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AN EFFICIENT SPECTRAL METHOD FOR HIGH-ORDER

NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS

Saeed Sohrabi1

In this study a numerical method is presented to solve high-order non-
linear Volterra-Fredholm integro-differential equations under the mixed conditions.
In the proposed method, orthogonal Legendre polynomials and their properties are
used to approximate the solution of nonlinear integro-differential equation and re-
duce it to a nonlinear system of algebraic equations. The accuracy estimation of
the method is given and the efficiency of the method is illustrated through some
numerical examples.
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1. Introduction

The main feature of spectral methods is to take various orthogonal systems of
infinitely differentiable global functions as trial functions [1]. Different trial functions
lead to different spectral approximations; for instance, trigonometric polynomials for
periodic problems, Legendre, Chebyshev and Jacobi polynomials for non-periodic
problems, Laguerre polynomials for problems on half line and Hermite polynomials
for problems on the whole line. In particular, classical orthogonal polynomials, such
as Legendre and Chebyshev polynomials, have played important roles in spectral
methods for differential and integral equations [2, 3, 4]. Therefore, such polyno-
mials can be applied to approximate the solution of nonlinear integro-differential
equations and convert them into a nonlinear system of algebraic equations.

In this paper, Lgendre polynomials method has been developed to approxi-
mate the solution of the high-order nonlinear Volterra-Fredholm integro-differential
equations of the form

m∑
j=0

µj(x)y
(j)(x)− λ1

∫ x

a
k1(x, t)[y(t)]

p dt− λ2

∫ b

a
k2(x, t)[y(t)]

q dt = f(x), (1)

a ≤ x ≤ b,

with the mixed conditions
m−1∑
j=0

[
aijy

(j)(a) + bijy
(j)(b) + cijy

(j)(ζ)
]
= βi, i = 0, 1, . . . ,m− 1, a ≤ ζ ≤ b, (2)
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where the functions µj(x)(j = 0, 1, . . . ,m), f(x), k1(x, t), k2(x, t) are known, y(x)
is the unknown function to be found and βi(i = 0, 1, . . . ,m − 1), a, b, λ1, λ2 are
constants and p, q are nonnegative integers. Equations of this type appear in many
applications. For example, it occurs in solving problems arising in biological, phys-
ical, and engineering problems [5, 6].

From the numerical point of view, several methods have been presented for
solving integro-differential equations such as the successive approximation method,
the Adomian decomposition method, the Chebyshev, Legendre and Taylor colloca-
tion methods, wavelet-Galerkin method, the block-pulse functions (BPFs) method
and the triangular functions (TFs) method [5-14].

In this paper we are concerned with the direct solution technique to expand
the unknown function y(x) in Eqs. (1) and (2) as Legendre polynomials series with
unknown coefficients. The unknown coefficients are then determined based on the
properties of the Legendre polynomials and some operational matrices.
Most scholars researching Legendre polynomials method [14-18] only mentioned that
how it could be utilized to solve the integral equations or systems. They have really
neglected an important question, how large the rank n representing the order of Le-
gendre polynomials should be on earth to yield more accurate numerical solutions.
We propose that the available optimal value of n can minimize the errors of the
numerical solutions.

The detailed approach is demonstrated in following sections and validated
through several numerical results.

2. Properties of Legendre polynomials

There are several ways to define the Legendre polynomials, and in fact, they
are equivalent in some sense. In practice, the manipulation of different usages will
depend on our purpose and convenience [19]. Mathematically, Legendre polynomials
are solutions to Legendre’s differential equation

d

dx

[
(1− x2)

d

dx
Pn(x)

]
+ λPn(x) = 0

where the eigenvalue λ equals n(n+1). Also the Legendre polynomials are given by
the following expression, known as Rodrigues’ formula:

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n, n ≥ 0, −1 ≤ x ≤ 1.

We note that Pn(x) is the nth derivative of a polynomial of degree 2n and hence it
is a polynomial of degree n.
Alternatively, the Legendre polynomials are given by the following iteration:

P0(x) = 1,
P1(x) = x,
Pn(x) =

2n−1
n xPn−1(x)− n−1

n Pn−2(x), n ≥ 2, −1 ≤ x ≤ 1.

