U.P.B. Sci. Bull., Series C, Vol. 73, Iss. 4, 2011 ISSN 1454-234x

A DEVELOPMENT PROCESS OF THE USER-INTERFACES
FOR THE DATABASE APPLICATIONS

Adrian ALEXANDRESCU!

Proiectarea, implementarea si testarea interfetelor-utilizator, din cadrul
aplicatiilor cu baze de date, sunt sarcini ce necesita o muncd semnificativa care, de
cele mai multe ori, este o muncd de rutind. Lucrarea propune un proces de
dezvoltare bazat pe sabloane de proiectare si implementare pentru acestea.
Procesul de dezvoltare propus faciliteaza generarea automatd a interfetelor-
utilizator plecand de la modelul conceptual al domeniului aplicatiei §i specificatiile
componentelor interfetelor-utilizator. Autorul a implementat procesul propus
utilizand platforma Microsoft Visual Studio 2008.

The design, implementation and test of the user-interfaces within the
database applications, are tasks that require a lot of work, which in many cases is a
routine work. The paper proposes a development process based on design and
implementation patterns for them. The proposed development process facilitates the
automated generation of the user-interfaces starting from the conceptual model of
the application domain and the specification of the user-interfaces components. The
author has implemented the proposed process using Microsoft Visual Studio 2008.

Keywords: software engineering, user-interfaces development, design patterns
for user-interfaces, automated generation of the user-interfaces

1. Introduction

The database applications cover large domains of activity such as:
economy, public administration, education, health, defense, etc. Their specificity
is that they manage a large number of instances of the concepts from a certain
domain. They also manage the relationships between the concepts instances.
Usually, the term entity is a synonym for concept instance. The user-interfaces
(Ul) of the database applications are software components which offer
presentation and update services for entities and their relationships.

User interfaces development is a subject for many conferences and
workshops (such as [8], [9]). Model-based interface development, automated and
semi-automated techniques for user-interface generation, user-interface design
patterns, are frequently discussed issues.

! Lecturer, Department of Mathematics and Informatics, Ovidius University of Constanta,
Romania, e-mail: aalexandrescu@univ-ovidius.ro

100 Adrian Alexandrescu

The paper presents a development process for the user-interfaces, based on
a set of design and implementation patterns. From the practice of the user-
interface development, | have identified some Ul design patterns. The use of the
patterns opens the way of the Ul automated generation. The developer effort will
be directed towards the specification of the Ul properties, letting the routine work
to be done by some predefined or automated generated software.

The section 2 presents a case study of an application domain, modeled by
an UML class diagram. The model is then refined in section 3, using the REA
modeling. Section 4 shows the database schema for the application domain, and
section 5 proposes some patterns which cover the Ul design for all the conceptual
categories and the their interactions. Section 6 presents some conclusions.

2. An Example of an Application Domain Model

Let consider an application which manages certain activities from a
library. Fig. 1 presents a conceptual diagram for the main domain concepts, using
an UML class diagram. The BookStock is one of the main concepts, whose
instances refer the books existing in the library at the current moment. The Book
concept refers the books owned by the library. BookTitle is a concept that defines
the titles of the books from the library. For every instance of the BookTitle
concept, there may be at least one instance of the Book concept. Client is a
concept whose instances represent persons which may borrow books from the
library. They also must return the books borrowed. Borrow is a concept that has
an instance for every borrowing action of a client at a certain moment. A Borrow
instance has associated one or more instances of the BorrowDetail concept,
representing the list of the books borrowed. The Rerurn concept is similar to the
Borrow concept. The Area concept groups entities from the BookTitle concept.
Other concepts are Author and Editor.

A development process of the user-interfaces for the database applications 101

There are also presented the relationships between the concepts and their
cardinalities.

Publisher 1 1.* | BookTitle 1.* 1.* Author
T
|
1.* 1 I
Area 1 IL BookTitleAuthor
1.*
1 Book 1
0.* 0..*
1
BorrowDetail o ReturnDetail
1.* BookStock 1.*
1 1
Borrow 0.* 1 Client 1 0.* Return

Fig. 1. The conceptual model of the application domain

The BookTitleAuthor is a concept that implements the many to many relationship
between the concepts BookTitle and Author.

