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METHOD AND APPLICATION FOR URBAN GAS DEMAND
PREDICTION BASED ON THE INTEGRATED ADAPTIVE
NEURO-FUZZY INFERENCE SYSTEM (ANFIS)

Zizi LI', Wei XIAO*", Yun GAO?, Ying WEI*

Accurate urban gas demand forecasting can significantly assist managers in
developing efficient natural gas supply plans. This study, based on the Adaptive
Neuro-Fuzzy Inference System (ANFIS), innovatively integrates neural networks with
fuzzy logic principles to construct a daily urban gas demand prediction model.
Experimental results demonstrate that the hybrid forecasting algorithm based on
ANFIS achieves superior performance in daily urban gas demand prediction
compared to Artificial Neural Networks (ANNs), Fuzzy Cognitive Maps (FCM), and
their combined models. The Mean Absolute Percentage Error (MAPE) on the test set
is less than 20%, significantly improving prediction accuracy. Validation results
indicate that the ANFIS prediction algorithm effectively enhances the accuracy of
neural network models, providing a scientific basis for emergency supply planning in
gas companies and exhibiting promising application prospects.

Keywords: Neuro-fuzzy; neural networks; soft computing; fuzzy cognitive maps;
urban gas prediction

1. Introduction

With the increasing emphasis on transitioning to a sustainable and
environmentally friendly economy, natural gas, celebrated for its cleaner-burning
properties, is securing a growing share in global energy consumption. A report from
the China Petroleum Economic and Technological Research Institute revealed that
in 2023, China consumed a total of 391.7 billion cubic meters of natural gas,
marking a 6.6% increase compared to the previous year. This highlights the vast
growth potential of the country's natural gas market [ 1]. The consumption of natural
gas in China is mainly allocated to four major sectors: urban use, industrial fuel,
power generation, and chemical production, contributing 32.6%, 39.0%, 18.1%,
and 9.9% respectively to the overall demand. This highlights that urban gas (UG)
represents a major share of China's natural gas consumption. For government and
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natural gas industry policy-makers, accurately forecasting urban gas demand,
especially during winter, is crucial for formulating and implementing effective
policies. Additionally, for urban gas providers, accurately forecasting short-term
demand is vital for efficient production planning and gas supply management. This
guarantees the secure provision of urban gas, improves the balance between supply
and demand, and optimizes resource utilization [2].

Owing to a multitude of unpredictable elements, short-term urban gas
demand experiences nonlinear effects. Currently, models for forecasting short-term
gas demand in urban areas are generally divided into three main categories. The
initial group encompasses traditional statistical forecasting models, including those
that rely on time series analysis and multivariate regression techniques [3,4]. The
second category encompasses models that utilize artificial intelligence, including
grey prediction models, Artificial Neural Networks (ANN), and Support Vector
Machines (SVM) [5,6]. For instance, reference [7] developed a FARX (function
autoregressive with exogenous variables) model to predict gas demand for the
following day. In references [8,9], the adaptive intelligent grey model was used for
forecasting urban gas (UG) demand. Various methods have been explored
regarding neural network algorithms, including the training and testing of
multilayer perceptrons with different activation functions and radial basis function
networks. In the third category, hybrid forecasting techniques are delineated, which
include the amalgamation of genetic algorithms with Back Propagation (BP) neural
networks [10,11], the synthesis of adaptive networks and fuzzy mathematics [12],
as well as the integration of neural networks [13] and multivariate time series
methodologies [14-16].

A review of existing literature highlights certain limitations in next-day
urban gas demand predictions using Artificial Neural Networks (ANN) and hybrid
methods [17]. Specifically, since neural network models follow the principle of
minimizing empirical risk, they may be affected by overfitting. Furthermore, the
complexity associated with the multi-tiered architecture of network systems may
impart a consequential impact on the stability of the predictive outcomes.
Moreover, as the sample size grows, the complexity of training neural network
models also increases, resulting in a lack of model simplicity and flexibility, along
with a diminished capacity for generalization within the modeling process. The
ability to handle inherent data fuzziness is also somewhat lacking. Most forecasting
methods require large datasets for training and relatively many features for accurate
predictions [18]. In addition, the model structure is complex, time-consuming, and
difficult for non-experienced Al users to apply. Currently, there is little research on
how to apply ANFIS technology to urban gas (UG) demand forecasting, especially
with a lack of in-depth exploration in determining the optimal model configuration.
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Based on the research gap outlined above, this paper aims to develop an
easy-to-use and highly generalized integrated forecasting model for urban gas
demand prediction. The main innovations are as follows:

First, a simple, fast, and robust integrated ANFIS forecasting model is
constructed. The proposed model exhibits high flexibility, making it particularly
suitable for large datasets. It is user-friendly and demands short running time.

