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MCNN-TE: ANOVEL METHOD FOR FRACTOGRAPHIC
IMAGES CLASSIFICATION BASED ON MULTI-CHANNEL
CNN AND TEXTURE ENHANCEMENT

Zhen SUNZ, Junfei WU?, Qingdang LI**

Automatic classification of fractographic scanning electronic microscope
(SEM) images is an important part of metal failure analysis. Using the rich texture
information of SEM images, a classification method based on enhancing this
information and subsequently using a multi-channel convolutional neural network
(MCNN-TE) for classification is presented. Gaussian high-pass filtering is used to
extract texture information, leading to texture-enhanced image sets of increasing
sharpness. Through geometric transformations, the number of samples is extended
and the CNNs in MCNN-TE are trained using the extended image sets. Experiments
were carried out, integrating the results obtained from each channel into final
classifications. Results show that the proposed method’s accuracy in classifying
metal fractographic SEM images reaches 96.67%. Thus, it could also be used in
other industrial image texture-based classification tasks.

Keywords: Fractographic Images; Texture Enhancement; Metal Failures; Failures
Classification

1. Introduction

Computer vision and pattern recognition technologies have been widely
used in the field of industrial inspection, such as for defect detection in tires [1],
textiles [2], and steel [3], as well as the automatic classification of industrial
products [4,5]. In this paper, we discuss the application of deep learning-based
image analysis [6] in metal fractographic scanning electron microscopy (SEM)
images [7]. These images reflect the microscopic appearance of metal fractures
and can be used to extract information about the metal fracture process [8,9]. This
is a fundamental issue in the metal failure analysis process.

This issue has received some attention in recent years, with most of the
studies being based on features that are not selected automatically. Minoshima,
Komai and Nagasaki [10-12] presented a method for automatic classification of
fractographic images based on grey-level co-occurrence matrices (GLCM),
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pattern recognition and cluster analysis to analyse fatigue fractures in detail. Russ
[13] used a similar approach for the analysis of fractographic SEM images
showing fatigue in aluminium alloys. Bastidas-Rodriguez [14,15] used
fractographic images to determine fracture modes. Kosarevych [16] and Sun [17]
employed histograms, Fourier power spectra, wavelet transforms and correlation
vector machines for fractographic SEM image classification. Although a variety
of classification methods for metal fractographic SEM images have been
proposed, the accuracy of existing methods still cannot meet the practical
requirements due to the complexity of the textures depicted in such images.

Therefore, in this paper, we propose a data-driven approach [18] to
classify metal fractographic SEM images. This method, called MCNN-TE, first
extracts texture information from the SEM images using Gaussian high-pass
filtering before feeding it into a multi-channel deep convolutional neural network.
The single results produced by each channel are then combined to determine the
type of metal failure structure being observed according to significant texture
differences between different types of metal fractographic SEM images.
Experimental results indicate that the MCNN-TE can analyse the texture features
contained in the images more effectively and that it outperforms previous methods
with respect to accuracy.
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Fig. 1. MCNN-TE structure

The main contributions of our work are summarized as below:

(1) In this paper, we successfully apply a convolutional neural network to
the classification of metal fractographic images through appropriate data
preprocessing methods.

(2) A multi-level texture enhancement method is proposed to improve the
texture of metal fracture images.

(3) The combination of multi-level texture enhancement and multi-channel
convolutional neural networks has achieved good results in the classification of
metal fractographic images and can provide reference for similar application
scenarios.

This paper is organized into five sections. Section 2 presents basic
knowledge of the metal fractographic SEM image and shows the approach of
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texture enhancement and data augmentation. Section 3 presents the structure and
training method of the multi-channel convolutional neural network with texture
enhancement (MCNN-TE). In Section 4, we conduct some experiments to show
the effectiveness of our method.

2. Material and Methods

2.1 Metal Fractographic SEM Image

Metal fractographic SEM images are collected on the fracture surfaces of
various types of metal failure structures. These images are important tools for the
analysis of metal failures. There are five types: dimple, cleavage, quasi-cleavage,
intergranular and fatigue, as shown in Fig. 2. All images shown in this paper were
obtained at the Shandong Special Equipment Inspection Institution in Jinan, China
and were classified by a human expert.
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Fig. 2. Different types of metal fractographic SEM images

Different causes of metal failure can be inferred from metal fractographic
SEM images as follows [7].

(1) Dimples represent a plastic fracture of the metal; the larger the
dimple’s size, the better the material’s plasticity.

