
U.P.B. Sci. Bull., Series C, Vol. 72, Iss. 4, 2010                                                      ISSN 1454-234x 

CODE-SMELLS IN AOP 

Şerban DRĂGĂNESCU1, Nicolae ŢĂPUŞ2 

În această lucrare ne propunem să prezentăm câteva “code smells” pe care 
le-am identificat studiind implementări clasice pentru şabloane de proiectare, care 
folosesc programarea orientată pe aspecte. Sunt probleme de design de natură să 
afecteze performanţa care nu ar fi existat dacă tehnologia orientată pe aspecte nu 
ar fi fost folosită. Cazurile prezentate sunt exemplificate cu şabloane de proiectare, 
în implementări clasice şi originale. 

 
We intend to present in this article a few “code smells” we identified by 

studying classic implementations of design patterns, that are using aspect oriented 
programming. The identified issues are design problems that affect the performance, 
problems that would not have existed if aspect oriented technology would not had 
been used. The cases are presented with design pattern examples, in classic and 
original implementations. 

 
Keywords: code smell, bad smell, AspectJ, AOP, design pattern, 

performance hash, syncronized 

1. Code smells 

Code smells is an expression used for shallow signs showed by source 
code of programs that may indicate a deeper problem. The problem itself is 
usually not a functional matter, but it may hinder performance or be considered 
bad practice, in the sense that code may be difficult to understand, extend, debug 
or maintain. The expression was originally coined by Kent Beck in [1] for the 
purpose of finding heuristics for refactoring object oriented programs. Examples 
of classic code smells are considered to be code that is duplicated, methods with 
too many parameters, methods with big or too little bodies or a class that 
excessively use another class. These “smells” are just signs that something may be 
wrong or could be done better. There are cases where even code duplication, our 
first “smell” example, is just necessary to prevent run-time decisions at the 
expense of compile-time decisions (code duplication) in areas where performance 
is critical. 

                                                            
1 Eng., Faculty of Automatic Control and Computers, University POLITEHNICA of Bucharest, 
Romania, e-mail: draganescu@gmail.com 
2 Prof, Faculty of Automatic Control and Computers, University POLITEHNICA of Bucharest, 
Romania 



4                                                 Şerban Drăgănescu, Nicolae Ţăpuş 

2. Aspect oriented code smells 

There are two directions of study in this field. One of them is centred on  
removing traditional, OOP, code-smells with the means offered by AOP. The 
other one focuses on identifying code-smells that are generated by AOP, like [5] 
and the current paper. 

During our studies of AOP overhead we took several approaches, one3 of 
them being the study of software constructs that appear as side-effects of AOP 
technology. While looking at design patterns implementations using AOP we 
have realised that some software constructs4 are recurring in the solutions we find, 
constructs that would not exist if aspect oriented programming would have not 
been used. A good example for these constructs is the implementation of the 
Observer design pattern. We present in Illustration 1 a variant of the solution 
published by Hannemann and Kiczales in [2]. We will also refer to the object 
oriented version, but because it is well known, we will not present it here. The 
standard Java implementation (java.util.Observable) may be used as reference 
instead. Other authors (like Monteiro in [7]) have taken a critic look at the AOP 
design pattern implementations from [2] but none from the performance penalty 
perspective. The works of Monteiro in [7] mostly refer usability and functionality 
issues. 

 

                                                            
3 Another one is the study of intrinsic AOP overhead, which happens when everything is 
equal between AOP and non AOP implementations, like in [3]. 
4 We are not calling them “patterns” to avoid a confusion with the already established 
design patterns, even though they are similar. 

public abstract aspect ObserverProtocol {   

  private WeakHashMap perSubjectObservers=new WeakHashMap();  (1) 

  protected synchronized List getObservers(Object s) {        (2) 

       List observers = (List)perSubjectObservers.get(s); 

       if (observers == null) { 

           observers = new LinkedList(); 

           perSubjectObservers.put(s, observers); 

       } 

        return observers; 

  } 

  public synchronized void addObserver(Object s, Object o){   (3) 

       getObservers(s).add(o);     

  } 

  public synchronized void removeObserver(Object s,Object o){ (4)  

       getObservers(s).remove(o);  

  } 

  protected abstract pointcut subjectChange(Object s);        (5) 



Code-smells in AOP                                                             5 

 

The modifications of the implementation (from the original presented in 
[2]) are underlined and they consist mainly in methods being synchronised in 
order to support multi-threaded hash access. 

