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SIMPLE MONTE-CARLO METHODS IMPLEMENTED IN
ROOT FOR FITS USING PARAMETERS WITH ERRORS

Lucian Stan1 and Cristina Clisu3

           In order to extract nuclear excited state lifetimes in trans-fer reaction 
using the Plunger device, the Doppler Decay Curve Method is in certain cases 
the only way available, as the shifted peak is not observ-able. However, the 
problem of extracting this lifetime for levels that have considerable cascade 
feeding from levels with lifetimes of the same order of magnitude is not trivial. 
While the Bateman equations provide a physically-transparent way of fitting 
such curves, there is nonetheless a problem of propagating the errors of the 
lifetimes of the higher energy levels and of the feeding ratios into the fit and 
the extraction of the lifetimes. In this article, we have used a Monte Carlo 
fitting method implemented in ROOT in order to easily and transparently 
solve this problem and help extract lifetimes with correctly-calculated errors.

Keywords: nuclear lifetimes, plunger, transfer reactions, ROOT, Monte 
Carlo, fitting

1. Introduction

The determination of lifetimes of nuclear excited states is an important
objective of current experimental low-energy nuclear structure research. The
lifetimes of such states, besides allowing the determination of spins and pari-
ties, also allow the extraction of reduced matrix elements, offering an insight
into the complicated inner workings of the nuclear force and nuclear structure.

Currently, there are methods to extract nuclear lifetimes ranging from
attoseconds up to thousands of years[1], an amazing 28 orders of magnitude.
The Recoil Distance Doppler Shift method can be used to extract lifetimes in
the area of fs to ps, and relies on the Doppler shift of γ-rays emitted by a resid-
ual nucleus following a nuclear reaction. Following the reaction, the residual
will have a velocity of the order of a percent of the speed of light. If the target
is thin enough, the residual will escape the target and continue its path. Any
γ-rays emitted during flight will have a shifted energy if observed at an angle
different from 90◦ with respect to the direction of the nucleus’ velocity.
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In the RDDS method, a special device called plunger is used[2]. The
plunger holds a stopper foil (usually gold) at a fixed distance behind the tar-
get, being able to maintain the distance with sub-micrometer accuracy and
vary it as required. All γ-rays that are emitted after the residual reaches the
stopper are not Doppler shifted. The ratio of the shifted and unshifted peaks
in an energy spectrum then depends on the target-stopper distance, the veloc-
ity of the residual (both of which are easily obtainable) and the lifetime and
feeding history of the excited state, which can then be extracted.

In the case of 64Ni, which is a magic nucleus with Z=28, the above situ-
ation has the particularity that the gating transition, the 2+− > 0+ 1345 keV
γ-ray, is very short lived. Because the gating is only done on the unshifted
peak, this means that the gating eliminates the shifted peaks of the longer-lived
levels from the spectra. The γ-transitions emitted in flight from these levels
are unlikely to be in coincidence with the unshifted transition from the 1345
keV level, lowering their presence in the gated spectra to the point they are
unobservable. However, measuring the normalized intensity of the unshifted
peak as a function of the target-stopper distance, the lifetime of the state can
be determined by fitting with Bateman’s equations[3], as can be seen in Fig.1.

Lifetime determination for the 2276 keV 2+ level in 64Ni
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Fig.1. The normalized intensity of the 930 keV 2+ →0+ from 64Ni 
for six different target-stopper distances from an experiment 
undertaken in the Nuclear Physics Department of IFIN-HH. The 
points fit well on a simple exponential decay which is used to 
extract the lifetime of the level, which is shown in the upper right 
corner.

Considering the simplest case of a nuclear level with direct feeding only,
the normalized intensity of the unshifted peak as a function of the flight time
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will be given by the well known exponential equation:

N0(tf ) = N0(0) ∗ e−
tf
τ0 (1)

which is quite straightforward to fit and extract the lifetime. However, in the
common case of levels that also have cascade feeding, the situation becomes
far more complicated! For example, let us look at a part of the level scheme of
64Ni shown in Fig.2, which shows a cascade of five transitions directly feeding
each other. The five levels that are involved in these transitions and whose
lifetimes can thus be extracted are marked from 0 to 4. While the extraction
of the lifetime of the level labeled 0 is trivial, it gets more complicated down
the cascade. Besides the fact that the Bateman equations get far more com-
plicated, the lifetimes and feeding ratios of the levels above also have to be
taken into consideration.

