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A UNIQUENESS THEOREM FOR THE INVERSE BVP WITH
THE JUMP CONDITION AND TURNING POINT

Abdol Ali NEAMATY !, Yasser KHALILI?

In this paper, we study a second-order differential equation on the half-
line having a turning point and jump condition. We establish properties of the
spectrum, obtain the formulation of the inverse problem and prove the uniqueness
theorem for the solution of the inverse problem.
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1. Introduction
This paper deal with the BVP (L) for a differential equation
Y () + (p*p2(x) + ipp1 (¥) + po(N))y(x) =0,  x20, (1)

on the half-line with nonlinear dependence on the spectral parameter p, with the
boundary condition

U(y) = y'(0) + (1p + a9)y(0) = 0, )
and with the following jump condition for a, € (0,1),
y™(d+0,p) =a,™y™(d~-0,p), m=0]1, @)

in an interior point x = d. Let

-1, 0<x<a,
pz(x)={1 x=>a

i.e., the weight-function p,(x) changes the sign in an interior point x = a, which
is called the turning point. The functions p,(x), k = 0,1 are complex-valued,
p1(x) is absolutely continuous and (1 + x)p, ™ (x) € £L(0,0) for 0 <n <k < 1.
Also the coefficients a; and «, are complex numbers and a; # +1.
Differential equations with a turning point and jump condition arise in
various problems of mathematics, physics, mechanics, geophysics, electronics and
other branches of natural sciences (see [1, 5, 9, 11, 19]). Boundary value problems
with discontinuities appear in geophysical models for oscillations of the earth [1,
10]. Here the main discontinuity is cased by reflection of the shear waves at the

0<a<d, (4)
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base of the crust. Differential equations with turning points occur in radio
engineering problems to design directional couplers for non-uniform electronic
lines [11, 13]. Turning points connect with physical situations in which zeros
correspond to the limit of motion of a wave mechanical particle bounded by a
potential field. These equations also arise in electronic engineering in designing
heterogeneous transmission channels. Moreover, inverse problems appear in
electronics for constructing parameters of heterogeneous electronic lines with
desirable technical characteristics [9, 18]. After reducing the corresponding
mathematical model, we obtain a BVP (L) with discontinuities in an interior point
where the weight function p,(x) reflects a priori known parameters, and the
potential function q(x) = —(ippl(x)+p0(x)) must be constructed from the
given spectral information which describes desirable amplitude. Spectral
information can be also used to reconstruct the conductivity profiles of a one-
dimensional discontinuous medium.

Inverse problems for differential pencils without turning point were studied
in [2, 17]. In [2] two methods the so-called half inverse and nodal points have
been used for survey of the inverse problem. Also boundary value problems on
the half-line without discontinuities have been studied in [15]. The presence of the
turning point and discontinuity produces essential qualitative modifications in the
investigation of the inverse problem. In [7, 8] the inverse problem was
investigated for differential equations with turning points. Also boundary value
problems with discontinuity in various formulations have been studied in [3, 6,
14]. Some aspects of the inverse spectral problem for differential pencils with the
turning point and jump condition, simultaneous, are studied in [16]. But an
inverse spectral problem is not studied for differential pencils with these
conditions so far.

To prove the uniqueness solution of the inverse problem in this paper, we
use a function the so-called Weyl function. This function is obtained by the
special fundamental system of solutions for equation (1). The rest of this paper is
organized as follows: In Section 2, we investigate the asymptotic form of the
solutions, obtain the characteristic function and calculate eigenvalues. In Section
3, we get the asymptotic form of the Weyl function. In Section 4, we establish a
formulation of the inverse problem and prove a uniqueness theorem for solution
of the inverse problem. Finally, Section 5 contains some conclusions.