3. A REA (Resource-Event-Agent) Modeling Perspective

REA was originally proposed as a generalized accounting modeling, by
William E. McCarthy in 1982 [1]. Since then, the original REA model has been
extended by McCarthy and Guido Geerts to a framework for business systems [2].
Even if the REA modeling is considered suitable only for the economic domain, |
consider that it may be applied to other domains too. The example | consider in
this paper illustrates this. The REA modeling introduces several conceptual
categories. The main categories are: resources, events and agents. A resource 1S
something that has an important value and we want to manage. In the example
from the Fig. 1, the BookStock is a concept from the resource category. An agent
iS a person or an organization that has rights to increase or decrease the value of a
resource. In the example from the Fig. 1, the Client concept belongs to the agent
category. It may decrease the value of the BookStock resource by borrowing books
and increase the value of the BookStock resource by returning books. The

102 Adrian Alexandrescu

organization itself (the library) may be also considered as an implicit agent.
Finally, an event is an increase or a decrease of a resource value. In the same
example of the Fig. 1, Borrow and Return are concepts from the event category.

The authors of the REA modeling have extended the three base conceptual
categories, presented above, with new ones. Some of them are: #ype and group.
The #ype conceptual category defines types of instances of a concept. In our
example, Book is a concept from a #ype conceptual category. It defines types of
BookStock instances. The group conceptual category allows us to group instances
from one or more concepts. The Area concept is a group conceptual category.
BookTitle may be considered a group concept because it groups the Book
instances with the same title. There are many other extensions of the REA
modeling, made by its authors.

An extension, done this time by the author of this paper, is the EventDetail
concept category. A concept from this category describes the content of an event
concept. For example, the BorrowDetail concept specifies the list of books
borrowed by a client at one moment. The ReturnDetail is also a concept from the
EventDetail category. It is optional that an event concept be associated with an
EventDetail concept.

I also consider that there are concepts which can not be included in the
categories mentioned above. They may be called simple concepts. The concepts
Author and Publisher may be considered simple concepts. There is also possible
to consider Publisher and Author as group concepts.

The concept category may label the concepts from the conceptual diagram
using stereotypes. The relationships between concepts may be also labeled with
predefined names, using the following rules:

- Any event concept must be related to a resource concept, in the case that
the event concept has not an associated event-detail concept. If the event
concept has an associated event-detail concept, the event-detail concept
will be related to the resource concept. The relationship between an event
concept (or an event-detail concept) and a resource concept will be labeled
input if the event concept increases the value of the resource concept, or
output if the event concept decreases the value of the resource concept.

- Any event concept must be also related to an agent concept. The
relationship between an agent concept and an event concept that increases
the value of the resource concept will be labeled with the name supply, and
in case of an event concept that decreases the value of the resource
concept, the label will be receive.

- The relationship between a concept and a type concept will be labeled with
the name specification [3].

- The relationship between a concept and a group concept will be labeled
with the name grouping [3].

A development process of the user-interfaces for the database applications

103

- The relationship between an event concept and its associated event-detail
concept will be labeled with the name detail.
- The input and output relationships need not the cardinality specification.
We’ll consider, in the context of the conceptual diagram, that a resource
concept represents the evaluation of the resource instances at the current

moment.

With these considerations the conceptual diagram from Fig. 1 becomes the
REA conceptual diagram from the Fig. 2. The Fig. 2 contains also the attributes

for the concepts.

<<group>>
Publisher BookTitle Author
1 1.* 1.* 1.*
PublisherName Title T AuthorName
PublisherAdress ISBN | Country
Year :
|
<<group>> 1.* 1 |
Area) L ———- BookTitleAuthor
AreaName grouping Nr
grouping
1”*
<<event_detail>> | 0.* 1| <<resource type>> |1 0.* | <<event_detail>>
BorrowDetail — Book — ReturnDetail
specification specification
Nr Nr
InputDate
1.*) Price 1.*)
detail detail
1 1 1
specification
<<event>> 0.* <<event>>
Borrow output . Return
<<resource>> input
BorrowDate BookStock ReturnDate
0.* archivate 0.*
<<archive>>
BookStockArchive <<agent>>
Client
ArchiveDate 1
1 | ClientName
- PersonalCodeNr supply
receive ClientAdress

