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B(K)-LINEAR OPERATORS AND THEIR OPERATOR-VALUED

SPECTRUM

A. Askarizadeh1, M. A. Dehghan2, H. Afshin3

For separable Hilbert spaces H and K, the operator-valued spectrum of
an operator on the Hilbert C∗-module B(H,K) is introduced. It is shown that
the newly defined spectrum contains the ordinary (scaler-valued) spectrum and
is a (not necessarily compact) closed subset of B(K). In case that H and K
are finite-dimensional, we establish a one-to-one correspondence between B(K)-
linear operators on B(H,K) and the ordinary linear operators on B(H), which
helps us to characterize the operator-valued spectrum of B(K)−linear operators
on B(H,K).

Keywords: Adjoint, Operator-valued spectrum, Hilbert C∗-module, Operator-
valued eigenvalue, Dual space.

1. Introduction

The notion of the spectrum of an operator has been generalized by Ernest
[5]. He developed an analogue of the spectral theorem for all operators on separable
Hilbert spaces. Authors in [15] defined an n × n matrix spectrum. These spectral
generalizations of an operator were constructed by use of existence of representations
of C∗-algebras generated by the operator and the identity operator. After that,
Hadwin in [7] introduced reducing operator spectra. These spectra are based on
geometric rather than algebraic considerations and the unifying feature of them is
their relation to the closure of the unitary equivalence class of an operator with
respect to different operator topologies [8].

A sequence of bounded linear operators between two Hilbert spaces is denoted
by Sun [17] as generalized frames or g-frames. To modify and determine g-frames
[1] we need to introduce a new generalization of spectrum of a B(K)-linear operator
S on the Hilbert C∗−module B(H,K), where H and K are two separable Hilbert
spaces. In this regards, the definition of spectrum of S is based on the noninvert-
ibility of S − ΛI, where the spectrum Λ is an operator on K and I is the identity
operator on B(H,K). This chracteristic of spectra hasn’t appeared in the previous
operator-valued spectra generalizations of operators. The aim of this paper is to
introduce the new type of operator-valued spectrum of module operators on Hilbert
C∗-modules, B(H,K).
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The paper is organized as follows. We continue this introductory section with
a review of the basic definitions and notations of Hilbert C∗-modules. In section
2, we introduce the notion of operator-valued spectrum and prove some properties
of it. The main results of the paper are included in Section 3, where we study the
module operators on B(H,K) and we find operator-valued spectrum of them, when
H and K are finite- dimensional.

Let us recall the definition of a Hilbert C∗-module and the set of bounded linear
operators between two Hilbert spaces as a Hilbert C∗-module. For more details, we
refer the interested reader to [11, 12, 14, 16, 18]. Also, the concept of module
operators on a Hilbert C∗-module and their adjoint has appeared in [13, 14]. Let A
be a C∗-algebra, M be a (left) A-module and λ(ax) = a(λx) for every λ ∈ C, a ∈ A
and x ∈ M . If there exists a mapping 〈., .〉 : M × M −→ A with the following
properties

i) 〈x, x〉 ≥ 0 for every x ∈M ,
ii) 〈x, x〉 = 0 if and only if x = 0,
iii) 〈x, y〉 = 〈y, x〉∗ for every x,y ∈M ,
iv) 〈ax, y〉 = a 〈x, y〉 for every a ∈ A and x, y ∈M ,
v) 〈x+ y, z〉 = 〈x, y〉+ 〈x, z〉 for every x, y, z ∈M ,

such that M is complete with respect to the norm ‖x‖ = ‖ 〈x, x〉 ‖
1
2 , then the pair

{M, 〈., .〉} is called a (left) Hilbert C∗-module over A.
For two Hilbert spaces H and K, let B(H,K) be the set of all bounded linear

operators from H into K. The set B(H,K) is easily seen to be a Hilbert C∗-module
over B(K), with B(K)-inner product 〈T, S〉 = TS∗, for all T, S ∈ B(H,K) and the
linear operation on B(K) define by T1T = T1◦T for all T1 ∈ B(K) and T ∈ B(H,K).
The B(K)-module B(H,K) plays a crucial role in the study of frames and g-frames
[17]. Such frames have applications in pure [4, 9] and applied mathematics [3],
harmonic analysis [6], and even quantum communication [2].