Notations. Throughout the paper, we denote by £(0, ) and £, (0, ) the
space of integrable and square integrable complex-valued functions on the half-
line x >0, respectively. Next, AC[0,d) and AC;,.(d, ) will be space of
absolutely continuous functions on [0,d) and absolutely continuous functions on
each compact subset of (d, o), respectively. Also in the sequel, O and o denote
the Landau symbols.
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2. Preliminary results

Denote I1, := {p: Imp > 0} and II, := {p: Imp = 0}. From [12, 20], we
know that Eq. (1) has a unique solution y = e(x, p) with the following properties:
1) For each fixed x, the functions e™(x,p),m = 0,1 are holomorphic for
p €I, and continuous for p € II,. These functions are also continuously
differentiable for p € TI,. \ {0}.

2) For |p| = o, p € IT,, uniformly in x > d,
e™(x,p) = (ip)™ exp(ipx — Q(x)) [1], m = 0,1, (5)
where Q(x) = %fg p.()dt and [1] =1+ 0(p7Y).
3) For |p| » o, p €11, uniformly ina < x < d,
e™(x,p) = % (exp(ipx — Q(x)) [b4]
+(~1)™* exp (ip(2d — ) — (20(d) = @()) [b_1), m=0,1, (6)
where [by]=b;+0(p™") and by ==

4) Forreal p + 0, x € [0,00) \ {d}, the functions e, (x,p) and e_(x,p) form a
fundamental system of solutions of Eqg. (1), where for x > d

e, (x,p) = lirnz—>p, z€ll, e(x,z), e_(x,p)=exp(2Q(x)) lirnz—»p, z€Il, e(x,—2).
Also, we have
—2ipa; 7}, 0<x<d,

(er(x,p)e_(x,p)) = {—Zip x>d

where (y, z) := yz' — y'z, and is called the Wronskian of the functions y and z.
Denote

A(p) = U(e(x, p)). (7)

The function A(p) is called the characteristic function of BVP (L) and is entire
function in p.

Let @;(x,p), j = 1,2 be the discontinuous solutions of Eqg. (1) under the
jump condition (3) and the initial conditions ¢;*"2(0,p) = 8, n=1,2 (&,
is the Kronecker delta). For each fixed x > 0, the functions goj("‘l)(x, p) are
entire functions in p and by virtue of Liouville’s formula for the Wronskian, we

have

1, 0<x<d,
oo ={; PTG

Theorem 2.1. The functions ¢;™ (x, p), j = 1,2, m = 0,1 have the following
asymptotic forms for |p| - o

i1) Uniformly in x € [0, a],
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01, p) = E- (exp(px — Q) [1] + (—D)™ex p(—px + 1Q() [11),

;™ (x,p) = p™ (ex p(px —iQ(x)) 0(p™1) + (—1)™ex p(—px + iQ(x)) O(p‘l)) :
i) Uniformly in x € [a, d),
@ip)™

( 0™ (x,p) = 1 (Vl(p)exp (ip(x —a)—(Qx) - Q(a))) [1]

+ (D" Vy(p)exp (—ip(x — @) + (Q(x) — Q(@))) [1]),

02 (x,p) = (ip)™ (Va(pdex p (ip(x — @) = (@) — Q(@))) 0(p™H)
+ (D™ Vy(pdexp (=ip(x = ) + (00 - 0(@)) 0(p™D)

where
Vi(p) = (1 + Dex p(—pa + iQ(a)) + (1 — Dex p(pa — iQ(a)),
Vo(p) = (1 —i)ex p(—pa + iQ(a)) + (1+i)ex p(pa — iQ(a)).

i3) Uniformly in x € (d, ),

= —(ii) (Wl(p)exp (ip(x —d) - (Q() - Q(d))) (1l

+ (D)™ Wy(p)ex p (—ip(x — d) + (@) — Q(@))) [1]),

(pl(m) (x, P)

