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MCNN-TE: A NOVEL METHOD FOR FRACTOGRAPHIC 

IMAGES CLASSIFICATION BASED ON MULTI-CHANNEL 

CNN AND TEXTURE ENHANCEMENT 

Zhen SUN1, Junfei WU2, Qingdang LI3* 

Automatic classification of fractographic scanning electronic microscope 

(SEM) images is an important part of metal failure analysis. Using the rich texture 

information of SEM images, a classification method based on enhancing this 

information and subsequently using a multi-channel convolutional neural network 

(MCNN-TE) for classification is presented. Gaussian high-pass filtering is used to 

extract texture information, leading to texture-enhanced image sets of increasing 

sharpness. Through geometric transformations, the number of samples is extended 

and the CNNs in MCNN-TE are trained using the extended image sets. Experiments 

were carried out, integrating the results obtained from each channel into final 

classifications. Results show that the proposed method’s accuracy in classifying 

metal fractographic SEM images reaches 96.67%. Thus, it could also be used in 

other industrial image texture-based classification tasks. 

Keywords: Fractographic Images; Texture Enhancement; Metal Failures; Failures 

Classification 

1. Introduction 

Computer vision and pattern recognition technologies have been widely 

used in the field of industrial inspection, such as for defect detection in tires [1], 

textiles [2], and steel [3], as well as the automatic classification of industrial 

products [4,5]. In this paper, we discuss the application of deep learning-based 

image analysis [6] in metal fractographic scanning electron microscopy (SEM) 

images [7]. These images reflect the microscopic appearance of metal fractures 

and can be used to extract information about the metal fracture process [8,9]. This 

is a fundamental issue in the metal failure analysis process. 

This issue has received some attention in recent years, with most of the 

studies being based on features that are not selected automatically. Minoshima, 

Komai and Nagasaki [10-12] presented a method for automatic classification of 

fractographic images based on grey-level co-occurrence matrices (GLCM), 
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pattern recognition and cluster analysis to analyse fatigue fractures in detail. Russ 

[13] used a similar approach for the analysis of fractographic SEM images 

showing fatigue in aluminium alloys. Bastidas-Rodríguez [14,15] used 

fractographic images to determine fracture modes. Kosarevych [16] and Sun [17] 

employed histograms, Fourier power spectra, wavelet transforms and correlation 

vector machines for fractographic SEM image classification. Although a variety 

of classification methods for metal fractographic SEM images have been 

proposed, the accuracy of existing methods still cannot meet the practical 

requirements due to the complexity of the textures depicted in such images. 

Therefore, in this paper, we propose a data-driven approach [18] to 

classify metal fractographic SEM images. This method, called MCNN-TE, first 

extracts texture information from the SEM images using Gaussian high-pass 

filtering before feeding it into a multi-channel deep convolutional neural network. 

The single results produced by each channel are then combined to determine the 

type of metal failure structure being observed according to significant texture 

differences between different types of metal fractographic SEM images. 

Experimental results indicate that the MCNN-TE can analyse the texture features 

contained in the images more effectively and that it outperforms previous methods 

with respect to accuracy. 
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The main contributions of our work are summarized as below: 

(1) In this paper, we successfully apply a convolutional neural network to 

the classification of metal fractographic images through appropriate data 

preprocessing methods. 

(2) A multi-level texture enhancement method is proposed to improve the 

texture of metal fracture images. 

(3) The combination of multi-level texture enhancement and multi-channel 

convolutional neural networks has achieved good results in the classification of 

metal fractographic images and can provide reference for similar application 

scenarios. 

This paper is organized into five sections. Section 2 presents basic 

knowledge of the metal fractographic SEM image and shows the approach of 
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texture enhancement and data augmentation. Section 3 presents the structure and 

training method of the multi-channel convolutional neural network with texture 

enhancement (MCNN-TE). In Section 4, we conduct some experiments to show 

the effectiveness of our method. 

2. Material and Methods 

2.1 Metal Fractographic SEM Image 

Metal fractographic SEM images are collected on the fracture surfaces of 

various types of metal failure structures. These images are important tools for the 

analysis of metal failures. There are five types: dimple, cleavage, quasi-cleavage, 

intergranular and fatigue, as shown in Fig. 2. All images shown in this paper were 

obtained at the Shandong Special Equipment Inspection Institution in Jinan, China 

and were classified by a human expert. 

dimple cleavage quasi-cleavage intergranular fatigue  
Fig. 2. Different types of metal fractographic SEM images 

 

Different causes of metal failure can be inferred from metal fractographic 

SEM images as follows [7].  

(1) Dimples represent a plastic fracture of the metal; the larger the 

dimple’s size, the better the material’s plasticity.  