Throughout this paper, we consider H and K as separable Hilbert spaces and
B(B(H,K)) as the set of all bounded B(K)-linear operators (module operators) on
B(H,K).

2. Operator-valued spectrum

For S in B(B(H,K)), a subset of complex numbers that is called the spectrum
of S is defined by σ(S) = {λ ∈ C : λI − S is not invertible}, and the resolvent
set of S, ρ(S), is defined by the complement of σ(S) in C.
We are going to extend the spectrum of S from complex numbers to operators.

Definition 2.1. Let S ∈ B(B(H,K)) and set

ρov(S) = {Λ ∈ B(K) : ΛI − S is invertible},

where I is the identity operator on B(H,K). We define by ρov(S) the operator-
valued resolvent set of the bounded operator S, and the operator-valued spectrum of
S, σov(S), define by B(K)\ρov(S). An operator Λ ∈ B(K) is said to be an operator-
valued eigenvalue for S if ST = ΛT for some nonzero T in B(H,K), and the subspace
{T ∈ B(H,K) : ST = ΛT} is called operator-valued eigenspace corresponding to Λ.

Proposition 2.2. Let S ∈ B(B(H,K)). Then σov(S) 6= ∅.
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Proof. Let IK be the identity operator on K and I be the identity operator on
B(H,K). Since IKI = IK ◦ I = I, we derive

λI − S = λ(IKI)− S = (λIK)I − S.
Therefore, if λ ∈ σ(S), then λIK ∈ σov(S) and σov(S) 6= ∅. �

Remark 2.3. σ(S) is isometrically embeded in σov(S) by λ 7→ λIK . Therefore, we
consider σ(S) as a subset of σov(S). In the following we point out that σ(S) 6= σov(S).

Example 2.4. Let H and K be Hilbert spaces over a field F such that dimH=dimK=2
. Then B(H,K) 'M2(F ). Define S : M2(F ) −→M2(F ), by

S

(
a11 a12

a21 a22

)
=

(
a11 0
a21 0

)
,

and consider Λ ∈ B(K) ' M2(F ), by Λ =

(
1 0
0 0

)
. If I : M2(F ) −→ M2(F ) is

the identity operator, then ΛI − S is not invertible and hence Λ ∈ σov(S) . On the
other hand Λ hasn’t form λI for any λ ∈ σ(S). Therefore σ(S) 6= σov(S).

Theorem 2.5. Let S ∈ B(B(H,K)). Then σov(S) is a closed subset of B(K).

Proof. Let Λ,Λ0 ∈ B(K) and Λ0 be a limit point of σov(S) that is not in σov(S).
Since

S − ΛI = (S − Λ0I)[I + (S − Λ0I)−1(S − ΛI − (S − Λ0I))]

= (S − Λ0I)[I − (Λ− Λ0)(S − Λ0I)−1],

S − ΛI is invertible if ‖(Λ− Λ0)(S − Λ0I)−1‖ ≤ 1 or ‖Λ− Λ0‖ < 1
‖(S−Λ0I)

−1‖ . This

means, if the distance between Λ and Λ0 is less than 1
‖(S−Λ0I)

−1‖ , then Λ is not in

σov(S) and this is a contradiction because Λ0 is a limit point of σov(S). Therefore
σov(S) is closed. �

Corollary 2.6. Let S ∈ B(B(H,K)) and Λ ∈ ρov(S). If d(Λ) is the distance
between Λ and σov(S), then ‖(ΛI − S)−1‖ ≥ 1

d(Λ) .

It is well-known that σ(S) is a compact set. In the following example we give
an operator for which σov(S) is not a compact subset of B(K).

Example 2.7. Let H and K be Hilbert spaces such that dimH=dimK=2. Then
B(H,K) 'M2(F ). Define S : M2(F ) −→M2(F ), by

S

(
a11 a12

a21 a22

)
=

(
a11 0
a21 0

)
,

and consider Λn ∈ B(K) ' M2(F ), by Λn =

(
n 0
0 0

)
. If I : M2(F ) −→ M2(F )

is the identity operator, then ΛnI − S is not invertible, and hence Λn ∈ σov(S) for
each n ∈ N. On the other hand ‖Λn‖ → ∞ as n → ∞. Therefore, σov(S) is not
compact.