Fig. 2. A part of the level scheme of 64Ni, showing five of the most 
intense transitions from this nucleus in cascade. While the 
extraction of the lifetime of the first level (labeled 0) is trivial, 
for all the other ones, cascade feeding and the lifetimes of the 
levels above them have to be taken into account. Image taken 
from [4] and modified.
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The Bateman equations giving the population levels for the second and
third levels at time tf are:

N1(tf ) = N1(0) ∗ e−
tf
τ1 +N0(0) ∗ τ1

τ0 − τ1
∗ (e

−
tf
τ0 − e−

tf
τ1 ) (2)

N2(tf ) = N2(0) ∗ e−
tf
τ2 +N1(0) ∗ τ2

τ1 − τ2
∗ (e

−
tf
τ1 − e−

tf
τ2 )+

+N0(0)∗ τ2
(τ1 − τ2)(τ0 − τ2)(τ0 − τ1)

∗(τ0(τ1−τ2)e−
tf
τ0−τ1(τ0−τ2)e−

tf
τ1 +τ2(τ0−τ1)e−

tf
τ2 )

(3)

where N1(tf ) and N2(tf ) are the populations of levels 1 and 2 after flight
time tf , N0(0), N1(0) and N2(0) are the initial populations of the levels and
τ0, τ1 and τ2 are the lifetimes of the levels.

These are significantly more complicated than the simple exponential in
Eq.1, especially through the appearance in the formulas of the lifetimes and
feeding ratios from other levels. Even so, this is a simplified case in which each
level is fed by only one other transition. In reality, multiple transitions with
different lifetimes can feed and depopulate different levels, complicating the
formula and the fitting even more.

The number of unshifted γ-rays emitted from a level is not given by
formulas 2 and 3, but by:

Nγ1 = N1(tf ) +N0(tf ) (4)

Nγ2 = N2(tf ) +N1(tf ) +N0(tf ) (5)

because, after coming at rest, not only the nuclei which are in the excited state
1 emit an unshifted 323.4 keV γ-ray, but also those that are in excited state
0, which will decay to excited state 1 while at rest.

Using these formulas to fit experimental data and extracting the lifetimes
of the levels of interest requires knowledge of the lifetimes of the preceding
levels and of the feeding ratios, which can either be extracted from the data
or from the same fit. It is certainly preferable to extract the values from other
fits and then include them as parameters into the new fit, as this limits the
free parameters and improves the quality and errors of the fitting procedure,
but this is not always possible.

Less simple, however, is how to correctly and transparently propagate the
errors that are associated with the other lifetimes and feeding ratios through
the fit. This is crucial in order to be able to publish reliable data with correctly
estimated errors. Skipping the propagation of the errors of the other lifetimes
and feeding ratios and only using the error from the fitting procedure can lead
to a significant underestimation of the error in certain cases.
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2. The program and procedure

In order to address this issue, we have devised a simple solution using a
Monte Carlo fitting procedure employing the ROOT programming language[7].
Due to the tremendous power of modern-day computers, millions of fits can be
done in just a couple of minutes. This allows us to not only fit the data using
the other previously extracted parameters, but to also vary these parameters
within their errors. All of these values are then used to extract the total
error of the fit which contains both the error of the fitting procedure and the
propagation of the errors from the previous values used in the fit.

During the experiment, an 18O beam impinged upon a 62Ni target at
an energy slightly below the Coulomb barrier in order to suppress fusion [5].
The resulting γ-rays were detected using the RoSphere spectroscopy array [6].
Data was taken for six different target-stopper distances, namely 10, 17, 25,
45, 100 and 150 µm. For each distance, the data was sorted into symmetric
γ-γ matrices. A gate was placed on the most intense transition in 64Ni, the
2+ → 0+ 1345.8 γ-ray. The unshifted areas of the coincident γ-rays were
determined for every observable transition in 64Ni at each distance.