Fig. 2. The REA conceptual diagram for the application domain

In this paper, | consider that the resource concept refers to the current
value of a resource. We may also discuss about the initial value of a resource,

104 Adrian Alexandrescu

when started the activity of the enterprise or organization. We may also consider
as initial value of a resource at the moment when the application is implemented.
We may also consider the value of a resource at any moment, for example at the
beginning of every month. For this reason, every resource concept needs an
associated resource-archive concept which stores the resource values at previous
moments. The resource-archive concept is another extension of the REA
modeling, done in this paper, and may be represented in the conceptual diagrams
with the stereotype <<archive>>. The resource-archive concept has all the
attributes of the resource concept and supplementary has an ArchiveDate attribute
which means the moment of the resource value.

The archive concept may also be used for the event concepts (and its
associated event-detail concepts). The reason, in this case, is to reduce the number
of records from the database relation associated to the event concept, thus
increasing the application performances without limiting the access to the concept
instances. When the user decides to archive instances of the event concepts, these
are moved from the database relation, associated to the event concept, to the
database relation associated to the event-archive concept. The event-archive
relation schema is the same as the event relation schema.

The REA conceptual categories enable an easier identification of the
design and implementation patterns for the user-interfaces corresponding to the
domain concepts.

4. The Database Schema Generation

Once the conceptual diagram is established, we may generate the relational
database schema. The generation of the database schema may be automated [4],
taking into account that the concepts belong to some predefined categories. The
automated generation of the database starts from the description of the REA
conceptual diagram and the specification of the concepts attributes. For the
example of the Fig. 2, we obtain the following database schema:

Publisher (Publisherld, PublisherName, PublisherAdress)
Author (Authorld, AuthorName, Country)

Area (Areald, AreaName)

BookTitle (BookTitleld, Title, ISBN, Areald, Publisherld, Year)
BookTitleAuthor (BookTitleld, Nr, Authorld)

Book (Bookld, BookTitleld, Price, InputDate)

BookStock (Bookld)

BookStockArchive (ArchiveDate , Bookld)

Client (Clientld, ClientName, PersonalCodeNr, ClientAdress)
Borrow (Borrowld, BorrowDate, Clientld)

BorrowDetail (Borrowld, Nr, Bookld)

A development process of the user-interfaces for the database applications 105

Return (Returnld, ReturnDate, Clientld)
ReturnDetail (Returnld, Nr, Bookld)

5. The Patterns for the Conceptual Categories User-Interfaces

One of the main principles of the process presented here is that every
concept of the application domain needs its own user-interface (Ul). The process
relies on a predefined set of Ul patterns which cover all the conceptual categories.
The Ul patterns provide standard functionality for the conceptual categories. The
developer may add supplementary functionality to a specific user-interface of a
concept. The paper proposes three types of Ul patterns which cover the user-
interfaces for all the conceptual categories:

Ulg : a general Ul pattern for the following conceptual categories: agent, type,
group and simple concepts.

Ule : an Ul pattern for the event conceptual category.

Ulg : an Ul pattern for the resource conceptual category.

Each type of Ul pattern may be specified from three perspectives:
structural, functional and behavioral. The structural perspective describes the
components of the Ul pattern. The functional perspective specifies the standard
operations that may be demand by the user for that type of user-interface. The
behavioral perspective specifies how the user-interface reacts to the events
generated by the user.

The concepts have inherent relationships, as we may see in the conceptual
diagram (Fig. 2). Every relationship, between two concepts, may generate an
interaction between the corresponding user-interfaces. So we must have also an
interaction pattern between two user-interfaces.

5.1. A Proposal for the General User-Interface Pattern Ulg
The structural specification of the Ulg pattern may be done with the UML
class diagram from the Fig. 3.