(2) Cleavages represent the occurrence of macroscopic brittle fractures, 

which generally occur at low temperatures, impact loads and stress 

concentrations.   

(3) Quasi-cleavages are characteristics between cleavages and dimples, 

which often occur near the brittle transition temperature.  

(4) Intergranular images represent the propagation of metal cracks along 

grain boundaries and are usually a characteristic of brittle fractures.  

(5) Fatigue represents the fact that metals are subjected to alternating loads 

and stress concentrations. Therefore, failure analysis needs to make use of as 

much information as possible. In particular, quasi-cleavage, as a special 

morphological property between cleavage and dimple, is difficult to detect. To the 

best of our knowledge, there is no study on the determination of quasi-cleavage. 

2.2 Enhancing Texture Information  

Metal fractographic SEM images are usually greyscale images, the 

different types of which show different texture features. To facilitate 

classification, we reinforce these differences by enhancing texture information.  
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Let D0 be an original image set, w a weight and F this algorithm; then Di = 

F(D0, w) is the new image set with enhanced texture information. The algorithm 

reads as follows: 

(1) For each image I∈D0, perform median filtering with a filter template size 

of 2×4 to remove noise. The new image is represented as Im. 

(2) Apply a Fourier transform on the image. 

     (1) 

(3) Apply high-pass filtering, where σ=30 is the cut-off frequency, and (n1, 

n2) is the centre point of If. 

    (2) 

    (3) 

(4) Perform inverse Fourier transform on the image Ef to obtain a time-

domain image E containing only the texture information. 

     (4) 

(5) Perform median filtering again with template size 2×4 on the texture 

image E to remove tiny edges, represented as Em. 

(6) Add to the original image I the weighted texture image Em to obtain a new 

image I’. 

     (5) 

Applying the above algorithm highlights the texture features in the original 

image, as shown in Fig. 3. To improve legibility, we presented the images 

inverted. 
2.3 Data Augmentation 

It is well known that using convolutional neural networks [18] for image 

classification requires a large number of images. In the field of metal failure 

analysis, however, there are often few fractographic SEM images available, and 

small image sets will cause overfitting and reduce the recognition rate. One way 

to solve this problem is data augmentation. Experimental results indicate that 

geometric transformations on images, such as scaling, translation, rotation, or 

even adding noise, can be used to increase the number of images. Here, we use the 

ITP [19] algorithm to extend the original data, which is represented by P(Di). This 

image transformation algorithm includes cropping, rotation, scaling, stretching, 

mirroring, contrast change and compression. For each iteration, a picture is 

randomly selected from the original image set, and one or more of the 

abovementioned transformation methods are randomly selected and applied to 

generate a new picture, as shown in Fig. 4. 
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Fig. 3. Texture enhancement. 

 

original image rotation scaling mirroring cropping contrast change  
Fig. 4. Image transformation 

2.4 MCNN-TE Algorithm 

Expert-designed digital experiments have proven that averaging outputs of 

many CNNs can produce better results than only one CNN, and multi-column 

deep neural networks for image classification have been proposed for the 

classification of traffic signs [20]. Inspired by this, we propose multi-channel 

CNNs with texture enhancement to recognize the texture features of metal 

fractographic SEM images more effectively. The following two subsections 

describe the details of MCNN-TE. 

2.5 Structure of MCNN-TE and Data Processing 

The MCNN-TE method proposed in this paper utilizes N basic CNNs, Ci 

(i∈[0...N-1]), each of which has a separate training image set Di, where D0 is the 

original image set, and other training sets are obtained from D0 by the 

enhancement algorithm of Section 2.2. 

In the training phase, each network Ci uses the augmented image set P(Di) 

to improve the training effect. Through training, each basic network Ci  formulates 

the network weights that match the characteristics of the corresponding image set. 

In the test phase, each test image T is extended to N images Ti (i∈[0...N-1]) by the 
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enhancement algorithm. These images are then input to the corresponding 

network Ci. As a result, each basic network Ci provides a probability that the test 

image belongs to a certain class. Finally, the average of all network outputs is 

taken as the MCNN-TE's final result, as shown in the following equation. 

    (6) 

The training and test phases of MCNN-TE are shown in Fig. 5. 
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Fig. 5 MCNN-TE training phase (a) and test phase (b)  

3. Results 

3.1 Experiment Implementation 

The experiments consist of seven steps. In the first step, the image sets are 

initialized, and the basic CNNs are configured. During the second step, we 

evaluate the effect of enhancing the texture information. The third step is 

determining the best parameters for texture enhancement, while in the fourth part 

we explore how the enhanced texture helps to increase the accuracy of 

classification. In the fifth phase, the optimal number of basic CNNs is determined. 