It is well-known that the dual space of a Banach space X is the set of all
bounded linear functionals fromX to C and is denoted byX∗. Therefore, B(H,K)∗ =
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{f |f : B(H,K) −→ C is a bounded linear map}. The set of all operator-
valued functionals instead of scalar valued functionals is defined by Olsen [18]
for a Hilbert C∗-module. In this way, the set of all bounded operator-valued
functionals on B(H,K), called B(K)-dual of B(H,K), is defined by B(H,K)] =
{f |f : B(H,K) −→ B(K) is a bounded B(K)− linear map}. Since B(K) is a W ∗-
algebra, B(H,K)] is a Hilbert C∗-module [14].

By the following theorem, we shall associate with each S ∈ B(B(H,K)) its
adjoint, an operator S∗ ∈ B(B(H,K)]), and will see how certain properties of S are
reflected in the behavior of S∗.

We write 〈X,F 〉 for the value of the function F at the point X.

Theorem 2.8. If S ∈ B(B(H,K)), then there exists a unique element S∗ ∈
B(B(H,K)]) such that 〈SU,W 〉 = 〈U, S∗W 〉 ∀U ∈ B(H,K) and ∀W ∈ B(H,K)].

Proof. Let S ∈ B(B(H,K)), U ∈ B(H,K) and W ∈ B(H,K)]. Define S∗ :
B(H,K)] −→ B(H,K)], W 7→ W ◦ S. Since S and W are bounded and B(K)-
linear, S∗W ∈ B(H,K)]. Also 〈U, S∗W 〉 = (S∗W )(U) = (W ◦ S)(U) = W (SU) =
〈SU,W 〉 . Obviously S∗ is unique. It remains to show that S∗ is B(K)-linear. Let
Λ ∈ B(K), then we have

〈U, S∗(ΛW )〉 = 〈SU,ΛW 〉 = (ΛW )(SU) = Λ ◦ (W (SU)) = Λ ◦ ((S∗W )(U))

= (Λ(S∗W ))(U) = 〈U,Λ(S∗W )〉 .

Therefore, S∗(ΛW ) = Λ(S∗W ) and S∗ is B(K)-linear. �

Note. We are going to show that the operator-valued spectrum of an operator
in B(B(H,K)) and its adjoint in B(B(H,K)]) are the same. First, we state some
facts about B(K)-duals and adjointable elements of B(B(H,K)).

Lemma 2.9.
a) B(H,K) is a Hilbert C∗-module on which B(H,K)] separates points.
b) B(H,K) can be imbeded in B(H,K)]] as a closed subset, where B(H,K)]]

is the B(K)-dual space of B(H,K)].
c) (SR)∗=R∗S∗ for all S,R ∈ B(B(H,K)).
d) (ΛI)∗=ΛI∗, where I is the identity map on B(H,K) and Λ ∈ B(K).
e) If V and W are two subspaces of B(H,K) with V ⊆ W , then W⊥ ⊆ V ⊥,

where V ⊥ = {f ∈ B(H,K)] : f(u) = 0 ∀u ∈ V }.
f) S∗∗ is an extension of S on B(H,K)]].

Proof. (a) Let 0 6= T0 ∈ B(H,K). Define S : B(H,K) −→ B(K) by ST = TT ∗0 . It
is clear that, S ∈ B(H,K)] and ST0 6= 0.
(b) Define the function F : B(H,K) −→ B(H,K)]], by F (T )f = f(T ), where
T ∈ B(H,K), f ∈ B(H,K)]. By applying (a) F is one to one.

(c) Let S,R ∈ B(B(H,K)), T ∈ B(H,K) and V ∈ B(H,K)]. The relations,
〈T,R∗S∗V 〉 = 〈(SR)T, V 〉 = 〈T, (SR)∗V 〉, implies that (SR)∗=R∗S∗.
(d) Let U, V ∈ B(H,K)]. We have

〈U, (ΛI)∗V 〉 = 〈(ΛI)U, V 〉 = V (ΛIU) = ΛV (IU) =

Λ 〈IU, V 〉 = Λ 〈U, I∗V 〉 = Λ(I∗V )(U) = (ΛI∗)(V )(U) = 〈U, (ΛI∗)V 〉 .
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Then (ΛI)∗ = ΛI∗.
(e) and (f) are obvious. �

Theorem 2.10. Let S ∈ B(B(H,K)). Then

σov(S) = σov(S
∗)