(2) Cleavages represent the occurrence of macroscopic brittle fractures,
which generally occur at low temperatures, impact loads and stress
concentrations.

(3) Quasi-cleavages are characteristics between cleavages and dimples,
which often occur near the brittle transition temperature.

(4) Intergranular images represent the propagation of metal cracks along
grain boundaries and are usually a characteristic of brittle fractures.

(5) Fatigue represents the fact that metals are subjected to alternating loads
and stress concentrations. Therefore, failure analysis needs to make use of as
much information as possible. In particular, quasi-cleavage, as a special
morphological property between cleavage and dimple, is difficult to detect. To the
best of our knowledge, there is no study on the determination of quasi-cleavage.

2.2 Enhancing Texture Information

Metal fractographic SEM images are usually greyscale images, the
different types of which show different texture features. To facilitate
classification, we reinforce these differences by enhancing texture information.
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Let Do be an original image set, w a weight and F this algorithm; then D; =
F(Do, w) is the new image set with enhanced texture information. The algorithm
reads as follows:

(1) For each image | €Do, perform median filtering with a filter template size
of 2X4 to remove noise. The new image is represented as Im.

(2) Apply a Fourier transform on the image.

I = F(1,) (1)

(3) Apply high-pass filtering, where =30 is the cut-off frequency, and (nq,
ny) is the centre point of Iy.
Er(w,v) = H(u,v) - I(uv) 2

[u—my 12 +(P—ng)?

Huwv)=1—e 2w (3)

(4) Perform inverse Fourier transform on the image E: to obtain a time-
domain image E containing only the texture information.
E =F(E;) (4)

(5) Perform median filtering again with template size 2x4 on the texture
image E to remove tiny edges, represented as Enm.
(6) Add to the original image | the weighted texture image En to obtain a new
image /.
I'=1+E, -w (5)

Applying the above algorithm highlights the texture features in the original
image, as shown in Fig. 3. To improve legibility, we presented the images
inverted.

2.3 Data Augmentation

It is well known that using convolutional neural networks [18] for image
classification requires a large number of images. In the field of metal failure
analysis, however, there are often few fractographic SEM images available, and
small image sets will cause overfitting and reduce the recognition rate. One way
to solve this problem is data augmentation. Experimental results indicate that
geometric transformations on images, such as scaling, translation, rotation, or
even adding noise, can be used to increase the number of images. Here, we use the
ITP [19] algorithm to extend the original data, which is represented by P(Di). This
image transformation algorithm includes cropping, rotation, scaling, stretching,
mirroring, contrast change and compression. For each iteration, a picture is
randomly selected from the original image set, and one or more of the
abovementioned transformation methods are randomly selected and applied to
generate a new picture, as shown in Fig. 4.
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2.4 MCNN-TE Algorithm

Expert-designed digital experiments have proven that averaging outputs of
many CNNs can produce better results than only one CNN, and multi-column
deep neural networks for image classification have been proposed for the
classification of traffic signs [20]. Inspired by this, we propose multi-channel
CNNs with texture enhancement to recognize the texture features of metal
fractographic SEM images more effectively. The following two subsections
describe the details of MCNN-TE.

2.5 Structure of MCNN-TE and Data Processing

The MCNN-TE method proposed in this paper utilizes N basic CNNs, C;
(i €[0...N-1]), each of which has a separate training image set Di, where Dy is the
original image set, and other training sets are obtained from Do by the
enhancement algorithm of Section 2.2.

In the training phase, each network C; uses the augmented image set P(Di)
to improve the training effect. Through training, each basic network C; formulates
the network weights that match the characteristics of the corresponding image set.
In the test phase, each test image T is extended to N images T; (i €[0...N-1]) by the
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enhancement algorithm. These images are then input to the corresponding
network Ci. As a result, each basic network C; provides a probability that the test
image belongs to a certain class. Finally, the average of all network outputs is
taken as the MCNN-TE's final result, as shown in the following equation.