02 (x,p) = (ip)™ (Wi (pdex p (ip(x — d) — (Qx) — Q())) 0(p™)
+ (O™ Wa(pdexp (=ipGx - d) + (000 - 0(@)) 0™,

where
Wi(p) = byexp (in(d - a) — (Q(d) — Q(@)) Vi (p)
+b_exp (~ip(d - @) + (Q(d) - Q@) ) V2(p),
W(p) = b_exp (ip(d — @) = (Q(d) = Q@) ) Vi (p)
+biexp(=ip(d —a) + (Q(d) - Q@) Va(p).
Proof. Denote I1} = {p: + Rep > 0}. Let {y;(x, p)}sz2 and {¥;(x, p)}j=1,2 be

the Birkhoff-type smooth fundamental system of solutions of Eqg. (1) with the
following asymptotic forms on the intervals [0,a] and [a, o) respectively, for

lpl > o, pell, m=01,

Y™, p) = (1 p)exp (=1 (px ~ i0G) ) 1), ®)

and
™M, p) = (=1 tip)mexp ((—1)7 (ipx - Q) [1], )
(see [12, 21]). Then
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(p](m)(x, p) = Alj(p)yl(m)(x, p) + Azj(p)yz(m)(x; P)’ J = 1:2' X € [0, a]' (10)
Using (8), (10) and initial conditions ¢;(x, p) in x = 0, we calculate
Aij(p) =511, Ay(p) = 0(p™). (11)

Substituting (8) and (11) into (10), we obtain ¢,;™ (x, p) in [0, a].
Analogously, taking the smooth condition

;™ (a—0,p) =¢;™(@+0,p), m=01, (12)
and the jump condition (3), we arrive at ¢;™ (x, p) in [a,d) and (d, ).

Theorem 2.2. The characteristic function A(p) has simple zeros of the form

Pr = %(km' +iQ(a) + K, + k) + 0(k™Y), |k| - oo, (13)
where
1, a+1 1, i+1
K, ==-Iln—sy, K, ==-Iln—.
2 a—1 2 i—-1

Proof. By Birkhoff-type fundamental system of solutions of Eg. (1) on the
interval [0, a], we have

e(m)(x:/)) = h1(P)}’1(m)(x' p) + hZ(p)yZ(m)(x' ,D); x € [0' a]' (14)

Using (6), (8 and the smooth condition e(x,p) In x=a, Iie,
e™(a—0,p) =e™(a+0,p), m=0,1, we obtain

h(p) = 5-exp(pa — iQ(@)((1 ~ Dexp(ipa — Q(@))b,]
~(1+Dexp (ip(2d — a) = (20() ~ Q@) [b-1),
ha(p) = 5—exp(=pa +iQ(@)((1 + Dexp(ipa — Q(@))[by]
-1 - dexp (ip(2d - &) - (20(d) - Q@) [b-1),
Now, substituting (8) and the coefficients h,(p) and h,(p) into (14), we have as
|p| = o, p €Il,,m = 0,1, uniformly in x € [0, a]
e™(x,p) = 2= (Ey(p)exp (p(x — @) - i(Q() - Q(@)))

+Ey(pexp (=pCx - @) + 1(00) - 0(@)))
where
Ei(p) = (1 + Dexp(ipa — Q(@))[b,]
~(1 - dexp (ip(2d — ) - (2Q(d) - Q(@)) [b_],
E,(p) = (=1)™((1 - Dexp(ipa — Q(@))Ib,]
—(1 + Dexp (ip(2d - a) - (2Q(d) - Q(a)) ) [b1).
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Taking (2) and (7), this yields the following characteristic function for |p| — o,
p €Iy,

A(p) = 22 ((a = DNy (p)exp(pa - iQ(@)
+ (a1 + DN (p)exp(—pa + iQ(a))),
where
Ni(p) = (1 = Dexp(ipa — Q(a))[b,]
(1 + Dexp (ip(2d — a) = (20(@) ~ Q@) [b-],
N(p) = (1 + Dexp(ipa — Q(a))[b,]
—(1 - Dexp (ip(2d - a) - (2Q(d) — Q(a)) ) [b_].
Using Rouche’s Theorem (see [4]), we arrive at the zeros of the form (13). Now

we prove that these zeros are simple. Since e(x, p) and ¢(x, p) are solutions of
Eq. (1), we have

e"(x,p) + (p2p, () + ipp, () + py(2)) e(x, p) = 0,

Error! Bookmark not defined.{ 5 }
0" (%.p,) + (020,00 + ipp, (@) + Py () 0(x,p,) = 0.