The example in Illustration 1 is the abstract aspect. It needs to be extended 
by a concrete aspect that implements the abstract pointcuts and methods. In order 
to understand how this aspect works, we will give an example of concrete aspect 
in Illustration 2. Any Mouse instance can be a subject, and Cats are observers that 
watch mice's method “move”. 

 

 

 
What this implementation does is to modify all join-points that are caught 

by the “subjectChange” pointcut (5 and 8) and after each of them to call the 
advice (6) where all of the registered observers are notified. To make this even 
clearer, in Illustration 3 we present a usage case. 

  after(Object s): subjectChange(s) {                         (6) 

      synchronized (this){ 

         Iterator iter = getObservers(s).iterator(); 

         while (iter.hasNext()) { 

           updateObserver(s, iter.next()); 

         } 

      } 

  }  

  protected abstract void updateObserver(Object s, Object o); (7) 

} 

Illustration 1: Implementation for Observer design pattern, [2] 

public aspect MouseObserver extends ObserverProtocol { 

  public pointcut subjectChange(Object subject) :             (8) 

      execution(public void Mouse+.move(. .)) && this(subject); 

 

  public void updateObserver(Object subject, Object observer){(9)  

      Mouse m = (Mouse)subject; 

      Cat c = (Cat) observer; 

      System.out.println("Cat " + c.name + " sees " + m.name); 

  } 

} 

Illustration 2: Concrete aspect for Observer design pattern 



6                                                 Şerban Drăgănescu, Nicolae Ţăpuş 

 

 
For each existing subject in the virtual machine, one concrete aspect will 

be created, but the abstract aspect would be shared for all the subjects. Therefore 
the code inside the abstract aspect (Illustration 1) would be shared, including the 
hash defined in (1), which will contain subject-observer pairs for the whole virtual 
machine. To make this clear, we will spell out how the 3 usage cases are working: 
observer notification, observer adding and observer removing. Notifying an 
observer consists of: 

-retrieving the subject (of the current joinpoint) from the hash shown in (1) 
-if the subject exists then an iterator of all observers is created 
-all observers from the iterator are notified. 

Adding an observer consists of: 
 -looking up the associated subject in the hash and add it if it does not exist 
 -adding the observer in the subject's associated list 
Removing an observer consists of: 
 -looking up the associated subject in the hash 
 -removing the observer from the subject's associated list. 

Join point resolution 

The first AOP code smell we identified is the usage of a hashmap 
construct, (1), for the storage of types or instances. This is the first step in all three 
usage cases. We realised that this needs to happen because pointcuts are defined 
in relation with types (names of fields, methods and classes) while the constructs 
might apply to subtypes or instances. Therefore hashes would store the members 
of the relation: subtypes of a type or instances of a type. We named join point  
resolution the process of associating the join points from a pointcut with an 
instance or subtype. 

Hashes are not needed in a normal object-oriented implementation, as the 
list of observers is found directly as a member of the subject. 

Hashes are a common construct in software, and whole development 
paradigms rely on their usage, like J2EE web applications. Their main overhead 

 Mouse jerry = new Mouse("Jerry"); 

 Mouse roquefort = new Mouse("Roquefort"); 

 Cat tom = new Cat("Tom"); 

 MouseObserver.aspectOf().addObserver(jerry, tom); 

 MouseObserver.aspectOf().addObserver(roquefort, tom); 

 roquefort.move(2, 2); 

 jerry.move(3, 2); 

Illustration 3: Usage of the Observer design pattern 



Code-smells in AOP                                                             7 

consists of the lookup or modification computation time, which is quite efficient 
and therefore easy to tolerate.  