The recurrence relation between the derivatives of Legendre polynomials is also given
by [20]:

P ′
n+1(x)− P ′

n−1(x) = (2n+ 1)Pn(x), n ≥ 1.
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2.1. The expansion of a function

Definition 2.1. Let f(x) be a Rieman integrable function defined on [−1, 1], then
the associated infinite series

∞∑
j=0

cjPj(x) (3)

is called the Legendre expansion of f(x), where the coefficients cj are determined by
[17]

cj =
2j + 1

2

∫ 1

−1
f(x)Pj(x)dx, j = 0, 1, 2, . . . . (4)

In the following theorem, we indicate that the Legendre expansion of a function
f(x), with bounded second derivative, converges uniformly to f(x).

Theorem 2.1. If a continuous function f(x) defined on [−1, 1], has bounded second
derivative, say |f ′′(x)| ≤ M , then the Legendre expansion of the function converges
uniformly to the function.

Proof. From Eq. (4),

cj =
2j + 1

2

∫ 1

−1
f(x)Pj(x)dx.

Now, let u = f(x) and dv = (2j + 1)Pj(x)dx. We have

dv =
[
P ′
j+1(x)− P ′

j−1(x)
]
dx = d(Pj+1(x)− Pj−1(x))

Consequently, using integration by parts two times, we obtain:

cj =
1

2
f(x)(Pj+1(x)− Pj−1(x))

∣∣∣1
−1

− 1

2

∫ 1

−1
f ′(x)(Pj+1(x)− Pj−1(x))dx

= −1

2

∫ 1

−1
f ′(x)(Pj+1(x)− Pj−1(x))dx

= −1

2
f ′(x)

[Pj+2(x)− Pj(x)

2j + 3
− Pj(x)− Pj−2(x)

2j − 1

]1
−1

+
1

2

∫ 1

−1
f ′′(x)

[Pj+2(x)− Pj(x)

2j + 3
− Pj(x)− Pj−2(x)

2j − 1

]
dx.

=
1

2

∫ 1

−1
f ′′(x)

[Pj+2(x)− Pj(x)

2j + 3
− Pj(x)− Pj−2(x)

2j − 1

]
dx.

Consider ∣∣∣ ∫ 1

−1
f ′′(x)

[Pj+2(x)− Pj(x)

2j + 3
− Pj(x)− Pj−2(x)

2j − 1

]
dx

∣∣∣2
=

∣∣∣ ∫ 1

−1
f ′′(x)

[(2j − 1)Pj+2(x)− 2(2j + 1)Pj(x) + (2j + 3)Pj−2(x)

(2j + 3)(2j − 1)

]
dx

∣∣∣2
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≤
∫ 1

−1

∣∣∣f ′′(x)
∣∣∣2dx

×
∫ 1

−1

∣∣∣(2j − 1)Pj+2(x)− 2(2j + 1)Pj(x) + (2j + 3)Pj−2(x)

(2j + 3)(2j − 1)

∣∣∣2dx
< 2M2

∫ 1

−1

(2j − 1)2P 2
j+2(x) + (4j + 2)2P 2

j (x) + (2j + 3)2P 2
j−2(x)

(2j + 3)2(2j − 1)2
dx

=
2M2

(2j + 3)2(2j − 1)2

[2(2j − 1)2

2j + 5
+

2(4j + 2)2

2j + 1
+

2(2j + 3)2

2j − 3

]
≤ 2M2

(2j + 3)2(2j − 1)2

[2(2j + 3)2

2j − 3
+

8(2j + 3)2

2j − 3
+

2(2j + 3)2

2j − 3

]
=

24M2

(2j − 3)(2j − 1)2

Thus, we get

∣∣∣ ∫ 1

−1
f ′′(x)

[Pj+2(x)− Pj(x)

2j + 3
− Pj(x)− Pj−2(x)

2j − 1

]
dx

∣∣∣ < √
24M

(2j − 1)
√
2j − 3

.