1 r
Yucnn-te T o ¥e, (6)
The training and test phases of MCNN-TE are shown in Fig. 5.
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Fig. 5 MCNN-TE training phase (a) and test phase (b)
3. Results

3.1 Experiment Implementation

(b)

The experiments consist of seven steps. In the first step, the image sets are
initialized, and the basic CNNs are configured. During the second step, we
evaluate the effect of enhancing the texture information. The third step is
determining the best parameters for texture enhancement, while in the fourth part
we explore how the enhanced texture helps to increase the accuracy of
classification. In the fifth phase, the optimal number of basic CNNs is determined.
Finally, the accuracy achieved with the presented method is compared with state-
of-the-art approaches. In addition, we analyse the misclassified samples and
provide the reasons for misclassification. All of the above experiments were run
on the same hardware platform, a PC with a 2.50 GHz 4-core CPU, 64 GB RAM,
GeForce 1080Ti GPU with the Ubuntu 16.04 operating system and using the
Matconvnet programming framework [22].

A total of 1500 fractographic SEM images of metal samples were obtained
from the Special Equipment Inspection Institution. In the data initialization stage,
the image resolution was uniformly set to 224x224, and histogram equalization
was performed. Applying the method described in Section 3.2, the image set Do -
Dn-1 was generated. The test set was randomly selected out of image set Do with
the ratio 1:4 of the test set to the training set.

The basic CNN used was a ResNet-50, to which an Fc3 layer was added to
enable the recognition of the five types of metal failures. The parameter settings
of each layer of the basic network are shown in Table 1. Each batch of training



MCNN-TE: a novel method for fractographic images classification based on multi-channel... 127

sets has 30 images. The total number of iterations in the training phase was
limited to 100. The learning rate was initialized to 0.01 and reduced by 10% after
every 10 iterations, at which point a test with 30 images was also performed to
determine whether the CNN’s classification is already satisfactory.

3.2 Comparisons to the State-of-the-art

To verify the effectiveness of this method, we compared it with state-of-
the-art methods. These methods can be classified into two categories.

(1) Classification algorithms based on hand-crafted features, such as KNN
[23], SVM [24], KSPM [25], LLC [26], ScSPM [27].

(2) Classification algorithms based on artificial neural networks, such as
BP networks [28] and ResNet-50 [21]. For the BP, KNN, and SVM algorithms, we
extracted GLCM texture features from the original images as input data. For
classifier selection, KSPM uses a non-linear SVM classifier, and LLC and ScSPM
use a linear SVM classifier. In ResNet-50, we used the default setting and input
images with data augmentation. The experimental results are shown in Table 1.

Table 1
Comparison of state-of-the-art methods

Methods Test Validation Test Time Test Memory
Accuracy (%) | Accuracy (%) (sec.) (MB)
BP 86.2 / 3.7 32.8
KNN 81.9 / 1.2 29.2
PCA+BP 69.44 / 3.9 36.2
ScSPM09 89.56 / 4.2 39.1
LLC10 91.85 / 4.6 42.4
KSPM-200-3 87.69 / 3.9 37.2
KSPM-400-2 88.73 / 3.7 39.3
ResNet-50 91.31 93.60 4.9 98.3
MCNN-TE 96.67 98.12 24.6 501.5

Experiments show that MCNN-TE performed best on the test sets and

used the most time and memory resources. We believe that in the current
hardware environment, the time and memory consumption are acceptable. Sparse
coding algorithms such as ScSPMQ09 and LLC10 also achieved a better result.
However, they require feature extraction methods and the choice of suitable
classifiers, therefore their classification accuracy largely depends on the skill of
the designer. The neural network-based approach avoids the uncertainty caused by
expert-designed features through end-to-end training.

A few reasons for MCNN-TE's better results compared to other
approaches are:

(1) The multiple convolutional and pooled layers used by the CNN extract
better texture information than other methods.
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(2) The enhanced texture information makes the new image set more
distinguishable than the original image set.

(3) The multi-channel CNN integrates multiple results to avoid the
erroneous results produced by single basic CNNs.

4. Discussion
4.1 Evaluation of the Data Augmentation

To verify the effectiveness of the ITP algorithm in the classification of
metal fractographic SEM images, we conducted the following experiments: (1)
Train and test a single CNN with the original image set. (2) Train a single CNN
with an original image set and test with data augmentation. (3) Train a single
CNN with data augmentation and test with the original image set. All experiments
used the same model parameters, and the ratio of the training set, validation set
and test set was 8:1:1. The results of the experiments are shown in Table 2 below.

Table 2
Effectiveness of data augmentation
. Validation Test
No. Training Set Test Set Accuracy (%) | Accuracy (%)
1 Original Set Original Set 91.40 89.10
2 Original Set Augmented Set 91.40 89.02
3 Augmented Set | Augmented Set 93.60 91.31

The above experiments show that the data augmentation method reduces
the overfitting of the model and improves its generalization ability. We think that
there are two main reasons for this.