Finally, the accuracy achieved with the presented method is compared with state-

of-the-art approaches. In addition, we analyse the misclassified samples and 

provide the reasons for misclassification. All of the above experiments were run 

on the same hardware platform, a PC with a 2.50 GHz 4-core CPU, 64 GB RAM, 

GeForce 1080Ti GPU with the Ubuntu 16.04 operating system and using the 

Matconvnet programming framework [22]. 

A total of 1500 fractographic SEM images of metal samples were obtained 

from the Special Equipment Inspection Institution. In the data initialization stage, 

the image resolution was uniformly set to 224×224, and histogram equalization 

was performed. Applying the method described in Section 3.2, the image set D0 - 

Dn-1 was generated. The test set was randomly selected out of image set D0 with 

the ratio 1:4 of the test set to the training set. 

The basic CNN used was a ResNet-50, to which an Fc3 layer was added to 

enable the recognition of the five types of metal failures. The parameter settings 

of each layer of the basic network are shown in Table 1. Each batch of training 
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sets has 30 images. The total number of iterations in the training phase was 

limited to 100. The learning rate was initialized to 0.01 and reduced by 10% after 

every 10 iterations, at which point a test with 30 images was also performed to 

determine whether the CNN’s classification is already satisfactory. 

3.2 Comparisons to the State-of-the-art 

To verify the effectiveness of this method, we compared it with state-of-

the-art methods. These methods can be classified into two categories.  

(1) Classification algorithms based on hand-crafted features, such as kNN 

[23], SVM [24], KSPM [25], LLC [26], ScSPM [27].  

(2) Classification algorithms based on artificial neural networks, such as 

BP networks [28] and ResNet-50 [21]. For the BP, kNN, and SVM algorithms, we 

extracted GLCM texture features from the original images as input data. For 

classifier selection, KSPM uses a non-linear SVM classifier, and LLC and ScSPM 

use a linear SVM classifier. In ResNet-50, we used the default setting and input 

images with data augmentation. The experimental results are shown in Table 1. 
 

Table 1 

Comparison of state-of-the-art methods 

Methods 
Test  

Accuracy (%) 

Validation 

Accuracy (%) 

Test Time 

(sec.) 

Test Memory 

(MB) 

BP 86.2 / 3.7 32.8 

KNN 81.9 / 1.2 29.2 

PCA+BP  69.44 / 3.9 36.2 

ScSPM09 89.56 / 4.2 39.1 

LLC10 91.85 / 4.6 42.4 

KSPM-200-3 87.69 / 3.9 37.2 

KSPM-400-2 88.73 / 3.7 39.3 

ResNet-50 91.31 93.60 4.9 98.3 

MCNN-TE 96.67 98.12 24.6 501.5 
 

Experiments show that MCNN-TE performed best on the test sets and 

used the most time and memory resources. We believe that in the current 

hardware environment, the time and memory consumption are acceptable. Sparse 

coding algorithms such as ScSPM09 and LLC10 also achieved a better result. 

However, they require feature extraction methods and the choice of suitable 

classifiers, therefore their classification accuracy largely depends on the skill of 

the designer. The neural network-based approach avoids the uncertainty caused by 

expert-designed features through end-to-end training. 

A few reasons for MCNN-TE's better results compared to other 

approaches are: 

(1) The multiple convolutional and pooled layers used by the CNN extract 

better texture information than other methods. 
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(2) The enhanced texture information makes the new image set more 

distinguishable than the original image set. 

(3) The multi-channel CNN integrates multiple results to avoid the 

erroneous results produced by single basic CNNs. 

4. Discussion 

4.1 Evaluation of the Data Augmentation 

To verify the effectiveness of the ITP algorithm in the classification of 

metal fractographic SEM images, we conducted the following experiments: (1) 

Train and test a single CNN with the original image set. (2) Train a single CNN 

with an original image set and test with data augmentation. (3) Train a single 

CNN with data augmentation and test with the original image set. All experiments 

used the same model parameters, and the ratio of the training set, validation set 

and test set was 8:1:1. The results of the experiments are shown in Table 2 below. 
 

Table 2 

Effectiveness of data augmentation 

No. Training Set Test Set 
Validation 

Accuracy (%) 

Test 

Accuracy (%) 

1 Original Set Original Set 91.40 89.10 

2 Original Set Augmented Set 91.40 89.02 

3 Augmented Set Augmented Set 93.60 91.31 
 

The above experiments show that the data augmentation method reduces 

the overfitting of the model and improves its generalization ability. We think that 

there are two main reasons for this.  

(1) The CNN model training process requires a large number of images. 

