOUT [2], Ginger-Segway [3] and JOE [4]. The mass center of the robot being
placed below the line joining the wheel centers and non using any gyro to sense
the inclination of central body, Quasimoro operates under a simpler control
system than the ones of Segway and JOE.

In his paper, Angeles [9] studied some aspects of the mobile robots dynamics
using the Lagrange equations. Other authors (Colbaugh et al., [11]) gave an
interesting characterization of a mechanic nonholonomic system. Volterra, Appel
and Ceaplighin used also the Lagrange equations and multipliers formalism in the
dynamics of motion with nonholonomic constraints.

The mathematical model of a robotic mechanical system is essential to predict,
in simulation, the robot dynamics and to properly design and control to robot [5],
[6], [8], [12].

In the present paper we are going to establish a dynamic model for the motion
of Angeles’s Quasimoro mobile robot using a matrix approach. We will consider
that the coordinates of mass center of the robot, the orientation angle, the angular
displacements of the wheels and the rotation angle of the intermediate body
determine the position and orientation of the robot.

Using the principle of virtual works, we formulate the matrix model of
Quasimoro rolling robot, which represents a two-input nonlinear dynamical
system with three outputs. This model is validated by means of simulations and
analyses of the dynamic response of the system to different inputs and initial
conditions.
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Fig. 1. Kinematical scheme of the rolling robot

The results of the analysis are very important for the robot design and control
of the robot. It turns out that the major disturbance in accomplishing the two tasks
at hand is caused by the oscillation of the intermediate body. Hence, the
introduction of design corrections and the derivation of a suitable control
algorithm should be considered in order to render the robot performance least
sensitive to this disturbance.

1. Kinematics model of the robot

Quasimoro is a mobile robot consisting of two wheels of same radius », which
are actuated by two independent motors, and of an intermediate body, which
contains the control equipment, the actuation system, the power supply and the
transmission mechanism. The robot wheels are of conventional type according to
the classification given in [7]. During motion both robot wheels can roll without
slipping on a horizontal planar surface and are assumed to be permanently in
contact with this surface.

A fictitious horizontal platform, attached to the frame C,x,y,z, of axis C,x,

linking the centers of the wheels, has a planar motion [15]. Its position with
respect to an inertial reference frame Ox,y,z,, with the origin O fixed to the

ground surface, is given by the coordinates x,,,,,,7 and by the orientation angle
v , which form the following matrices
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Fig. 2 Rectilinear motion: rotation angle &, Fig. 3 Rectilinear motion: rotation angle &,

Two cylindrical coaxial wheels, linked to the frames 4,x; y;'z;' and B,x? y2 27,

are coupled to an intermediate body by means of revolute joints in points 4, and

B, (Fig. 1). They have known masses m; = m? = mand the tensors of inertia

lmr2 0 0
4
Ji=JF=J=] 0 imrz 0 (2)
0 0 lmr2
A cylinder of massm; = M and tensor of inertia
J 0 0
JE=l0 J, 0 (3)
0 0 J,

is attached to the frame C,x; y5 z5 , which is centered at the midpoint C, of line

joining the mass centers of both wheels and represent the chassis of the
intermediate body.

Let us indicate with@d, (i =1,2)the rotation angles of the two wheels and
with@; the inclination angle of intermediate body about C,x,. One obtains the
following transformation matrices in the mobile reference frames:

A _ B _ 6 c _ e
a) =a;a, 4, =4a;-a;, a, =a-a,

4)
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where
0 0 -1 0 0 -1
a,=|-1 0 0| a=|1 0 0
0 1 0 0 -1 0
cosf, sind, 0
a” =|—sinf, cosh, 0|,(i=1,2,3). (5)
0 0 1

Defining / the distance between the centers of the wheels, the following
vectors give the relative positions of points 4,,B,,C,,G 4, Gg, G