We get
d
2P pid,e(x, p)) + ip (D9 Cx, pideCx, p)(p = i)
= —(p? — pi® P2 () (x, pre(x, p).
Thus
(0?9 | 2200 (E e ) = (090, eGP
0
+(p — pi) Jy i1 (DL, pr)e(t, p)d. (15)
since
A(p) = {e(x, p), e(x, p)),
we have
e(xl pk) = :Bk(p(x' pk)l (16)
for B, # 0 (see [16]). Also from [15], we know that for x — oo,
e (x,p) = (ip)™ exp(ipx - Q(x)) (1+4+0(1)), m=0,1. 17
Therefore from (16) and (17), we have
limx—mo((p(x' pk)' e(x' ,0)) = 0. (18)

Now, taking (15) and (18), we get

® 0—-A(p) , pP—px
- ®)e(t, prle(t, p)dt = +
fo P2ALIPLL PrIELE P pr—pi%  p%—pi?

f ip (D (t, pe(t, p).
0
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For sufficiently large p, , if p — p;, then
I P20t pe(t, pdt = A, (py),

dA) | e o
2pap - USING (16), this yields

A (pr) = Br J, P2 (D@ (t, pr)dt # 0,

i.e., A(p) has simple zeros. The proof is completed.

Denote
N={p€ell;: A(p) =0}, "={peR: A(p) =0}, A=AN UA".

where A; (py) =

3. The Weyl function
We put

_ e(xp)

The function ¢(x, p) is a solution of Eq. (1) that is called the Weyl solution for
BVP (L). Denote

M(p) = ¢(0, p). (20)

We will call it the Weyl function for BVP (L). It follows from (19) and (20) that
_ e(0,p)

M(p) =05 (21)

Using the initial conditions ¢;(x, p) at the point x = 0, we get
¢ (x,p) = @,(x,p) + M(p)o(x, p), (22)
where
o (x,p) = 91(x,p) — (a1p + ag) P2 (x, p). (23)

By virtue of Liouville’s formula for the Wronskian (see [16]) and (22), (23) , we
obtain

G sem={y =334 (24)

Moreover, taking Theorem 2.1 and (23), we have for positive constant C and
m=0,1,
i) For x €0,al,
o™ (x, p)| < ClpI™ exp(|Replx),
o™ (x, p)| < Clp|™* exp(|Rep|x), (25)
lp™ (x, p)| < Clp|™ exp(|Replx).
i,) For x € [a,d),



202 Abdol Ali Neamaty, Yasser Khalili

o™ (x, p)| < Clp|™ exp(|Repla) exp(|Imp|(x — @),
|05 G, p)| < CloI™ " exp(IRepla) exp(lmpl(x — @), (26)
le™ (x, p)| < Clp|™ exp(|Repla) exp(|Imp|(x — a)).

i3) For x € (d, ),

o™ (x, p)| < ClpI™ exp(|Repla) exp(limpl (x — a)),

o™ (x, p)| < ClpI™* exp(|Repla) exp(|Imp| (x — a)), (27)

lp™ (x,p)| < Clp|™ exp(|Repla) exp(|Imp|(x — ).
Definition 3.1. The set of singularities of the Weyl function M(p) is called the
spectrum of BVP (L). The values of the parameter p for which the Eq. (1) has
nontrivial ~ solutions  satisfying the conditions U(y) =0, y() =0

(i.e., limy_ y(x) = 0), are called eigenvalues of BVP (L), and the
corresponding solutions are called eigenfunctions.

Theorem 3.1. The Weyl function M(p) is holomorphic in T, \A' and
continuously differentiable in TT,\A. The set of singularities of M(p) (as an
analytic function) coincides with the set Ag = RU A. For |p| —» o, p €11},

1
M(p) = 1].
() =71
Proof. Theorem 3.1 follows from (21) and properties of the functions e(0, p)
and A(p).

Thus, according to Theorem 3.1, the spectrum of BVP (L) is equal to A,.