Second, a meticulous optimization process is applied to ANFIS to determine
the output structure that best enhances forecasting performance.

2. Basic Method

2.1 Adaptive Neuro-Fuzzy Inference System (ANFIS)

The Adaptive Neuro-Fuzzy Inference System (ANFIS) [19] is an integrated
intelligent system that merges the adaptive properties of neural networks with the
capacity of fuzzy logic to manage ambiguity and process linguistic expressions. It
can be described using Takagi-Sugeno (TS) type fuzzy "IF-THEN" rules. The TSK-
ANFIS framework refers to the Adaptive Neuro-Fuzzy Inference System (ANFIS)
built on Takagi-Sugeno-Kang (TSK) type fuzzy inference rules. In this framework,
the fuzzy rules are in TSK form, where "T" stands for "Fuzzification", "S" for
"Solution" (or "System"), and "K" for "Knowledge" (or "Rules").

TSK fuzzy rules are expressed in the IF-THEN form, with each rule
consisting of a fuzzified antecedent variable and an output result. The antecedent
variable is fuzzified based on input variables, and the output is computed through
the solving part. The ANFIS framework combines TSK fuzzy rules with neural
networks, enabling adaptive learning and parameter adjustment of the fuzzy rules,
thereby improving the accuracy and robustness of the system.

Riiif x; =A;j1and ...and x, = A;
theny; = b;o+ b;1x1 + -+ + b; o x M

In the equation: R; represents the fuzzy rule number; Xk is the input variable;
Ajx represents the membership function that corresponds to the input variable xx; yi
is the output variable; b;x is the linear coefficient term.

A typical ANFIS network structure includes five layers (Fig. 1).
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Fig. 1: TSK ANFIS basic frame diagram.
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In the first layer, each node i is associated with a linguistic label and defined
by the membership function in equation (2).

n

w; = A g (xi) (2)
k=1

In the equation, w; represents the activation strength of the i-th rule; n is the
number of input variables; xk is the input variable; and Ajx(xx) denotes the
membership degree of xx associated with the membership function Aj.

In the third layer, the i-th node calculates the proportion of its activation
relative to the total activation of all rules. This layer serves as a normalization step,
balancing the intensities across the rules. The output from each node is given by

equation (3).
_ Wi
w; = 3)
b Nimw (

In the equation: w; is the normalized activation strength of the i-th rule; w;
is the original activation strength of the i-th rule.

Within the fourth layer, each node operates as a dynamic component, with
its activities regulated by equation (4). At this layer, each node conducts a linear
computation, with the coefficients being iteratively refined based on the error
feedback from the interconnected layers of the feedforward neural network.

yi = wi(pix + q;y + 1) (4)

In the equation, y; represents the weighted output of the i-th rule, w;

denotes the normalized activation of the i-th rule, and (p;, q;,1;) is the set of
conclusion parameters.

In the fifth layer, there exists a single fixed node, which embodies the

cumulative net outputs from the nodes of the preceding layer. This node determines

the aggregate output by aggregating all incoming signals, as illustrated in the

equation (5).
2= 3 (5)

In the equation, z represents the final system output, and y; denotes the
weighted output of the i-th rule.

ANFIS employs a composite learning strategy for model training. The
parameters of the initial layer are honed through the backpropagation method,
whereas the parameters of the penultimate layer are refined using either a least
squares estimation technique or an adaptation of the backpropagation approach.