0 0
—A / ~B / -C =
== H=l-=| H =0
2715 21 > 21 (6)
0 0
d
Bt =0, P =0, A“=|0|
0

The kinematics of the three elements is completely characterized by the
translation velocity
Ho =[x D10 01" (7)
and by the angular velocities that are given below
@\ =Y iy, @ ;1: Oy, @ 51: 0,5 (8)
@ S=64i,, u,=[0 0 1]".
The speed difference between the wheels generates rotation of the vehicles.
Moreover, differentially-driven robots can rotate on the spot.
Assuming that the two wheels roll without slipping on the surface, three

analytical relations between the characteristic velocities of the two-degrees-of-
freedom mobile robot express the non-holonomic constraints:

- ~ 4 ] T
Vot =[r6, 0 0]

Vo + @y =[r0, 0 0T, ©)
where

X, COSY + ), sSiny 0 -y O
Vip =yl =| = Xy SINW + Yyg COSY |, @y =y =| 0 0. (10)

0 0 0 O

One of three analytical constrained relations (9) have been integrated:

r

w=p0,-6), p=—. (11)

/
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The above conditions of connectivity (9) can provide the expressions of
Jacobian and characteristic velocities

‘/)zp(éz _91)

. r . .
xlo=§(9|+92)0051// (12)

Do = %(91 +‘92)SinW-
In order to determine the relations of connectivity of accelerations we derive
the matrix relations (9):
Fro + (@109 + @10 =
=[rd, 0 01" +@,[rd, 0 0]
Fio + (@@ + @10y = (13)

=[n6, 0 01" +@,,[r6, 0 01",

where
X19 COSY + Jo siny
I .. (14)
Y10 = a10M0 =| ~ X0 SINY + Yo COSY
0
Thus, the characteristic accelerations 7, ¥,,, j,, are immediately obtained:

V=p (éz - ‘91)

(15)

10 22(91 +92)cosw—%(922 —6})siny

. 7o - . . 7 . .
P10 =E(91 +92)s1n1//+7p(922 —6)cosy.
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Fig. 4 Rectilinear motion: rotation angle g, Fig. 5 Rectilinear motion: rotation angle g,
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To describe the kinematical state of each body7, with respect to fixed
frame Oxy,z,, we express the angular velocity @,,and the linear velocityv,, of
the reference origin

Voo = da1 (Vg + @yoFyy) (16)
W = Ay Wy + Dy
Performing the derivatives with respect to time of the equations (17), we
obtain the accelerations 7,,&,:
V20 = an V10 +(@1@1 + @19)7a1} (17)
~ kN N ~ T -~
&0 =AWy T W1 +a3D)d2 W)
and a useful square characteristic matrix (Staicu, [14])
~ o~ ~ ~ o~ ~ T
W)Wy + Doy = a5 {019 Dg + Byg)ay + (18)

~ o~ ~ ~ T ~
+ 09Dy + Wy + 207 D150y
2. Equations of motion

The torques m; =myi; and i, = m,ii,, which are generated by electric
motors, transmit the motion at the two wheels. Having the direction of the
common axis 4, B,, these moments can control the motion accomplished by the

active wheels and the intermediate body.
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Fig. 6 Rectilinear motion: angular velocity 91 Fig. 7 Rectilinear motion: angular velocity 91

We will study the direct dynamic problem, in order to establish the evolution of
the rotation anglesé,, d,, 6, and the variation of the angular velocities 6, 6,, 6,
during the transient motion of Af=1s between initial position and one, which
correspond to other inactivated motion, knowing the torques m,, m, . Thus, we will
use the method of virtual powers.
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Indeed, we assume that the two torque pulses of amplitudes m, and m; at an
arbitrary instant are known by the functions
m,(t)=m;sinx t,(i =1,2), t €[0,1], (19)
where, for example, m; = 0.1 Nm.