Therefore, we have

|cj | <
√
6M

(2j − 1)
√
2j − 3

,

≤
√
6M

(2j − 3)
3
2

. (5)

Hence, the series
∑∞

j=0 cj is absolute convergent, it follows that
∑∞

j=0 cjPj(x) con-

verges to the function f(x) uniformly. �
If the infinite series in (3) is truncated, then it can be written as

f(x) ≈
n∑

j=0

cjPj(x) = CTP(x) (6)

where C and P(x) are (n+ 1)× 1 vectors given by

C = [c0, c1, c2, . . . , cn]
T , (7)

and
P(x) = [P0(x), P1(x), P2(x), . . . , Pn(x)]

T . (8)

Similarly the kernel function, k(x, t), may be estimated as :

k(x, t) ≈ PT (x)KP(t),

where K is a (n+ 1)× (n+ 1) matrix, with

Kij =

⟨
Pi(x), ⟨k(x, t), Pj(t)⟩

⟩⟨
Pi(x), Pi(x)

⟩ ⟨
Pj(t), Pj(t)

⟩ , (9)
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where ⟨., .⟩ denotes the inner product in L2[−1, 1]. It can be shown that

|Kij | ≤
6M ′

(2i− 3)
3
2 (2j − 3)

3
2

, (10)

which indicates that when i or j → ∞, it follows |Kij | → 0, which concludes the
sparsity of the coefficients matrix K. M ′ is the bound for mixed fourth partial
derivative of k(x, t), say ∣∣∣∂4k(x, t)

∂x2∂t2

∣∣∣ ≤ M ′.

Also, for a positive integer p, [y(x)]p may be approximated by Legendre series as:

[y(x)]p = [YTP(x)]p = Y∗T
p P(x), (11)

where Y∗
p is a column vector, whose elements are nonlinear combinations of the

elements of the vector Y. Y∗
p is called the operational vector of the pth power of the

function y(x). For the Legendre Polynomials with n = 4 the operational vector of
second power of y(x) is computed as follows:

Y∗
2 =


y20 +

y21
3 +

y22
5 +

y23
7 +

y24
9

2y0y1 +
4y1y2

5 + 18y2y3
35 + 8y3y4

21
2y21
3 + 2y0y2 +

2y22
7 + 6y1y3

7 +
4y23
21 + 4y2y4

7 +
100y24
693

6y1y2
5 + 2y0y3 +

8y2y3
15 + 8y1y4

9 + 4y3y4
11

18y22
35 + 8y1y3

7 +
18y23
77 + 2y0y4 +

40y2y4
77 +

162y24
1001

 .

2.2. Accuracy estimation

Theorem 2.2. Let f(x) be a continuous function defined on [−1, 1], with bounded
second derivative |f ′′(x)| bounded by M , then we have the following accuracy esti-
mation:

σn ≤ 2
√
3M

 ∞∑
j=n+1

1

(2j − 3)4

 1
2

, (12)

where

σn =
(∫ 1

−1

[
f(x)−

n∑
j=0

cjPj(x)
]2
dx

) 1
2
.

Proof.

σ2
n =

∫ 1

−1

[
f(x)−

n∑
j=0

cjPj(x)
]2
dx

=

∫ 1

−1

[ ∞∑
j=0

cjPj(x)−
n∑

j=0

cjPj(x)
]2
dx

=

∫ 1

−1

[ ∞∑
j=n+1

cjPj(x)
]2
dx

=

∫ 1

−1

∞∑
j=n+1

c2jP
2
j (x)dx
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=

∞∑
j=n+1

c2j

∫ 1

−1
P 2
j (x)dx

=
∞∑

j=n+1

c2j
2

2j + 1

It follows from Eq. (5),

σ2
n ≤

∞∑
j=n+1

6M2

(2j − 3)3
2

2j + 1

≤ (12M2)

∞∑
j=n+1

1

(2j − 3)4

Then one has

σn ≤ (2
√
3M)

 ∞∑
j=n+1

1

(2j − 3)4

 1
2

.