2.2 The Fuzzy C-Means (FCM) clustering algorithm
The Fuzzy C-Means (FCM) clustering algorithm is based on fuzzy set

theory, allowing data points to have varying levels of membership across multiple
clusters. In FCM, every datum is assigned a level of affiliation to each cluster
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centroid, rather than being exclusively allocated to one particular cluster. The
membership degree is computed by optimizing an objective function, which aims
to minimize the distance between data points and their corresponding cluster centers
while maximizing the consistency of their membership degrees. The procedure of
the FCM algorithm (Fig. 2) is as follows:

Initialize the sample membership matrix and
the cluster center

Initializing the number of iterations,
initializing the transformation amount of
the cluster center

s the change of
cluster center
less than the
threshold?

At the end of iteration, the final category
is determined according to the degree of

membership hardening
L

Has the
maximum
number of

iterations been

eached?

| Update the membership matrix ‘

Update the cluster centers based on the
updated membership matrix

Update the iteration count and calculate
the change in cluster centers

Fig. 2: FCM algorithm flow chart

Step 1: Initialize Cluster Centers: Select initial cluster centers, which can
be chosen randomly or determined based on prior knowledge.

Step 2: Compute Membership Degrees: For each data point, calculate its
degree of membership with respect to each cluster center, typically using Euclidean
distance or other distance metrics.

Step 3: Refine Cluster Hubs: Reassess the coordinates of the cluster hubs
according to the determined membership magnitudes.

Step 4: Repeat Steps 2 and 3: Keep cycling through steps 2 and 3 until the
termination conditions are satisfied, such as achieving the predetermined maximum
iterations or observing no further alterations in the cluster centers.

3. GA-FCM-ANFIS Urban Gas Demand Prediction Model

The Genetic Algorithm, Fuzzy C-Means clustering, and Adaptive Neuro-
Fuzzy Inference System are integrated to form the GA—-ANFIS-FCM hybrid
method. The process is as follows:

Step 1: Initialize and generate the initial population.
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Step 2: Assess the viability of each individual within the population, choose
a duo of individuals for replication, and arrange them based on their viability.

Step 3: Integrate the separated individuals and a subset of the current
population into the existing group, forming a new one.

Step 4: Stop the algorithm and adjust the ANFIS parameters. This process
is repeated until the predefined endpoint is reached.

Fig. 3 illustrates the algorithm flow for urban gas demand prediction.

GA Algorithm
Initialization

v

Generate the number of
initial population for GA

¥

Calculate the fitness of
each individual

S

Selection, Crossover,
Mutation

Create ANFIS
framework based on

GApopulation size

FCM algorithm
clustering

v

ANFIS model training

S

Evaluate the GA-FCM-
ANFIS urban gas End
demand prediction model

Fig. 3: Flow chart of GA-FCM-ANFIS prediction model

To ensure that the ANFIS model is efficiently applied to urban gas demand
prediction, a structured process must be followed, with the correct configuration of
the model's inputs and training parameters. The steps are as follows:

1.Select the Fuzzy Inference System (FIS) Model: Given the need for
interpretability and computational efficiency, this paper selects the Sugeno fuzzy
model.

2. Partition the Input Space: There are two approaches: grid partitioning
and subtractive clustering. The grid partitioning approach compartmentalizes the
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input space into a mesh pattern devoid of overlaps, which is well-suited for contexts
with a limited quantity of input variables.

3. Choose the Partition Method: This paper opts for the grid partitioning
method since it is simple and effective, especially when investigating the types and
forms of membership functions, particularly for a small number of input variables.

4. Input Variables and Membership Functions (MFs): Five variables
have been chosen as inputs for the model: month, day, temperature, gas
consumption from the previous day, and the current day's gas demand. The grid
partitioning approach is used to determine the quantity and types of membership
functions for each input, along with the corresponding fuzzy rules and their
parameter values.

5. Consider the Limitations of the ANFIS Architecture: As the count of
input variables surpasses five, ANFIS encounters constraints stemming from
heightened computational intricacy and extended training durations.

6. Explore Configurations to Improve Efficiency: To enhance the model's
accuracy and reduce errors, five configurations are considered:

® Number of membership functions (MFs)

® Type of membership functions (triangular, trapezoidal, bell-shaped,
Gaussian, S-shaped)

® Output membership function type (constant or linear)
® Optimization method (hybrid or backpropagation)
® Number of training epochs

Given the complexity of the model architecture and the need to explore
various parameters to optimize performance, this paper aims to construct an
effective ANFIS model for urban gas demand (UQG) prediction by following this
structured approach.