The areas were normalized using the very intense 150 keV transition
in 77Kr, which was produced through the competing 62Ni(18O,3n)77Kr fusion
evaporation reaction. Due to the long lifetime of this state, it decays almost
entirely at rest regardless of the target-stopper distance. The area of this peak
is thus proportional to the total number of ions delivered to the target, making
it excellent for normalization.

The resulting normalized intensities for each transition were fed to a
ROOT program written specifically for this purpose and reproduced in the
Appendices. The data format consisted of three columns, these being the
flight time, the γ intensities and their errors. The fitting was done from the
top down, as the results from the first fit would be used in the second one and
so on.

For the top-most transition of 359.4 keV, the intensities were fitted with
a simple exponential and no other processing was done. The data points, the
fit and the resulting lifetime can be seen in Fig.3 in red.

For the following 323.4-keV transition, formula 4 was used for the fitting
procedure. However, parameters τ0 and N0(0), which are the lifetime and
the population of the preceding level, must be given a value. The lifetime of
the level was taken from the previous fit to be 12.514 ps. Instead of trying
to extract the initial population of the preceding level, the direct population
ratio extracted from a previous thick-target experiment is used instead, with
N1(0) = f0 ∗N0(0). However, this does not account for the fact that τ0 and f0
are not precisely determined nor does it allow for the propagation of errors.

Thus, instead of doing a single fit with τ0 = 12.514 ps and f0 = 0.639,
one million fits were made instead. Before each fit, τ0 and f0 were initialized
using a random Gaussian function centered on their respective values and with
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Fig. 3. The data points, fits and lifetimes for the first two 
transitions from the cascade shown in Fig.2, with an energy of 
359 and 323 keV, respectively. The data points from the 359 
keV γ-ray were fitted with a simple exponential with no further 
processing. The data points from the 323 keV transition were 
fitted with Eq.4 using the ROOT program described in this pa-
per.

σ equal to the previously extracted errors. τ1 and N0(0) were treated as free
parameters of the fit. For each fit result, τ1 and its error were used to add 100
points to a histogram, again according to a Gaussian distribution. Only the
fits for which the χ2 was reasonable were kept for further processing.

The result is a histogram in which all the results of the fits are added up,
as can be seen in Fig.4. For all the functions used in the example, the resulting
distribution in the histogram was a Gaussian. Fitting it with a Gaussian
function, the extracted center of the distribution was taken as the final fit
value, while σ was considered to be the error of the fit.

As a comparison, for the lifetime of the 323 keV γ-ray, using our method
and measured feeding, the extracted value was τ1 = 13.838 ± 3.638 ps. With
a simple fit, neglecting the errors of the direct feeding ratio and of the lifetime
of the previous level, the extracted value is τ1 = 13.94 ± 3.396 ps, which is
very close. This indicates that the fitting error is dominated by the errors of
the data points. However, the difference between the errors is 0.242 ps, which,
while no more than 2% of the total value, would have been an important un-
derestimation.

Alternatively, trying to fit the feeding ratio as well instead of extracting
it from the data gives erroneous results. With a simple fit but a fitted feeding
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Fig. 4. The resulting histogram following the one million fits of 
the data from the 323 keV γ-ray. In all of our cases, the points are 
distributed on a Gaussian. The center of this Gaussian, at 13.838 
ps, has been taken as the total fit value and the σ of the Gaussian, 
σ = 3.638 ps, as the error of the value.

ratio, the extracted lifetime is τ1 = 22.185 ± 4.534 ps, while, with our Monte
Carlo fit, the extracted lifetime is τ1 = 22.169 ± 4.517 ps, again very close to
each other. However, both of these values are completely discarded because
the fitted feeding ratio is of the order of 20, in complete disagreement with the
data which indicates that f0 = 0.558± 0.106.

Continuing to the next transition in the cascade, the 1239 keV one, for-
mula 5 is used to extract the lifetime. Four parameters are now needed for the
fit, being of the ones extracted from previous fits and measurements. These
values are τ0 = 12.514± 1.388 ps, τ1 = 13.838± 3.638 ps, f0 = N0(0)/N1(0) =
0.639± 0.187 and f1 = N1(0)/N2(0) = 4.79± 1.88.