�

2.3. Operational matrix of derivative

The differentiation of the vector P(x) in (8) can be expressed as

P′(x) ≈ DP(x), (13)

where D is the (n + 1) × (n + 1) operational matrix of derivatives for Legendre
polynomials vector as follows

D =



0 0 0 0 · · · 0 0 0
1 0 0 0 · · · 0 0 0
0 3 0 0 · · · 0 0 0
1 0 5 0 · · · 0 0 0
...

...
...

...
. . .

...
...

...

1 0 5 0
. . . 0 0 0

0 3 0 7 · · · 2n− 3 0 0
1 0 5 0 · · · 0 2n− 1 0


for odd n,

D =



0 0 0 0 · · · 0 0 0
1 0 0 0 · · · 0 0 0
0 3 0 0 · · · 0 0 0
1 0 5 0 · · · 0 0 0
...

...
...

...
. . .

...
...

...

0 3 0 7
. . . 0 0 0

1 0 5 0 · · · 2n− 3 0 0
0 3 0 7 · · · 0 2n− 1 0


for even n.

By using equation (13), we have

y ′(x) ≈ YTP ′(x) = YTDP(x), (14)
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and

y(k)(x) ≈ YTDk P(x), (15)

where k is the order of derivatives of y(x).

3. Solving nonlinear integro-differential equations

In this section, we consider the nonlinear Volterra-Fredholm integro-differential
equation of the form in (1) with (2). We suppose without loss of generality that
the interval of integration in (1) is [−1, 1], which is the domain of the Legendre
polynomials, since any finite interval [a, b] can be transformed to interval [−1, 1] by
linear maps [21]. If the integrals are bounded in the range [0, 1], then solution can
be obtained by means of the shifted Legendre polynomials P ∗

j (x).

Approximating functions y(x), [y(x)]p and k1(x, t), k2(x, t) by Legendre polynomials,
as described in section 2, we obtain

y(x) ≈ PT (x)Y, (16)

yp(x) ≈ PT (x)Y∗
p, (17)

k1(x, t) ≈ PT (x)K1 P(t), (18)

k2(x, t) ≈ PT (x)K2 P(t), (19)

where Y is the unknown vector and Y∗
p is a column vector which can be expressed

as a nonlinear function of the vector Y.
To approximate the integral parts of Eq. (1), from Eqs. (16-19), we get∫ x

−1
k1(x, t)[y(t)]

p dt ≈
∫ x

−1
PT (x)K1P(t)P

T (t)Y∗
p dt

≈ PT (x)K1

(∫ x

−1
P(t)PT (t)dt

)
Y∗

p (20)

and ∫ 1

−1
k2(x, t)[y(t)]

q dt ≈
∫ 1

−1
PT (x)K2P(t)P

T (t)Y∗
q dt

≈ PT (x)K2

(∫ 1

−1
P(t)PT (t)dt

)
Y∗

q (21)

Here we have to simplify
∫ x
−1 P(t)P

T (t)dt.

From previous researches [18, 22], we assume a (n + 1) × (n + 1) square matrix
Z(x) whose elements zij are, which can be easily calculated based on a given x:

zij =

∫ x

−1
Pi(t)Pj(t)dt. (22)

Also to approximate the differential part of Eq. (1), we use Eqs. (13-16)

m∑
j=0

µj(x)y
(j)(x) ≈

m∑
j=0

µj(x)Y
TDjP(x). (23)
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Substituting Eqs. (15-23) into Eq. (1) we get

m∑
j=0

µj(x)Y
TDjP(x)− λ1P

T (x)K1Z(x)Y
∗
p − λ2P

T (x)K2Z(1)Y
∗
q = f(x). (24)

Also using Eqs. (2) and (15) we have

m−1∑
j=0

[
aijY

TDjP(−1) + bijY
TDjP(1) + cijY

TDjP(ζ)
]
= βi, (25)

where −1 ≤ ζ ≤ 1 and i = 0, 1, . . . ,m − 1. Eq. (25) gives m linear equations
(m < n).
Since the total unknowns for vector Y in (16) is (n+ 1), we collocate equation (24)
in (n−m+ 1) points xi = cos(iπ/n) in the interval [−1, 1]:

m∑
j=0

µj(xi)Y
TDjP(xi)− λ1P

T (xi)K1Z(xi)Y
∗
p − λ2P

T (xi)K2Z(1)Y
∗
q = f(xi). (26)

The resulting equations (25) and (26) generate a system of (n+1) nonlinear equations
which can be solved by numerical methods such as Newton’s iterative method.