Table 1 
Join point resolution 

Overhead type Hash lookup of the Subject 

OOP situation Notification code is placed inside each Subject and called from there 

Other problems Using a hash also implies the need for synchronised access 

Synchronisations 

Using hashes, however, leads to a second code smell: their operations need 
to be synchronised, which is another performance overhead! Occasionally, in 
applications hashes can be used without the synchronisation, because the 
operations are known to be serial. However, if the operations need to be generic, 
like in a library, they need to be protected for concurrent access and read accesses 
(2) and write accesses (3 and 4) are protected by a synchronised zone in 
Illustration 1.  

Table 2 
Synchronisations 

Overhead type Synchronised area usage 

OOP situation Subjects need not to be retrieved but Observers are stored in lists that need 
protection for concurrent access and copy-on-write may be used as a solution.  

Bottlenecks 

The above mentioned synchronisation is done for all the subjects in the 
virtual machine, as the aspect is a singleton aspect, and this is a potential 
bottleneck in an application where all subjects and observers reside in the same 
hash in the same synchronised area. Bottlenecks are the third code smell we 
generally identified, and the Observer design pattern implementation helped 
illustrate. Normally, an object oriented implementation of this pattern would keep 
lists of observers inside each subject, therefore the bottleneck would not exists. 

 
Table 3 

Bottlenecks 
Overhead type Threads wait for each other on bottlenecks like single hash and single 

synchronised area. 
OOP situation The Observers are distributed to each Subject, access to lists, hashes 

or synchronised areas  is done per Subject. 

 



8                                                 Şerban Drăgănescu, Nicolae Ţăpuş 

Generous Decorations 

One more subtle issue that may arise is what we have called “generous 
decoration”. This code-smell consists in inserting a lot of advices that only fire 
when some decision is taken at runtime. The pointcut defined in (5 and 8) 
decorates all the calls of the “move” method, but if the respective mouse 
participates or not in a Observer pattern is decided inside (6) when the iterator 
turns out either full or empty. The runtime decision is not a huge overhead, but 
implementers should take it into consideration, especially where the usage ratio 
(number of cases where the advice fires divided to the total number of join-points 
in the pointcut) is small. The chosen example does not underline well this smell. 
A better example would make the case of the Decorator design pattern, in the 
AOP implementation. In the AOP Decorator, any decoration would affect all 
instances of one type. 

Table 4 
Generous Decoration 

Overhead type Code is added to innocent bystander areas 
 

OOP situation Notification code is also added in all Subject instances. 
 

 

3. Avoiding the smells 

We are trying to show ways of avoiding some of the smells we have 
described earlier. This chapter is not a recipe against the code smells as we 
consider implementation to be a matter of taste and specific problems may have 
specific solutions. However, in order to prove that there are also solutions that are 
still aspect oriented and do not present the mentioned code-smells, we present 
another Observer design pattern implementation, in Illustration 4 and a concrete 
Observer in Illustration 5.  



Code-smells in AOP                                                             9 

 

 
 
We see at (20) that this aspect is declared “perthis”, which means that 

there will be one instance of the aspect for each parameter to the “perthis” clause. 
The parameter is a pointcut, which leads us to the down side of this approach: 
there is a need for a second pointcut (15 and 23) that is used (16) for the 
initialisation of the concrete aspect. Because the aspect is now “perthis”, there is 
no need to have a hash to select the current instance and the linked list is stored 
directly in the aspect. Also the synchronised zones that access the list are 
synchronised on each subject, lowering the contention and removing the 

   after(Object subject): subjectChange(subject) {            (18) 

     synchronized(subject){                                  (19) 