Proof. Let Λ /∈ σov(S) and put W = ΛI − S. Since W−1 exists in B(B(H,K)),
Theorem 2.8 implies that (W−1)∗ exists in B(B(H,K)]). Using lemma 2.9, we
conclude that I∗ = (WW−1)∗ = (W−1)∗W ∗ and W ∗ = ΛI∗−S∗. Therefore ΛI∗−S∗
is invertible and Λ /∈ σov(S∗).
On the other hand, let Λ /∈ σov(S

∗) and put again W = ΛI − S. We show that
W is invertible. Since W ∗ is invertible by what has already been proved, (W ∗∗)−1

exists in B(B(H,K)]]). As we have seen in lemma 2.9, W is the restriction of
W ∗∗ on B(H,K) and hence it is one to one. It only remains to show that W is
onto. Since W ∗∗ is invertible, it is a homeomorphism operator on B(B(H,K)]]) and
hence W (B(H,K)) is closed. Now let W (B(H,K)) $ B(H,K). Lemma 2.9 and
the closeness of W (B(H,K)) implies that

0 = B(H,K)⊥ $W (B(H,K))⊥.

Therefore there is T ∈W (B(H,K))⊥ such that T 6= 0. Then for each U ∈ B(H,K)

0 = 〈T,WU〉 = 〈W ∗T,U〉 .
This means W ∗T = 0, that is cotradicting the assumption that W ∗ is one to one.
Therefore ΛI − S is invertible and Λ /∈ σov(S), which the proof is completed. �

3. Characterization of B(B(H,K)) and operator eigenvalued

In this section we find an orthogonal generator for the Hilbert B(K)-module
B(H,K) and we characterize the B(K)-linear Schmidt operators on B(H,K). Af-
terwards, operator-valued eigenvalues and operator-valued eigenvectors of members
B(B(H,K)) in finite dimensional case will be studied. Throughout this section
suppose that I is a countable set.

In the following proposition, we show that the cardinal of generators ofB(H,K)
is the same with the cardinal of generators of H.

Proposition 3.1. Let {ei : i ∈ I} be an orthonormal basis for H and u be an
element of K such that ‖u‖ = 1. Define Ti : H −→ K by x 7→ 〈x, ei〉u. Then

1) Tk ∈ B(H,K) and ‖Tk‖ = 1,
2) T ∗k y = 〈y, u〉 ek,
3) 〈Ti, Tj〉 = 0,
4) T =

∑
i∈I 〈T, Ti〉Ti for all T ∈ B(H,K), where the summation converges

in strong operator topology.

Proof. For all x ∈ H and y ∈ K, we have 〈Tkx, y〉 = 〈〈x, ek〉u, y〉 = 〈x, ek〉 〈u, y〉 =
〈x, 〈y, u〉 ek〉. This means that T ∗k y = 〈y, u〉 ek, and by an easy computation similar
to the one above, parts 1 and 3 follow.

For T ∈ B(H,K) and i ∈ I, define Λi ∈ B(K) by Λi = TTi
∗ = 〈T, Ti〉. Then

Λix = 〈x, u〉Tei and (
∑

i∈I 〈T, Ti〉Ti)ek =
∑

i∈I ΛiTiek =
∑

i∈I Λiδiku = Λku =
〈u, u〉Tek = Tek. This means that

∑
i∈I ΛiTi converges to T in strong operator

topology and the proof is completed. �
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Definition 3.2. Let {ei : i ∈ I}, {Ti : i ∈ I} and u be as in the proposition
above. We say S ∈ B(B(H,K)) is Hilbert C∗-Schmidt operator if

∑
i∈I
∑

l∈I
| 〈(STi)el, u〉 |2 <∞.

By the following theorem we characterize all Hilbert C∗-Schmidt operators in
B(B(H,K)) with respect to Hilbert Schmidt operators in B(H).

Theorem 3.3. Let S be an operator on B(H,K). Then S is B(K)-linear and
Hilbert C∗-Schmidt operator if and only if there is a unique Hilbert Schmidt operator
P ∈ B(H) such that ST = TP , for all T ∈ B(H).