Remark 3.1. On can introduce the operator

-1
£:D(£) > L,(0,), y— ) (y" + (ipp1(x) + po(x))y),

with the domain of definition D(¥) = {y: y € £,(0,) N AC[0,d) N AC;,.(d, ),
y' € AC[0,d) N AC)y.(d, ), £y € L,(0,), U(y) =0, and y(x) satisfies (3)}. It
is easy to verify that the spectrum of ¢  coincides with A,. There is no
difference between working either with the operator £ or with the BVP (L).

Theorem 3.2. BVP (L) has no eigenvalue for real p # 0.

Proof. Suppose that p, # 0 is an eigenvalue, and let y(x, p,) be a corresponding
eigenfunction. Since the functions {e,(x, py),e_(x,py)} form a fundamental
system of solutions for Eq. (1), we have y(x, py) = Cie;(x, po) + Cre_(x, py)-
As y(x, py) = 0 for x — oo, this is possible iff C; = C, = 0. Therefore p, # 0 is
not an eigenvalue. Theorem 3.2 is proved.
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4. The unigueness theorem

We are going to study the inverse problem for BVP (L). The inverse problem
is formulated as follows:

Inverse Problem 4.1. Given the Weyl function M (p), construct the coefficients
of the pencil (1)-(2).

At first, we have presented the following lemma that it is used in the
uniqueness theorem.
Lemma 4.1. Let f(x, p) be an entire function.
i) If |f(x,p)l<C for any x>0 and sufficiently large p, then
f(x,p) = F(x) for x = 0.
i) If |f(x,p)| <Clp|™* for any x =0 and sufficiently large p, then
f(x,p)=0.
Proof. Let f(x,p) depends on x and p. Therefore by the assumption of
lemma, we have |f(x,p)| < C|p| for x = 0 and sufficiently large p. This means
that the function f(x,p) is unbounded which contradicts the assumption. To
prove part 2, by using the assumption and Pressure Theorem for |p| — oo, we
arrive at |f(x, p)| = 0. Therefore f(x, p) = 0.

In this section, we prove the uniqueness theorem for the solution of the
inverse problem. For this purpose, together with L = L(p(x), po(x), @1, ap), We
will consider a BVP L = L(p,(x), Po(x), @, &) of the same form (1)-(2) but with
different coefficients. If a certain symbol denotes an object related to L, then the
same symbol with tilde will denote the analogs object related to L.

Theorem 4.1. If M(p) = M(p) then p,(x) = p;(x), po(x) = Po(x) for x >0,
and a; = @, ay = @,. Thus the specification of the Weyl function M(p)
uniquely determines the coefficients of the pencil (1)-(2).

Proof. At first, for brevity, we assume that a, d and a, are known a priori. We
consider the matrix P(x, p) = [P (x, p)]jk=12 defined by

Pxp) )] _ [ep) ¢(xp)
P(x, p) [?ﬁl(x,p) ?ﬁr(x,p)] - [(p'(x,p) ¢r(x,p)] (28)

By virtue of (24), this yields

{le(x. p) = (£00) (U0 (x, p)F' (x,p) — $UV(x, )@ (x, ),
Pu(x,p) = (£00) (Y70 (x, )3 (x, p) — 9D (x, p) B (x, p)),
where é(x) = 1for x < dand é(x) = a, for x > d. Also we have

{QD(X, p) = Pll(xJ p)(ﬁ(xr p) + P12(xr p)(p/(x' p)' 30)
¢(x' ,0) = Pll(xr P)@(x: p) + PlZ(x' p)(ﬁ’(xJ p)

(29)
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Using (22) and (29), we get

P1(x,p) = () (U0 (x, p)Py(x, p) — 92970 (x, p)@ (x, p)
+M(p) U= (x, p)@'(x, p)),

Pa(x,0) = (£0) (92970 (x, p)F(x, p) — 90U (x, p) @ (x, p)
—M(p)pU=V(x, p)@(x, p)),

where M(p) = M(p) — M(p). Since M(p) = M(p), deduce M(p) = 0 and
consequently, the functions P;, (x, p) are entire in p for each fixed x = 0.