106

Adrian Alexandrescu

User-interface Ulg

1 1 10

Tabular image | Detailed image | |Operation control

1 0.* 2.%
Instance selector | | Concept instance | Component
1 1 0.1
| Label | | Control | | Interaction button

Fig. 3. The structure of the Ulg pattern

The user-interface from the Fig. 3 contains a tabular image, a detailed

image and a set of ten standard operation controls. The tabular image contains the
instances of the concept and an instance selector. The detailed image contains at
least two components representing fields of certain database relations. A
component consists of a label, a control and an optional interaction button. The
control displays the value of a field from a database relation and the interaction

button

initiates the interaction with another user-interface. The ten operation

controls starts some standard functions for the user-interface.

The functional specification contains a default visualization function for the
concept instances in the tabular image and ten standard functions associated with
the operation controls (buttons and checkboxes) of the user-interface:

1.
2.

©COoN O~ W

10.

Detailed visualization for the current instance.

Select one or more field values to be transferred to a user-interface which
has initiated an interaction with the current user-interface.

Filter the concept instances of the tabular image.

Sort the concept instances of the tabular image.

Find a concept instance in the tabular image.

Enter the session for adding new concept instances.

Modify the current concept instance.

Delete the selected concept instances.

Save a new concept instance in the database (in the case of an adding
session) or save the updates of a concept instance in the database (in the
case of modifying a concept instance).

Cancel the session of adding new concept instances or cancel the updates
of a concept instance.

A development process of the user-interfaces for the database applications 107

The users have some rights established by the application administrator,
regarding the operations they may use for a certain Ul concept and even the Ul
concepts they may access. It is the responsibility of the application and user-
interfaces to determine the user rights from the administrator database, enabling or
disabling user access to concepts and operations.

The objects of the Ulg pattern have attributes whose values must be
specified when we want to develop a user-interface for a specific concept. For
example, the object tabular image from the Fig. 3 has an attribute data-source
which specifies the SQL query string that provides data for the tabular image. The
pattern structure description and the attributes values of the pattern objects may be
considered as pattern specification. In this paper there are not presented the
objects attributes of the Ul patterns.

Fig. 4 contains an example of a user-interface implementation, using the
Ulg pattern. The associated concept is BookTitle. The detailed visualization
function is on. Some of the operation controls are not visible because they can not
operate in the visualization context. We may observe that the detailed image
contains some supplementary information than the tabular image. There is the list
of BookTitle authors which is rendered only by the detailed image.

sl BookTitle = | (5] |-
Detail [Filter | Sort ” Find H Add “Modlfy ” Delete ‘
BookTitleld Title ISBN Year PublisherName AreaName
> Book Title 1 1234 1990 Publisher 1 |Literature | _
2 Book Title 2 2345 2001 Publisher 2 Informatics
3 Book Title 3 345678 2002 Publisher 1 History
4 Book Title 4 4567 2003 Publisher 3 Literature
<[1n »
Title Book Title 1 Area Literature Author
ISBN [1234 Publisher |Publisher1
Year [1990 Id

Fig. 4. An implementation of the BookTitle user-interface

We may also consider an image of the book cover that we may present in
the detailed image. There is not necessary that the Id field to be visible in the
tabular or detailed image.

The behavior of the user-interface may be described by state transition
diagrams, interaction diagrams or activity diagrams. For example the scenario for

108 Adrian Alexandrescu

adding new concept instances may be described with the state transition diagram
from Fig. 5.

Start

Leave current field/
Validate field

/Configure the user-interface

Enter the adding session /detail

)4 - e . e
image visible; fields initialisation

Adding new \ Concept
concept instances
instance > visualisation

Cancel the adding session

Close the user-interface

Save [final validation]
/add instance in the db; @ Stop

tabular image refresh; fields initialisation

Fig. 5. The behavior for adding new concept instances

The description of the standard functions reveals a set of parameterized
sub-functions which may be stored in a library shared by all the user-interfaces. In
the case of the functionality described in the Fig. 5, the actions that label the
transitions may be considered such sub-functions.

5.2. A Proposal for the Event User-Interface Pattern Ulg

We’ll consider that the event concept has an associated event-detail
concept. The case of the event concept without an associated event-detail concept
may use the Ul pattern.