Proof. Suppose that {ei : i ∈ I}, {Ti : i ∈ I} and u be as in the proposition above.
Let P ∈ B(H) be a Hilbert Schmidt operator and ST = TP , for all T ∈ B(H,K).
Then S(ΛT ) = (ΛT )P = Λ(TP ) = Λ(ST ), for all Λ ∈ B(K), and hence S is
B(K)-linear. On the other hand∑

i∈I

∑
l∈I
| 〈(STi)el, u〉 |2 =

∑
i∈I

∑
l∈I
| 〈(TiP )el, u〉 |2 =

∑
i∈I

∑
l∈I
| 〈〈Pel, ei〉u, u〉 |2

=
∑
i∈I

∑
l∈I
| 〈Pel, ei〉 |2 =

∑
l∈I
‖Pei‖2 = ‖P‖2Hs,

and hence S is a Hilbert C∗-Schmidt operator. Conversely, let S be B(K)-linear.
Define P ∈ B(H) such that Pel =

∑
〈(STk)el, u〉 ek, l ∈ I. Now for every l ∈ I and

T ∈ B(H,K),

STel = S(
∑
k∈I

ΛkTk)el =
∑
k∈I

Λk(STk)el

=
∑
〈(STk)el, u〉Tek = T

∑
〈(STk)el, u〉 ek = T (Pel) = (TP )el.

The above statements show that P ∈ B(H), ST = TP and P is Hilbert Schmidt. �

Note that when H and K are finite dimensional, the case we consider in the
rest of the section, all operators in B(B(H,K)) are Hilbert C∗-Schmidt. Now we
find a relation between a subset of the vector spectrum of an operator in B(B(H,K))
and the spectrum of its corresponding operator in B(H).

Proposition 3.4. Let S ∈ B(B(H,K)) and P ∈ B(H) be the corresponding opera-
tor. Then λ ∈ σ(P ) if and only if λIK ∈ σov(S), where IK is the identity operator
on K.

Proof. Let λ ∈ σ(P ), Vλ be the eigenspace corresponding to λ and T be the or-
thogonal projection on Vλ. Since Vλ 6= 0, T is nonzero. Due to the fact that Vλ
and Vλ

⊥ are invariant under P , x ∈ Vλ implies Tλx = TPx and x ∈ V ⊥λ implies
Tλx = TPx = 0. Then (((λIK)I − S)T )(x) = (λIKT )x− (ST )x = Tλx− TPx = 0
for all x ∈ H. Therefore λIK ∈ σov(S) and the proof is completed.

Conversely let Λ = λIK ∈ σov(S). Definition of σov(S) in the finite dimensional
case implies that there exists a nonzero T ∈ B(H,K) such that ST = ΛT . By
applying Theorem 3.3, we have ST = TP and hence

0 = (ΛIT − TP )(x) = T (λIHx− Px) = T (λIH − P )(x) ∀x ∈ H.
Now if λIH −P is invertible, then {(λIH −P )(x) : x ∈ H} = H and this means that
T = 0 . This is a contradiction to assumption that T is nonzero. Therefore λIH −P
is not invertible and the proof is completed. �
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Recall that in the finite dimensional case all operators in B(B(H,K)) are
Hilbert C∗-Schmidt and hence Theorem 3.3 and Proposition 3.4 are satisfied for all
S ∈ B(B(H,K)).

Lemma 3.5. Let S ∈ B(B(H,K)), Λ ∈ B(K), dimH = n and dimK = m. If I, In
and Im are identity operators on B(H,K), H and K, respectively and E = {Ei,j}
is the standard basis for B(H,K), then the matrix representation of ΛI − S with
respect to E has the form

[ΛI − S]E = Λ⊗ In − Im ⊗Bt,

where B ∈ B(H) is the corresponding operator to S, i.e. ST = TB for all T ∈
B(H,K).

The notation ⊗ is the canonical tensor product in matrix theory and Ei,j is a
m× n matrix such that (Ei,j)k,l = δk,l for 1 6 k 6 m and 1 6 l 6 n.

Proof. Since S is B(K)-linear, it is easy to see that the matrix representation for S
respect to the standard basis E is of the form

(3.0.1)


Bt . . . . 0

Bt . . . .
. . .

. . .

0 Bt .
Bt

 ,

and by a routine computation

[ΛI − S]E = Λ⊗ In − Im ⊗Bt.

�

Theorem 3.6. Let dimH = n, dimK = m, S ∈ B(B(H,K)) and B ∈ B(H) be the
corresponding operator to S. Then

Λ ∈ σov(S)⇐⇒ σ(Λ) ∩ σ(B) 6= ∅.