In every analysis, the system is considered initially at rest. It is noteworthy that
the simulation runs do not account for either external dissipation such as rolling
friction between the wheels and ground, and for internal dissipation, such as
friction in the bearings.

The principle of virtual powers states that a mechanical system is under
dynamic equilibrium if and only if the virtual powers developed by all external,
internal and inertia forces vanish during any general virtual displacement, which
is compatible with the kinematical constraints (Angeles, [9]; Staicu, [13]).

The force of inertia and the resultant moment of the forces of inertia have the
following general form

= - ~2  ~ \=G
—Fyop=—mj{y;y + (@ +&;0)7;" } (20)
=My =={mFCF 1 +J &0 + Do 16010}

where m; is the mass and J e § 77T dm the tensor of inertia of rigid body 7;.

The virtual velocities of the robot bodies result from relations (9) and (17),
namely:
oy, =1, 03, =0, @3, =0,01, =—p
V9, =[—7siné, —rcosf, 0]
Vol =[0 0 0]

g7 = [g sin 6 gcose3 0] 2D
w3l =[pcosb — psin g, 1]

5304 =[pcosb, - psind, 0]

AZCOVQT [pcosb, — psinf;, 0]

The following expression of the torque of the couple applied to the wheel 4,
results

AT A = AT BT
my =V, Fy + @i, M 5 30 + V204 Fy 20 T (22)
~ BT ~OVT _ o
D04 Mzo + V04 on + B, Mzo,
with its analytical form
ml = Allel + A1202 + A1393+A149102 + (23)

+ Ay50,0; + 4,600, + A6 + 4305 + 4,003,
where
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. 1
Ay = %711}’2(34—,02)+,02(J1 cos? 6;+J, sin? 93)+2Mr2
. 1
A, = —%mrzp2 —pz(Jl cos’ 0, +J, sin’ 93)+1Mr2

1
A5 = 5Mrdcosz93

Al4 = Mrdp2 Sin93

A15 :2p2(.]1 _J2)Sln63 00593 (24)
Aig =2p%(J, —J,)sin@; cos b,
47 =0

AlS = _M}"dpz Sin 93
A19 Z—%MrdSIHQg

The relations (22) represent the direct dynamic model of the mobile robot
motion. For the momentm,of the torque applied to the wheel B, we obtain an
analogous expression:

+ Ays0,0; + Ar040, + Ay 0F + Arg03F + 4,003,

(25)

where
Ay = Ay, Ayy = Ay, Apz = Aj
26
Ay = Ay, Ays = Aig, Aps = A5 (26)
Ay = Aig, Apg = Ai7, Ayg = Ay -
The third virtual displacement of the intermediate body correspond to the
angular velocities

a)%}c = l > a)lvc = O’ a)gc = O, a)lv()c = 0 (27)
We obtains the following differential equation

J205 + Mgd sin6s + - Mrd(0) +6,)cos8; + (28)

+(J, = Jy)p* (0, —0,)? sinb; cosOy =m, +m,.
Two important maneuvers can be implemented:
1°. Rectilinear motion, with the anglesy =0, 6, =6,, two equal torques
applied to the wheels

my=m, = ; Gm + M)r?d, + ;Mm’([% cosf; — 07 sin 6;) (29)

and one differential equation
J 105 + Mgdsin 6, + Mrd, cos0; = 2m,. (30)
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2°. Pure rotation about the vertical axis passing through a fixed center C,,
with v =-2p6,,0, =—-6,,60; =0 and two equal torques, opposite in sign,
applied to the wheels

3 ..
m, =‘m2‘=[mr2(5+p2)+2p2J1]91- (1)

3. Simulation

As application, we will analyze the motion of a rolling robot, which has the
following characteristics:

m=0.5kg, M =5kg,J, =0.2 1<gm2,J2 =0.4kgm’ r=03m, d =02m, p=0.5.