In the revised manuscript, we have clarified that all experiments were
carried out in MATLAB R2024a using the Fuzzy Logic Toolbox (v2.6) and Global
Optimization Toolbox (v3.5). Specifically, FCM clustering was executed with the
built-in fem function, the initial Sugeno-type FIS structure was generated via
genfisl, and ANFIS training employed the anfis function under the hybrid learning
scheme. Genetic-algorithm operations—including population initialization, fitness
evaluation, selection, crossover, and mutation—were conducted using the ga
function, with each individual’s fitness computed as the RMSE of the trained
ANFIS model. We also detail the key training parameters: the number and type of
membership functions per input (triangular, trapezoidal, bell-shaped, Gaussian, or
S-shaped), the use of a Hybrid optimizer, a maximum of 200 training epochs, and
convergence criteria based on negligible change in the training error.
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4. Experimental Preparation

4.1 Experimental Data

The dataset covers historical data on urban gas demand from ten different
cities across Italy (Rome, Milan, Napoli, Turin, Palermo, Genoa, Bologna, Firenze,
Bari, and Catania), spanning a total of 8 years. Notably, the time periods for each
dataset (city) differ. Table 1 describes the years covered by each dataset. The data
was initially provided by the Italian Gas Pipeline Company, which operates,
manages, develops, and interconnects Italy's gas system. After comparing outliers
and the total sample size, this study selected data from the following ten cities. In
the preprocessing stage, a minor number of outliers were eliminated, and missing
data points were imputed using the mean value of the two preceding days. The
dataset was divided into training and test sets for ANFIS modeling and performance
evaluation. For every city, the dataset from the final year, covering November 2017
to October 2018, was allocated for validation purposes, while data from the
preceding years were used to train the developed GA-FCM-ANFIS hybrid
forecasting model, as depicted in Table 1.

Table 1
The time period involved in the time series data set of each city
City Data Time Dimension City Data Time Dimension
Rome 2/2013-10/2018 Genoa 3/2010-10/2018
Milan 3/2013-10/2018 Bologna 6/2013-10/2018
Napoli 9/2011-10/2018 Firenze 3/2012-10/2018
Turin 5/2014-10/2018 Bari 9/2012-10/2018
Palermo 3/2010-10/2018 Catania 3/2010-10/2018

Accurate forecasting of urban gas demand in Italy requires selecting the
appropriate quantity and category of input parameters. Consequently, five variables
were meticulously selected to serve as input parameters, with the urban gas
consumption demand at each distribution point from the previous day being the
output parameter. This forecasting model is grounded in historical urban gas
consumption data, meteorological information, and calendar-related indicators.
These factors are the core input variables for predicting urban gas demand. More
specifically, the dataset includes the following components: historical urban gas
demand data for each city's gas supply station, the average daily temperature (in
Celsius), and indicators for the month and date. Among these, historical urban gas
demand data is associated with two distinct input variables: the gas consumption of
the previous day and the current day. Temperature data is obtained from the
meteorological station closest to the delivery point. As for the calendar indicators
(month and date), some data formatting preprocessing is required. Specifically,
each variable needs to consider two different input indicators. Letk =1, 2, ..., 12
define the month indicator (January to December), and 1 =1, 2, ..., 7 define the date
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indicator (Monday to Sunday). According to the encoding program, the month
index is mapped to the range [1/12, 1], with January to December corresponding to
consecutive scaled values within this range. That is to say, the parameter for January
is set to 1/12, while for December it is set to 1. In a similar fashion, the days of the
week are scaled to fall within the interval [1/7, 1], with Monday being assigned the
value of 1/7 and Sunday the value of 1. These parameters are detailed in Table 2.

Table 2
Model input and output parameters
Type Parameter Unit
Previous day's gas demand MWh
Current day's gas demand MWh
Input .
Daily average temperature °C
Month indicator K=1/12,2/12,...,1
Output Next day's gas demand 1=1/7,2/7,..., 1

To ensure that all data entries have the same finite value range, each variable
is normalized to the [0,1] range using Min-Max normalization. However, during
the testing phase, the normalized variables will be restored to their original values.
The data normalization follows the equation (6):

x; — xmin

mew — L% wi=12..,N (6)

X T xmax _ ymin

In the equation, xi"¢¥ represents the normalized value of the i-th variable x;
x; denotes the i-th input variable; and x™n" and x™a* indicate its minimum and
maximum values, respectively.