The Ulg pattern consists in two different patterns: Ulg; and Ulg, each of
them responsible for some operations. The Fig. 6 presents the structure of the Ulg;
pattern and Fig. 8 presents the structure of the Ulg, pattern.

User-interface Ulg,

1 1 8

Event-concept tabular image | | Detailed image | | Operation control |
1 0.* 1 I
Instance selector | | Concept instance | | Event-detail-concept tabular image
1 0.*
| Instance selector | | Concept instance |

Fig. 6. The structure of the UIE; pattern

A development process of the user-interfaces for the database applications 109

The user-interface from Fig. 6 contains a tabular image, a detailed image
and a set of eight standard operation controls. The tabular image contains the
instances of the event concept and an instance selector. The detailed image
contains a tabular image with the instances of the associated event-detail concept
and also an instance selector. The eight operation controls implement the standard
functions for the user-interface, and they are similar to the first eight functions
from Ulg pattern.

Fig. 7 is an example of the implementation of the Ulg; pattern for the
Borrow event concept. The detailed visualization function is on. The upper tabular
image contains the instances of the Borrow event concept. The lower tabular
image shows the BorrowDetail instances related to the current Borrow instance.

The Add operation enables us to insert a new instance of the borrow event
concept, opening the user-interface from Fig. 9. In a similar manner acts the
Modify operation. The Delete operation removes from the database the event
instance and the related event-detail instances.

o5’ Borrow ==l ﬂ:ﬁ
=
¥ Detail | Filter “sm H Find H Add HModify HDeIete]
BorrowDate ClientName
24.02.2011 | Client 02
24.02.2011 | Client 01
S0 24 02201
25.03.2011 | Client 07
Nr Title Bookld
v E Book Tite 03 |4
2 Book Title 04 |6
3 Book Title 01 |1

Fig. 7. An implementation of the Borrow UIE; user-interface

Fig. 8 presents the structure of the second part Ulg; of the user-interface
pattern, for the event concepts. Ulg; is used when we add a new instance for the
event concept (event instance presentation) and the set of related instances of the
event-detail concept (event-detail tabular image). An event-detail instance
presentation, containing at least two components, is used for the event-detail
current instance presentation, in a single record format, and also for updating the
event detail tabular image. The five operation controls provide a set of standard
functions for the Ulg, user-interface: (1) the detailed presentation of the tabular

110 Adrian Alexandrescu

image current instance, (2) append a new event-detail instance in the tabular
image, (3) update the current instance of the tabular image, (4) insert a new

instance in a specified position in the tabular image, and (5) delete the current
instance of the tabular image.

User interface Ulg,

5
| Event instance presentation Event- detall tabular image | | Operation control |
1
2.* 1 0.* I | Event-detail instance presentation |
Component

| Instance selector | | Concept instance |

2.*
Component
0.1
| Label | | Control | | Interaction button | 1 1 0.1
| Label | | Control | | Interaction button

Fig. 8. The structure of the UIE, pattern

Fig. 9 contains an example of the implementation of the Ulg, pattern for
the Borrow event concept.

o) Borrow Update L N P

Date 2402 2011 Client Id

1 Detail
B l Append “ Update " Insert “Delete l
Borrow ld 34
Borrowld MNr Title Bookld
» EXNEEEE Book Title 03 4
34 2 Book Title 04 |6
34 3 Book Title 01 |1
Nr 1 Book Id 4

Title Book Title 03

Fig. 9. An implementation of the Borrow UIE, user-interface

The Ulg; user-interface implements the Add and Modify operations from
Ulg:. In the upper left side there are the controls for editing the attributes of the

A development process of the user-interfaces for the database applications 111

event instance. In the upper right side there are the operation controls for detailed
presentation and for editing the tabular image. The tabular image contains the
related instances of the BorrowDetail concept. At the bottom of the user-interface
there is a single record (detailed) presentation of the current instance from the
tabular image.

Fig. 10 shows the behavior of the whole Ulg user-interface pattern. Ulg; is
responsible for viewing the instances of the event concept and the related event-
detail instances. It is also responsible for deleting the event concept instances.
Ulg; is responsible for adding a new event concept instance and the related event-
detail instances, and also for editing an event concept instance and its related
event-detail instances.