Proof. By Lemma 3.4 we have, [ΛI − S]E = Λ⊗ In − Im ⊗Bt. If σ(Λ) = {λi : i =
1, ...,m} and σ(B) = {µj : j = 1, ..., n}, then σ(Λ⊗ In− Im⊗Bt) = {λi−µj : i =
1, ...,m, j = 1, ..., n} (including algebraic multiplicities in all three cases) and thus,
det(S−ΛI) = Πi,j(λi−µj) [10]. This means det(S−ΛI) = 0 if and only if for some
i, j, λi = µj . Thus Λ ∈ σ(S) if and only if σ(Λ) ∩ σ(B) 6= ∅. �

Now, let Λ be an operator-valued eigenvalue for S. We are going to deter-
mine the operator-valued eigenspace corresponding to Λ. If T is an operator-valued
eigenvector for S corresponding to Λ, then ST − ΛT = 0 or BT − ΛT = 0. There-
fore the problem of finding operator-valued eigenvectors for S corresponding to Λ
is equivalent to solving the matrix equation BT − ΛT = 0. This subject is studied
in [10]. In what follows, we mention some results of [10] without proof that we use
to determine the operator-valued eigenvectors.

Remark 3.7. i) Let Jr(0) ∈ Mr and Js(0) ∈ Ms be singular blocks. Then T ∈ Mr,s

is a solution of Jr(0)T − TJs(0) = 0 if and only if

T = (0 U), U ∈Mr, 0 ∈Mr,s−r if r ≤ s, or
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(3.0.2) T =

(
U
0

)
, U ∈Ms, 0 ∈Mr−s,s if r ≥ s,

where

(3.0.3) U ≡



a0 a1 a2 . . .
a0 a1 . . .

a0 a1

. . .
. . .

0 a0 a1

a0


= [ui,j ]

is, in either case, an arbitrary upper Toeplitz matrix with ui,j = ai−j . The dimension
of the nullspace of the linear transformation T → Jr(0)T − TJs(0) is min{r, s}.

ii) Let S ∈ B(B(H,K)), Λ ∈ σov(S), λi ∈ σ(Λ) for i = 1, 2, ..., p and µj ∈ σ(B)
for j = 1, 2, ..., q. Then T is an operator-valued eigenvector for S corresponding to
Λ if and only if

(3.0.4) T =


T11 . . . T1q

. . . . .

. . . . .

. . . . .
Tp1 . . . Tpq


where Ti,j ∈ Mni,mj , i = 1, 2, ..., p, j = 1, 2, ..., q is a solution of the equation
Jni(λi)Xi,j −Xi,jJmj (µj) = 0. The dimension of the eigenspace corresponding to Λ
is
∑

i

∑
j ti,j where ti,j = 0 if λi 6= µj and ti,j = min{ni,mj} if λi = µj .

Example 3.8. Let dimH = 4, dimK = 3, S ∈ B(B(H,K)) and

B =


1 1 0 0
0 1 0 0
0 0 2 1
0 0 0 2


be the matrix corresponding to S. The eigenvalues of B are µ1 = 1, µ2 = 2 with
multiplicity 2 . By Theorem 3.6

Λ =

−1 0 0
0 1 1
0 0 1


is an operator valued eigenvalue of S. The eigenvalues of Λ are λ1 = −1, λ2 = 1
The Jordan forms of B and Λ are, respectively,

JB =


1 1 0 0
0 1 0 0
0 0 2 1
0 0 0 2


JΛ =

−1 0 0
0 1 1
0 0 1

 .
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Now, with notation of Remark 3.7: n1 = 1, n2 = 2,m1 = 2,m2 = 2 and

Jm1 =

(
1 1
0 1

)
Jm2 =

(
2 1
0 2

)
Jn1 =

(
−1
)

Jn2 =

(
1 1
0 1

)
.

Therefore T is an operator valued eigenvector of S corresponding to Λ if and only if
T is as follows :

T11 =
(
0 0

)
, T12 =

(
0 0

)
, T21 =

(
a0 a1

0 a0

)
, T22 =

(
0 0
0 0

)

(3.0.5) T =

(
T11 T12

T21 T22

)
=

 0 0 0 0
a0 a1 0 0
0 a0 0 0

 ,

where a0 and a1 are arbitrary. By Remark 3.7, the dimension of the eigenspace
corresponding to Λ is 2.
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