4.2 Evaluation function

This study evaluates the predictive performance of different models using
Mean-Square Error (MSE), Root Mean-Square Error (RMSE), and Mean Absolute
Error (MAE) as criteria. The specific equations are as follows:

1 T
MSE = 72:1(2(” — X(D)? )
1 T
MAE = ;me(t) —X(0)| 8)
RMSE = VMSE 9)

In the equation: T represents the number of samples; Z(t) denotes the true
value, and X(t) denotes the predicted value of the t-th sample.

5. Results Analysis

5.1 Prediction Using the Integrated ANFIS Model

Modeling and simulation were carried out based on the integrated ANFIS
prediction framework proposed in Section 3. Different configurations of ANFIS
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models were constructed according to the characteristics of datasets from various
cities. The next-day NG demand (i.e., T+1 prediction) was calculated using the
generated fuzzy inference systems.
Table 3 presents the optimal ANFIS configurations for each city in the
Italian sample dataset. The results were ordered according to the smallest MAPE,
MSE, and RMSE values. The findings indicate that the three ANFIS
configurations—trimf 2-2-2-2-2, trimf 3-3-3-2-2, and gaussmf 3-3-3-2-2—
performed best. Among these, triangular membership functions (trimfs) generally
demonstrated superior performance when used as input variables. Specifically, for
the input variables month, day of the week, and average temperature, the number
of MFs was set to 3. For the input variables current-day gas demand and previous-
day gas demand, the number of MFs was set to 2 or 3 in most cases. Notably, the
output membership-function type is "Constant" and the optimizer is "Hybrid".
Table 3

Optimal ANFIS Architecture of Sample Cities in Italy (epochs=10)
ANFIS  Input MF

City Run Type Number of MFs MSE RMSE MAPE

Rome 22 gaussmf 3-3-2-2-2 0.0031 0.0430 9.1031

Milan 15 trimf 3-3-3-2-2 0.0025 0.0502 20.1432
Napoli 3 trimf 3-2-2-2-2 0.0017 0.0534 5.4434

Turin 3 trimf 2-2-2-2-2 0.0020 0.0432 12.0043
Palermo 22 gaussmf 3-2-2-2-2 0.0008 0.0298 11.5244
Genoa 2 trimf 2-2-2-2-2 0.0089 0.0865 24.4294
Bologna 5 gaussmf 2-2-2-2-2 0.0009 0.0287 10.2824
Firenze 22 gaussmf 3-3-3-2-2 0.0008 0.0343 13.0023
Bari 3 gaussmf 2-2-2-2-2 0.0018 0.0399 10.5800
Catania 3 gaussmf 2-2-2-2-2 0.0019 0.0500 11.0343

5.2 Comparison Between the Integrated ANFIS Model and Other
Prediction Models

With the aim of delve deeper into the efficacy of the proposed ANFIS-based
architecture, this research undertakes a comparative analysis of the integrated
ANFIS model against Artificial Neural Networks (ANNs), Fuzzy Cognitive Maps
(FCMs), and hybrid models that amalgamate FCMs with ANNs in terms of their
predictive accuracy.

The ANN architecture is a three-layer feedforward neural network model.
The architecture of the model includes an initial layer with five distinct input
parameters (month, day, temperature, yesterday's gas consumption, and today's
demand), a subsequent layer furnished with a decade of processing units, and a
terminal layer configured to predict the demand for the upcoming day. In this ANN
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structure, an S-shaped activation function is applied, and training is performed
using the Levenberg-Marquardt algorithm.