When the training image set is small, the CNN model has difficulty obtaining 

satisfactory test results due to insufficient parameter fitting or overfitting of 

parameters. The ITP method can expand a small data set to a large number of 

samples, providing reliable training for the CNNs.  

(2) The geometric transformation method provided by ITP is well suited 

for metal fractographic SEM images. These images are not directional and have 

various scales. Different categories are mainly distinguished through the internal 

texture structure. The ITP method transforms the image as a whole. The new 

image may have a different direction, scales, etc., but the texture characteristics 

have not changed. Therefore, we believe that this method is effective for this 

paper, and the experiments also showed that using this method we can obtain 

better results. 

4.2 Analysis of Texture Enhancement 

To further explore how enhanced textures help the classification of metal 
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fractographic SEM images, we selected a typical cleavage image and extracted 

feature maps of the original image and the texture-enhanced image, as shown in 

Fig. 6. 

(a) (b)  
Fig. 6 Feature maps of a cleavage image. 

(a) Original image. (b) Texture Enhanced image with w = 6 
 

By comparing the differences of the feature maps, we can see that the 

feature maps of the texture-enhanced images are richer, as shown in the red box. 

In the training phase of the CNN, these significant features are more conducive to 

forming the weights and the convergence of the network. In the test phase, it also 

helps to obtain the correct results. 

4.3 Optimal Number of Basic CNNs 

The MCNN-TE method may utilise one or more basic CNNs. Intuitively, 

more CNNs can provide more recognition capability and better accuracy, but at 

the same time, the computational cost of training and testing will be higher. To 

empirically determine the optimal number of basic CNNs, the relationship 

between accuracy and number of CNNs was analysed for 1, 3, 5 and 7 CNNs. The 

results are shown in Table 3.  
Table 3 

Effectiveness of data augumentation 

Channel 

Number 

Parameter w of  

each channel 

Test Accuracy 

(%) 

Validation 

Accuracy (%) 

Training Time 

(sec.) 

Test Time 

(sec.) 

1 0 91.31 93.60 908.8 4.9 

3 0,1,2 94.30 96.25 2728.1 14.9 

5 0,1,2,4,6 96.67 98.12 4546.5 24.6 

7 0,1,2,3,4,5,6 97.60 98.65 6359.2 34.5 

 

The results show that more CNNs can provide slightly higher 

classification accuracy. The highest accuracy of 97.60% was achieved with 7 

CNNs, followed by 96.67% with 5 and 94.30% with 3. The lowest but still 

acceptable accuracy of 91.31% was achieved by a single CNN (augmented image 

set without texture enhancement). Although more CNNs provide better accuracy, 
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they require considerably longer execution time and more computational 

resources. Because the accuracy gain from employing 5 to 7 CNNs is only 

marginal and does not justify the additional computational cost, we chose 5 CNNs 

in the MCNN-TE method. 

4.4 Analysis of Misclassified Samples 

The MCNN-TE had an error rate of approximately 4.2%. The recognition 

results for each type of fractographic SEM image are given in Table 4. The 

dimple images had a relatively large error rate of approximately 7.1%. Of the 

misclassified images, 60% were from dimple and quasi-cleavage. As mentioned in 

Section 2.1, quasi-cleavage is a special morphology between cleavage and dimple, 

and sometimes it is hard to distinguish whether an image belongs to the dimple or 

quasi-cleavage class. The error rate of intergranular images was also high, 

reaching 4.6%. Some of the samples are shown in Fig. 7. 
 

(a) (b) (c) (d) (e)  
Fig. 7. Samples of misclassified images 

Table 4 

Recognition results 

               Result 

      Type 
Dimple Cleavage 

Quasi-

cleavage 

Intergr

anular 
Fatigue 

Correct 

number 

Total 

number 

Accuracy 

% 

Dimple 53 0 4 0 0 52 56 92.86 

Cleavage 0 60 0 0 1 60 61 98.36 

Quasi-cleavage 2 0 60 0 0 60 62 96.77 

Intergranular 1 0 0 62 2 62 65 95.38 

Fatigue 0 0 0 0 56 56 56 100 

Total number  290 300 96.67 

 

Through the analysis of these images, we found that most of them were 

complex textures, i.e., atypical image samples of metal fractographic SEM. Some 

images included several types or lied half-way between two typical classes. 

 

5. Conclusions 

Metal fractographic SEM images reflect the microscopic appearance of 

metal fracture and contain information about the metal fracture process. This 

paper presents a classification method for metal failures by enhancing texture 

features in fractographic images (MCNN-TE). Experiments show that the 

method’s classification accuracy can reach 96.67%, which is superior to other 
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algorithms currently used in this field. This method enhances the texture and can 

be used in other industrial image classification tasks based on texture information. 
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