Event instance

Event instance edit modify command ? Start
l | A4
Ulg, Ulg;
Event concept instances Event concept instances
update Close Ulg, visualization

[refresh Ulg,

T A A

Event-detail Event instance Event instance
tabular image edit add command delete command

Fig. 10. The state transition diagram for the UIE user-interface pattern

5.3. A Proposal for the Resource User-Interface Pattern Ulg

The resource concept has an associated resource-archive concept. The Ulg
pattern consists in two different patterns: Ulg; and Ulg, each of them responsible
for some operations. The Fig. 11 presents the structure of the Ulg; pattern and the
Fig. 13 presents the structure of the Ulg, pattern. The Ulg; pattern contains a
tabular image with the instances of the resource concept, a detailed presentation of
the current instance, and eight operation controls corresponding to a set of
standard functions: (1) detailed visualization for the current instance, (2) synthetic
presentation of the resource, (3) filter the tabular image, (4) sort the tabular image,
(5) find an instance in the tabular image, (6) open the corresponding resource-
archive Ulg, user-interface, (7) re-evaluate the resource at the current moment, (8)
Select one or more field values to be transferred to a user-interface which has
initiated an interaction with the current user-interface.

112 Adrian Alexandrescu

User-interface Ulg;

1 1 8

Tabular image | Detailed image | | Operation control
1 0.* 2.%
Instance selector | | Concept instance | Component
1 1
| Label | | Control |

Fig. 11. The structure of the Ulg; pattern

Fig. 12 is an example of the implementation of the Ulg; pattern for the
BookStock resource concept. The detailed visualization function is on. The upper
tabular image contains the instances of the BookStock resource concept. The
lower detail image shows the current instance. The Synthetic function shows every
BookTitle once, summarizing the quantities. In the example of Fig. 12, if we have
two books for “Book Title 107, in the synthetic presentation it appears once and a
“2” value for the quantity. If we press the Archive button, this will open the
corresponding resource-archive Ulg, user-interface, presented in the Fig. 13.

a5 Book Stock @@Iﬁ
\! Detail I Filter I Sort | Find ”Archive H ReEvaluate |
[] synthetic
Title Book Id 5
3 Book Title 01 [=

Book Title 04 |6
Book Title 07 |7

Book Title 10 |10 [
Book Title 10|11 i

4 1 »

Title Book Title 01

Book Id]

Fig. 12. An implementation of the BookStock Ulg; user-interface

Fig. 13 presents the structure of the second part of the Ul pattern, for the
resource concepts, Ulg,. Ulgr is used when we want to interact with the resource-
archive instances. The Ulg, user-interface contains a tabular image presenting the
instances of the resource-archive corresponding to the value of the ArchiveDate

A development process of the user-interfaces for the database applications 113

filter control. The detailed image presents in a single record manner, the current
instance from the tabular image. The nine operation controls provide a set of
standard functions for the Ulg, user-interface: (1) the detailed presentation of the
tabular image current instance, (2) filter the tabular image, (3) sort the tabular
image, (4) find an instance in the tabular image, (5) re-evaluate the resource-
archive at a specified moment, (6) delete the resource-archive at a given moment,
(7) add a new instance of the resource-archive, (8) modify the current instance of
the tabular image (9) delete the current instance of the tabular image. The
operations (7), (8) and (9) are enabled only if the resource-archive corresponds to
the start moment.

User-interface Ulg,

1 S s 9

| Date filter control | Tabular image | | Detailed image | Operation control

1 0.* I 2.*
| Instance selector | | Concept instance | Component
1 1 0.1

| Label | | Control | | Interaction button

Fig. 13. The structure of the Ulg, pattern

Fig. 14 presents an example of an Ulgr, implementation for the BookStock
resource concept. The Date control from the upper left side enables to select an
archive of the BookStock. The detailed visualization function is on. The Filter,
Sort and Find functions are similar to those from the previous patterns. The
Evaluate archive function enables the evaluation of a BookStock archive at a
given moment. The Delete archive function deletes the BookStock archive
corresponding to the date from the Date control. Add item, Edit item and Delete
item, enable the updating of the archive from the start moment, when we started to
use the library application. All other archives are not allowed to be updated, but
they may be replaced by a new archive evaluation, if changes occurred in the
previous archive or in the events between the previous archive date and the
evaluated archive date.