The Fuzzy Cognitive Map (FCM) approach, a subset of soft computing
techniques, possesses adaptive learning attributes, exemplified by the Real-Coded
Genetic Algorithm tailored for FCM (RCGA-FCM) and the Structure Optimization
Genetic Algorithm tailored for FCM (SOGA-FCM). These methodologies are
frequently implemented within the energy domain for the purposes of time series
analysis and predictive modeling of demand. Consequently, this segment will
embrace the application of RCGA-FCM and SOGA-FCM. [19]

The composite FCMs-ANNs model [20] encompasses an initial layer that
includes five inputs curated by SOGA-FCM, a subsequent layer housing a decade
of neurons, and a final output layer. The model uses a sigmoid activation function
and trains with the Levenberg-Marquardt backpropagation algorithm.

Table 4
Parameters and mean execution time for models
Average Running

Architectures Parameters for cities Average Running Time Time
The model is a multilayer feedforward network that
incorporates six input variables, consists of a layer with

ANN 12 neurons, and produces a single output. It utilizes a 22285

sigmoidal activation function for processing, employs
the Levenberg-Marquardt learning algorithm for
training, and is set to run for 70 epochs.

The genetic algorithm parameters include uniform
crossover at a probability of 0.3, Miihlenbein’s
RCGA-FCM mutation at a probability of 0.3, ranking-based 1203s
selection, an elitism strategy, a population size of 250
individuals, and a maximum of 500 generations.

The genetic algorithm is configured with uniform
crossover at a probability of 0.3, Miihlenbein’s
mutation at a probability of 0.3, and employs a ranking
selection process. It adopts an elitism strategy,
maintains a population size of 250, and is set to evolve
for a maximum of 500 generations. Additionally, the
learning parameters are set with bl and b2 both equal
to 0.01.

The model is a multilayer feedforward network that
includes four inputs determined by the SOGA-FCM
method,  encompassing  month, temperature,
Hybrid FCM- consumption from the previous day, and current
ANN consumption. This network contains a single hidden 762s
layer composed of 12 neurons and generates a solitary
output. A sigmoidal activation function is employed
within the network. It is trained via the Levenberg-
Marquardt learning algorithm and is configured to

SOGA-FCM 900s
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operate for 25 epochs.

The model employs a triangular membership function
(mf) with two different architectures: 2-2-2-2-2 or 3-3-

Best ANFIS 3-2-2. It fe.atu.res.a constant output lay.er. and utilizes.a
hybrid optimization strategy. The training process is
set to run for 15 epochs, with bl and b2 learning
parameters both set to 0.01.

25s

Fig. 4 shows the comparison of prediction performance between the optimal
ANFTIS architecture and the aforementioned models for sample cities. The outcomes
demonstrate that the ANFIS model surpasses other models by a significant margin
in regard to prediction performance for the sample data. For instance, in the case of
urban gas demand prediction for Rome, Italy, the MAPE values for ANFIS models
is 9.89%, which is lower than other comparable models.
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Fig. 4: Comparison of Prediction Performance of Sample Cities under Different Models
The paper proposes an integrated method based on the ANFIS framework
for predicting urban gas demand. By simulating data sets from 10 cities in Italy, the
(1) The hybrid ANFIS model exhibits markedly enhanced performance in
energy demand forecasting when juxtaposed with conventional ANN and FCM

frameworks.

6. Conclusion
optimal ANFIS integrated model for each city was identified and compared with

ANNSs and other soft computing models. The following conclusions were drawn:
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(2) The integrated ANFIS model has a much shorter runtime than the other
comparison models, making it the optimal choice for next-day urban gas demand
prediction.

(3) When most cities use the same model configuration, the integrated
ANFIS model demonstrates superior prediction accuracy, highlighting its
generalization ability.

The results indicate that the proposed integrated ANFIS model is efficient,
fast, and robust, making it suitable for gas demand forecasting in cities similar to
those in Italy. Predicting urban gas requirements in the short term is crucial for the
immediate scheduling of gas transportation, improving the efficiency of storage
facilities, making prompt purchases, and managing resource distribution.
Therefore, this method is crucial for energy regulation and management authorities
in Italy and surrounding regions.

Upcoming studies will prioritize the creation of more sophisticated neuro-
fuzzy frameworks that provide clarity and openness, thereby evaluating the
method's capacity to generalize. Additionally, research will explore applications in
energy sector time series modeling and forecasting, through a profound exploration
of efficient deep learning and integrated models based on regularized recurrent
neural networks.
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