For the 1239 keV transition with the parameters given above, this yields
a lifetime of τ2 = 21.828± 6.188 ps, as can be seen in Fig.5. The same fit done
with a fitted feeding yields a lifetime of τ2 = 15.754±34.472 ps, a significantly
worse result due to the increase of the number of parameters that have to be



270 Lucian Stan, Cristina Clisu

fitted and to the large correlation between the feeding factor and lifetime pa-
rameters that have to be fitted. Also, the fitted feeding value f1 is 1.26± 0.77,
in clear disagreement with the value extracted from the data of 4.79 ± 1.88.
Due to the very large lifetime error and the disagreement in the feeding data,
the value obtained with the fitted feedign was discarded from further analysis,
even though Fig.5 indicates that this fit was closer to the experimental points
that the one with measured feeding, but not by a large degree.

Fig. 5. The intensity of the 1239 keV transition as a func-tion of 
flight time and two fits used to extract the lifetime. The black line 
shows a fit in which both the lifetime of the level and the feeding 
ratio were fitted, yielding a lifetime of τ2 = 15.754 ± 34.472 ps. 
The very large error is due both to the increase of the number of 
parameters being fitted and to the large correlation between the 
feeding parameter and the ex-tracted lifetime. Nonetheless, the 
extracted feeding parameter is 1.26, disagreeing with the 
extracted value of 4.79. The red line shows the fit obtained with 
the measured feeding value of f1 = 4.79 ± 1.88, which yields a 
lifetime of τ2 = 21.828 ± 6.188 ps, which is the adopted value.

The fit was also done with fixed parameters in order to ascertain the
importance of the proposed method on the final results. This gave a result of
τ2 = 25.10±4.74 ps, in agreement with the previous result obtained by varying
of the previously extracted values. However, the error from the simple fit is
24% smaller than the one obtained with the method proposed in this paper.

This also proves the rather intuitive conclusion that the contribution of
this fitting method to the final error increases with the number of previously-
extracted values used in the fit and with the complexity of the function used.
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3. χ2 limiting value

A discussion on the choice of χ2 limiting value is also warranted. There
is no fixed value that can be taken as a limiting value for the fits, as the ’rea-
sonable’ χ2 depend on the number of parameters that are fitted and how well
the proposed function can fit the experimental data. A brief study of the χ2

values that are obtained for each situation (combination of data, function and
parameters) is required before each fitting procedure.

For example, for the fitting of the data from the 1239 keV transition pre-
sented above, a limiting value of 1 was chosen in order to eliminate fit values
with unreasonable χ2 values that would negatively affect the analysis proce-
dure. The average χ2 of the accepted fits was 0.08314. However, only 590,272
fits yielded acceptable χ2 values and were used in the following analysis, while
409,728 fits were rejected due to having χ2 values of over 1.

Doing the exact opposite of the analysis in the text and taking into ac-
count only the fits with χ2 values of over 1 yields a lifetime for the 1239 keV
transition of τ2 = 0.339± 0.335 ps, nearly two orders of magnitude lower than
the value extracted with the fits with a χ2 value of under 1.

4. Conclusion

In summary, we have developed a simple Monte Carlo fitting procedure
in order to correctly propagate parameter errors through fits for the extraction
of nuclear lifetimes using the Bateman equations. It is important to note that
this procedure is in no way limited to this analysis and can be used for any
fitting using parameters with errors.

While, in the present case, the result did not considerably vary due to the
inclusion of the errors of the parameters using the Monte Carlo fit, it nonethe-
less offers a transparent way of accounting for them in the final result. The 170
ps variation in the error between our method and a simple fitting procedure
is significant. The use of more complicated functions with more parameters
with errors could lead to the opposite situation where the inclusion of the er-
rors correctly identifies that the final result is less accurate or even inconclusive.

The program that has been developed is freely shared at https://github.
com/standlucian/montecarlofitting with comments on what each section
does. It is important to note that the fitting function can be changed to fit any
sort of data and the method is in no way limited to lifetime determinations.
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