4. Numerical examples

In this section, we applied the method presented in this paper for solving high-
order nonlinear Volterra-Fredholm integro-differential equation and solved some ex-
amples. These problems have been previously solved in different references [5, 9-13].
The computed errors σn are defined by

σn =

{∫ 1

−1
e2n(x)dx

}1/2

≃

 1

n

n∑
j=0

e2n(xj)


1/2

, (27)

where en(x) = y(x)− PT (x)Y and xj = cos(jπ/(n+ 1)).
All calculations are performed using Mathematica 7.
Example 1. Consider the second-order Fredholm integro-differential equation

x2y′′(x)+ 50xy′(x)− 35y(x) =
1− e(x+1)

x+ 1
+(x2+50x− 35)ex+

∫ 1

0
exty(t) dt, (28)

with y(0) = 1, y(1) = e. If we solve (28) for y(x) directly, the analytic solution can
be shown to be y(x) = ex. The comparison among the numerical results of presented
method, together with the results of [5] obtained by wavelet collocation and wavelet
Galerkin methods for x ∈ [0, 1] is shown in Table 1 for n = 6 and n = 8, which
confirms that the Legendre polynomials method in Section 3 gives almost the same
solution of the analytic method. We make a simulation and display of the computed
errors σn in Table 2 and Fig. 1 for different values of n. Better approximation is
expected by choosing n = 8, which we get σn = 1.15705× 10−9.
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Table 1. The absolute relative errors for Example 1.

xi Presented method Wavelet Col. Wavelet Gal.
n = 6 n = 8 M = 6 [5] M = 6 [5]

0.000 0.0 0.0 0.0 0.0
0.125 9.0× 10−09 1.5× 10−09 2.6× 10−2 2.7× 10−4

0.250 2.8× 10−08 5.6× 10−10 1.6× 10−2 3.1× 10−5

0.375 8.5× 10−09 5.2× 10−10 9.3× 10−3 2.6× 10−4

0.500 6.1× 10−08 1.2× 10−09 5.2× 10−3 4.3× 10−4

0.625 1.7× 10−08 1.3× 10−10 2.5× 10−3 5.6× 10−4

0.750 5.6× 10−08 4.6× 10−10 1.0× 10−3 6.6× 10−4

0.875 1.6× 10−08 8.5× 10−10 2.4× 10−4 7.2× 10−4

0.100 0.0 0.0 0.0 0.0

Table 2. The computed errors σn for n = 5, 6, . . . , 10.

n The computed errors σn
5 2.13449× 10−6

6 6.87366× 10−8

7 1.97861× 10−9

8 1.15705× 10−9

9 1.60484× 10−8

10 2.04909× 10−6

ç

ç

ç

ç

ç

ç

5 6 7 8 9 10
0.001

0.005

0.010

0.050

0.100

0.500

1.000

n, the order of Legendre polynomials

´
1
0
-
6

ç : The computed error Σ
n

Figure 1. The computed error σn for n = 5, 6, . . . , 10.

Example 2. As the second example, consider the following second-order Volterra
integro-differential equation [9, 11]

y′′(x) + xy(x) = f(x) +

∫ x

0
x2ety(t) dt,
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Table 3. Numerical results for Example 2.

xi Exact Presented method Taylor solution
solution n = 8 N = 7

0.0 1 1 1
0.2 0.98006658 0.98006658 0.98006658
0.4 0.92106099 0.92106099 0.92106099
0.6 0.82533561 0.82533561 0.82533562
0.8 0.69670671 0.69670671 0.69670674
1.0 0.54030231 0.54030231 0.54030258

Table 4. The computed errors σn for n = 6, 7, . . . , 11.

n The computed errors σn
6 1.26748× 10−07

7 1.00238× 10−08

8 1.44142× 10−10

9 1.49066× 10−10

10 2.52808× 10−09

11 8.65550× 10−07

with conditions
y(0) = 1, y′(0) = 0,

where

f(x) = x cos(x)− 1

2
(ex(cos(x) + sin(x))− 1)x2 − cos(x).