114 Adrian Alexandrescu

4 BookStockArchive = | O
Date (1.01.2011 - { Filter ‘ Sort I Find I ‘Evalualearchwe] { Add item]
[¥] Detail { Delete archive] | Edit item]

Book Id Title -
’ Baok Title 01 E
2 Book Title 01
3 Book Title 02
4 Book Title 03
5 Book Title 03 S
7 1 »
Book Id 1 = D
Title Book Title 01

Fig. 14. An implementation of the BookStock Ulg, user-interface

The behavior of the Ulg pattern is shown in the Fig. 15.

Resource-archive update

[Start moment] Open Ulg, ? Start
A A

Ulg, Close Ulg; Ulg,
Date filter Resource-archive concept instances Resource concept Synthetic
resource- visualization and updating instances visualization presentation
archive >

f |

Resource-archive Resource-archive Resource
delete re-evaluation re-evaluation

Fig. 15. The state transition diagram for the UIR user-interface pattern

5.4. The Interaction Pattern for two User-Interfaces

A user-interface of a concept may interact with a user-interface of another
concept. An interaction is due to an association between the two concepts which is
revealed by the conceptual model. The Fig. 16 describes a proposal for an
interaction pattern between two concept user-interfaces. A client user-interface
Ulciient initiates an interaction with a server user-interface Ulsener by clicking an
interaction button of a control from the Ulgjient. An 0bject Ulserer IS then created
and activated and its Select operation control became visible.

A development process of the user-interfaces for the database applications 115

Interaction Button Click /Activate Ulsewver ; Select button visible ? Start

A

Server User-interface\ Close Ulsener [Client User-interface
UIServer j UIClient

Select Button Click /Data transfer; Close Ulserver

Fig. 16. The state transition diagram for the user-interfaces interaction pattern

The user works with the Ulsener and finaly it may close the Ulsener OF click
the Select operation control. In the last case, a data transfer take place, the Ulserver
is closed and the Ulcjient becomes active. In the same time there is a specific data
transfer from the Ulserer t0 the Ulgiient.

6. Conclusion

The proposed process follows a gradual approach, starting from a
conceptual model of the application domain (1); refining the model with the REA
categories and their attributes (2); generating the database schema (3); developing
patterns for the Ul conceptual categories and for the Ul interactions (4);
implementing the Ul patterns for the application concepts (5). A model-based
approach for the user-interface development has been used, refining a platform
independent specification and progressively reaching a platform dependent
specification. This is according to the software engineering techniques like Model
Driven Approach [5] where the Platform Independent Models (P1Ms) are refined
to specific ones (PSMs) and finally are automatically or semi-automatically
converted to source-code.

REFERENCES

[1]1 W.E. McCarthy, The REA Accounting Model: A Generalized Framework for Accounting
Systems in a Shared Data Environment, The Accounting Revew (July) 1982.

[2] W.E.. McCarthy, L.G. Guido. An Ontological Analysis of the Primitives of the Extended-REA
Enterprise Information Architecture. The International Journal of Accounting Information
Systems, 2002

[3] P. Hruby, Model-Driven Design Using Business Patterns, Springer-Verlag 2006

116 Adrian Alexandrescu

[4] A. .Alexandrescu, The Automate Generation of the Database Starting from a Conceptual
Model, Science and Technology in the Context of Sustainable Development, Conference,
Ploiesti , November 4 — 5, 2010.

[5] OMG: MDA Guide Version 1.0.1, 01.06.2003, www.omg.org/cgi-bin/doc?omg/03-06-01

[6] M. Fowler, UML Distilled, Addison-Wesley 2003

[7] R. Stephens, Visual Basic 2008 Programmer’s Reference

[8] Proceedings of the Seventh International Conference on Computer-Aided Design of User
Interfaces (CADUI 2008) Springer 2009

[9] CHI 2008 Workshop Proceedings, April 6th 2008, User Interface Description Languages for
Next Generation User Interfaces