Fix § > 0. Denote Gs = {p € II,: |p — px| = &8, py € A}. It follows from
(5), (6), (19) and the functions e(x, p) and A(p) in Theorem 2.2 that

le™ (x, p)| < ClpI™ exp(—|Implx), x >d, pell,,
le™ (x, p)| < ClpI™ exp(~|Implx), x € [a,d), p €L, (31)
le™(x, p)| < Clp|™ exp(—|Impla) exp(|Rep|(a —x)), x € [0,a], p € T,
|A(p)| = Clpl exp(=|Imp|a) exp(|Repla), p € Gs, (32)
|6 (x, p)| < ClpI™~t exp(—|Repla) exp(—|Impl(x — a)), x > d, p€Gs,
[ (x, )| < ClpI™ " exp(~IRepla) exp(~|Imp|(x — ), x € [a,d), p € Gs, (33)
|¢™ (x,p)| < ClpI™ " exp(—|Replx), x € [0,a], p € Gs.
It follows from (25), (26), (27), (29) and (33) that for x > 0, p € Gg,
1P, p)I < C, [P (X, ) < Clpl ™"
Using Lemma 4.1, we have Py, (x,p) = F,(x) and P,(x,p) = 0 for each x > 0.
Together with (30), we have for all x, p that
F1 )P, p) = @(x, p), F1(x)P(x, p) = $(x, p). (34)

By the assumption of Theorem 4.1 and the Weyl function in Theorem 3.1, we
infer a; = &;.
First let x € [0,a]. Taking the functions ¢;(x,p) and e(x,p) for x € [0,al,

A(p), (19), (23) and equality a; = @;, we getas |p| = o, argp € (O, g)

(x.p) _ . A
£l = exp (~i(Qe0 — Q) [1], )
28 = exp (i(Q — Q) [11.
One has from (34) and (35) that
Fi(0) = exp (—i(Q@) = 0(0)) [1], F1(x) = exp (i(QC0) — 0@))) [1], (36)

and consequently, Q(x) = 0(x) and F,(x) = 1for x € [0,a].
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Let x € [a,d). Taking the functions ¢;(x,p) and e(x, p) for x € [a,d), A(p),
(19), (23) and equalities a; = @; and Q(a) = Q(a) into accounts, we have as

Ipl = 0, arg p € (0,5),

262) — oxp(Qa(x) — Qa(®) [11,

P(xp)

o= exp (~(u0 ~ 0a)) 111,

where Q,(x) = % [ p1(t)dt. It follows from (34) and (37) that

37)

Fa() = exp (Q,00 = G, (0) [11, F1() = ewn (— (0,00 - T, @)) 111 (38)

Therefore Q,(x) = Q,(x) and F,(x) = 1 for x € [a,d).

Now let x> d. Analogously taking the functions ¢;(x,p) and e(x,p) for
x>d, A(p) , (19), (23) and equalities a; = @;, Q(a) = Q(a) and Q,(d) = Q,(d)
into accounts, we get as |p| —» o, arg p € (0, g)

&P _ exp(Qq(x) — Qu(x)) [1],

P(xp)

%= exp (_(Qd(X) - Qd(x))) [1],

where Q4 (x) =§ [ pa(®)dt. 1t follows from (34) and (39) that

Fi(0) = exp(Qu(x) — 04(0) [1], () = exp (—(Qux) — Qu(0)) (1], (40)

and consequently, Q4(x) = Q4(x) and F;(x) =1 for x >d.
Thus p; (x) = p(x), F1(x) =1 forall x > 0. According to (34), we have

P(x.p) = o(xp), ¢(xp) = p(xp). (41)
Hence py(x) = po(x) forall x > 0, and a, = &, . Theorem 4.1 is proved.

(39)

5. Conclusions

Through a survey of previous works, it is revealed that discontinuous inverse
problems for differential pencils with turning points are not investigated. In this
paper, a uniqueness theorem for a solution of this inverse problem has been
studied and the spectral mappings’ method has been used that the Weyl function
plays an important role in it.
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