The response of the dynamical system at hand to two different inputs has been
studied. These inputs will be represented by torques pulses (19), actuating the
wheels, of duration of At =1sapplied at #, =0. Each simulation takes 90 s, but

most of all outputs plots will be reported in the time window that goes from 0 s to
At + 3 s, for example, to better show the transient response.

In every simulation the system is considered initially at rest. Two manoeuvres
has been simulated: 1 rectilinear motion, while maintaining constant the
orientation angle w =0; 2" pure rotation about the vertical axis passing through

C,,with 6, =0, i.e. vary the orientation angle  only.
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Fig. 8 Rectilinear motion: angular velocity 93 Fig. 9 Rectilinear motion: angular velocity 93

1". Rectilinear motion
In this simulation run, two equal torque pulses (19) of amplitude

m; =m; =0.1Nm are applied to the wheels.
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The outputs plots are reported in the following graphs: 6, (Fig. 2, Fig. 3), 6,
(Fig. 4, Fig. 5), 6, (Fig. 6, Fig. 7) and 6, (Fig. 8, Fig. 9).

The angles 6,,60, and their first derivatives are equal, since the load condition
is symmetric. Moreover, we can argue that the periodic signal 6’1 = 92 (Fig. 7) is
generated by 93 .

ntheta1(rad)

0 0z 0‘4 UIB UI8 1
t(s)
Fig. 10 Pure rotation: rotation angle 8,

nteta1{rad)

0 ns 1 15 2 25 3
t(s)

Fig. 11 Pure rotation: rotation angle &,
From Fig. 5, where 6, is represented by a periodic signal, we can infer that

the oscillation of the intermediate body in the steady state is between —0.0129 rad
and 0.0129 rad; of course, this theoretical oscillation needs no stabilization, since
its amplitude is not big enough to be considered a disturbance for the
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accomplishment of the stabilization task. However, &;(0)might not be zero
because of assembly and manufacturing errors; moreover, the actual surface on
which the robot will move can be indeed slightly inclined. Hence, it is necessary
to stabilize this oscillation by a suitable control algorithm.

The rectilinear trajectory is followed with high accuracy. Of course, the
wheels will never experience the same torque in reality, which calls for a suitable
control algorithm for accomplishment of the locomotion task. Moreover, a control
algorithm is also needed because the velocityx,, =76, along the rectilinear
trajectory is not constant in the steady state.

2. Pure rotation

Two equal torque pulses m; =-m, =m;sinz ¢ of amplitudem; =0.1Nm,
opposite in sign, are applied to the wheels, during Az =1s. The output plots are
displayed in the following graphs: 6, (Fig. 10, Fig. 11) andé’1 (Fig. 12, Fig. 13).

04

nomegai{rad/s)

0 0z 04 06 08 1
t(s)

Fig. 12 Pure rotation: angular velocity 6’1

The trajectory of point C,reduces to a point coincident with the origin O of the
inertia frame; moreover, the angular velocity will be constant in the steady state,
as indicated in Fig. 13. Anyway, for what has been already stated about the errors
affecting the construction of the robot, in reality the trajectory of point C, will not
be a point; hence, a control algorithm for the accomplishment of the location task
is needed.

For the assigned initial conditions and the type of input, the angled, and its

first and second derivatives will remain theoretically equal to zero during the
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whole simulation, whiled,,6,and their derivatives are equal in amplitude and
opposite sign.
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Fig. 13 Pure rotation: angular velocity 91

Conclusions

1". Dynamics of Angeles’s Quasimoro mobile robot, a novel quasiholonomic
mechanical system, was discussed in the paper.

2'. The virtual powers method above applied, establishes three differential
nonlinear equations for the rotation angles 6, 6,, 6,.

3’. We formulated the mathematical model of the system and provided a
numerical validation of it. Numerical simulations showing the dynamical
behaviour of each of the system variables that need to be controlled are provided
as well [10]. This work is crucial for the design and control of the system.
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