The analytic solution of this problem is y(x) = cos(x). The comparison among
the Legendre polynomials solution, Taylor solution and the analytic solution for
x ∈ [0, 1] is shown in Table 3 for n = 8, which confirms that the Legendre polynomials
method in Section 3 gives almost the same solution of the analytic method. Better
approximation is expected by choosing n = 8, which we get σn = 1.44142 × 10−10.
We make a simulation and display of the computed errors σn in Table 4 and Fig. 2
for different values of n.

Example 3. Consider the following nonlinear Volterra-Fredholm integro-differential
equation [9, 13]

y′(x) + 2xy(x) = f(x) +

∫ x

0
(x+ t)y3(t)dt+

∫ 1

0
(x− t)y(t)dt,

with the initial condition y(0) = 1, where

f(x) = x cos(x)− 1

2
(ex(cos(x) + sin(x))− 1)x2 − cos(x),

and the exact solution y(x) = ex. The comparison among the presented method,
triangular functions (TFs) method [13] and Taylor polynomials method [9] together
with the exact solution for x ∈ [0, 1], is shown in Table 5, which confirms that the
Legendre polynomials method in Section 3 gives almost the same solution of the
analytic method.
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ç
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Figure 2. The computed error σn for n = 6, 7, . . . , 11.

Table 5. Numerical results for Example 3.

xi Exact Presented method TFs method Taylor method
solution (n = 7) (m = 32) (N = 7)

0.0 1.000000 1.000000 1.000000 1.000000
0.1 1.105171 1.105171 1.105223 —
0.2 1.221403 1.221403 1.221494 1.221403
0.3 1.349859 1.349859 1.349971 —
0.4 1.491825 1.491825 1.491933 1.491825
0.5 1.648721 1.648721 1.648795 —
0.6 1.822119 1.822119 1.822484 1.822120
0.7 2.013753 2.013753 2.014465 —
0.8 2.225541 2.225541 2.226719 2.225542
0.9 2.459603 2.459603 2.461507 —
1.0 2.718282 2.718282 2.721505 2.718281

Example 4. As the final example, consider the following nonlinear Volterra-
Fredholm integro-differential equation [11]

y′′′(x) + y(x) = f(x) +

∫ x

−1
y2(t) dt+

∫ 1

−1
(x2t+ xt2)y2(t) dt, (29)

with the conditions

y(0) = −1,

y′(0) = y′′(0) = 0,

where

f(x) =
47

14
− 17

9
x+

4

5
x2 + x3 +

1

2
x4 − 1

7
x7.
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If we apply the Legendre polynomials method in Section 3 to solve Eq. (29), by
taking n = 6, we obtain

y(x) = YTP(x), −1 ≤ x ≤ 1, (30)

where the collocation points are xi = {−
√
3
2 , 0,±1

2}, and the nonlinear algebraic
systems (25) and (26) yield to the solution

Y =
{
− 1,

3

5
, 0,

2

5
, 0, 0, 0

}T
.

By substituting in (30) we get y(x) = x3 − 1, which is the analytic solution of this
problem.

5. Concluding remarks

In summary, a collocation method based on Legendre polynomials for the
nonlinear Volterra-Fredholm integro-differential equations is presented. The uniform
convergence analysis and the error estimate are also studied. Moreover the numerical
results and L2 error norm are presented. The efficiency of the method is verified
by making comparison with other methods such as wavelet and Taylor polynomial
methods. It has been shown that the obtained results are in excellent agreement
with the exact solution. This method can be easily extended and applied to general
nonlinear Volterra and Fredholm integro-differential equations of arbitrary order and
systems of integro-differential equations with suitable initial conditions.
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