(1) The CNN model training process requires a large number of images.
When the training image set is small, the CNN model has difficulty obtaining
satisfactory test results due to insufficient parameter fitting or overfitting of
parameters. The ITP method can expand a small data set to a large number of
samples, providing reliable training for the CNNSs.

(2) The geometric transformation method provided by ITP is well suited
for metal fractographic SEM images. These images are not directional and have
various scales. Different categories are mainly distinguished through the internal
texture structure. The ITP method transforms the image as a whole. The new
image may have a different direction, scales, etc., but the texture characteristics
have not changed. Therefore, we believe that this method is effective for this
paper, and the experiments also showed that using this method we can obtain
better results.

4.2 Analysis of Texture Enhancement
To further explore how enhanced textures help the classification of metal
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fractographic SEM images, we selected a typical cleavage image and extracted
feature maps of the original image and the texture-enhanced image, as shown in
Fig. 6.

(@) (b)
Fig. 6 Feature maps of a cleavage image.
(a) Original image. (b) Texture Enhanced image with w = 6

By comparing the differences of the feature maps, we can see that the
feature maps of the texture-enhanced images are richer, as shown in the red box.
In the training phase of the CNN, these significant features are more conducive to
forming the weights and the convergence of the network. In the test phase, it also
helps to obtain the correct results.

4.3 Optimal Number of Basic CNNs

The MCNN-TE method may utilise one or more basic CNNs. Intuitively,
more CNNSs can provide more recognition capability and better accuracy, but at
the same time, the computational cost of training and testing will be higher. To
empirically determine the optimal number of basic CNNSs, the relationship
between accuracy and number of CNNs was analysed for 1, 3, 5and 7 CNNs. The
results are shown in Table 3.

Table 3
Effectiveness of data augumentation

Channel | Parameter wof | Test Accuracy Validation Training Time Test Time
Number each channel (%) Accuracy (%) (sec.) (sec.)

1 0 91.31 93.60 908.8 4.9

3 0,12 94.30 96.25 2728.1 14.9

5 0,1,2,4,6 96.67 98.12 4546.5 24.6

7 0,1,2,3,4,5,6 97.60 98.65 6359.2 34.5

The results show that more CNNs can provide slightly higher
classification accuracy. The highest accuracy of 97.60% was achieved with 7
CNNs, followed by 96.67% with 5 and 94.30% with 3. The lowest but still
acceptable accuracy of 91.31% was achieved by a single CNN (augmented image
set without texture enhancement). Although more CNNs provide better accuracy,
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they require considerably longer execution time and more computational
resources. Because the accuracy gain from employing 5 to 7 CNNs is only
marginal and does not justify the additional computational cost, we chose 5 CNNs
in the MCNN-TE method.

4.4 Analysis of Misclassified Samples

The MCNN-TE had an error rate of approximately 4.2%. The recognition
results for each type of fractographic SEM image are given in Table 4. The
dimple images had a relatively large error rate of approximately 7.1%. Of the
misclassified images, 60% were from dimple and quasi-cleavage. As mentioned in
Section 2.1, quasi-cleavage is a special morphology between cleavage and dimple,
and sometimes it is hard to distinguish whether an image belongs to the dimple or
quasi-cleavage class. The error rate of intergranular images was also high,
reaching 4.6%. Some of the samples are shown in Fig. 7.
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Fig. 7. Samples of misclassified images

Table 4
Recognition results

Ty | Dimple | Cleavage | (0 | Crttar | FU9% | number | number | 56
Dimple 53 0 4 0 0 52 56 92.86
Cleavage 0 60 0 0 1 60 61 98.36
Quasi-cleavage 2 0 60 0 0 60 62 96.77
Intergranular 1 0 0 62 2 62 65 95.38
Fatigue 0 0 0 0 56 56 56 100
Total number 290 300 96.67

Through the analysis of these images, we found that most of them were
complex textures, i.e., atypical image samples of metal fractographic SEM. Some
images included several types or lied half-way between two typical classes.

5. Conclusions

Metal fractographic SEM images reflect the microscopic appearance of
metal fracture and contain information about the metal fracture process. This
paper presents a classification method for metal failures by enhancing texture
features in fractographic images (MCNN-TE). Experiments show that the
method’s classification accuracy can reach 96.67%, which is superior to other
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algorithms currently used in this field. This method enhances the texture and can
be used in other industrial image classification tasks based on texture information.
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