      Iterator iter = observers.iterator();             (20) 

            while (iter.hasNext()) { 

                updateObserver(iter.next()); 

            }  

 } 

   } 

   protected abstract void updateObserver(Object observer); 

} 

Illustration 4: Smell-free Observer implementation, abstract part 

public abstract aspect ObserverProtocol 

                           perthis(subjectCreation(Object)){ (10) 

   protected Object subject;                                 (11) 

   private LinkedList observers = new LinkedList();          (12) 

 

   public void addObserver(Object o) {                       (13) 

 synchronized(subject){ 

      observers. add(o);     

 } 

   } 

   public synchronized void removeObserver(Object o) {        (14) 

 synchronized(subject){ 

      observers.remove(o);  

 } 

   } 

   protected abstract pointcut subjectCreation(Object subject); 

                                                             (15) 

   after(Object subject): subjectCreation(subject) {         (16) 

     this.subject = subject; 

   } 

   protected abstract pointcut subjectChange(Object subject);(17) 



10                                                 Şerban Drăgănescu, Nicolae Ţăpuş 

bottleneck we had earlier (Illustration 1), where all subjects in the virtual machine 
resided in a single hash. 

 

 
 

 
To summarise, we present Table 5, where the columns represent, 

respectively, results for the Observer OOP implementation (eg 
java.util.Observable), the AOP classic implementation (Illustration 1) and the 
AOP smell-free proposal (Illustration 4). 

Table 5 
Code-smell presence 

smell \ implementation OOP AOP1 AOP2 

pointcut resolution No Yes No

synchronisation Yes* Yes Yes* 

generous decoration Yes** Yes Yes 

bottleneck No Yes No 
 
*Synchronisation is present in all 3 implementations, but its usage is 

different. In OOP and AOP2 it is related to keeping track of multiple observers in 
one subject (in a list) while in AOP1 it is also about keeping track of subjects (in a 
hash), so it is actually needed at two levels but since the two resources (the hash 
and the list) are used in the same place, only one synchronised zone is used. We 
needed to mention that, because the synchronisation need for the hash is removed 
in OOP and AOP2 implementations but the chosen example is not really helpful 
in showing the removal of the code-smell. 

public aspect MouseObserver extends ObserverProtocol {  (21) 

 public pointcut subjectChange(Object subject) :   (22) 

             execution(public void Mouse+.move(. .)) && 

             this(subject); 

  

 public pointcut subjectCreation(Object subject) : (23) 

  initialization(Mouse+.new(. .)) && this(subject); 

  

 public void updateObserver(Object observer) {     (24) 

  Cat cat = (Cat)observer; 

  Mouse m = (Mouse)subject; 

  cat.update(m.name); 

 } 

} 

Illustration 5: Smell-free Observer implementation, concrete part 



Code-smells in AOP                                                             11 

 
**Generous decoration happens in all the implementations. In OOP the 

Mouse type would extend Subject and contain all the necessary code, even if the 
code is never called when there are no registered observers. However, a type that 
just inherits Subject and does not call the notification it does not bear the overhead 
in any way. In the AOP cases, if the type is caught in the pointcut, the notification 
is fired, although the observer list is void. A better example of this situation might 
be given by the AOP decorator design pattern: if a type gets decorated then a flag 
is needed to determine if the decoration should be executed or not, otherwise all 
instances of the type are forcedly decorated. 

4. Conclusion 

We have identified four AOP code-smells and we have illustrated them 
with implementations of the Observer pattern. Hashes, synchronisations, generous 
decorations and bottlenecks are constructs that appear sometimes unnecessarily in 
AOP implementations. Our AOP Observer design pattern implementation along 
with the normal OOP implementation prove that those kind of constructs can be 
avoided. 

 

 

R E F E R E N C E S 

[1] M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts, Refactoring: Improving the Design of 
Existing Code, Addison-Wesley, 1999 

[2] J. Hannemann, G. Kiczales, Design Pattern Implementation in Java and AspectJ, ACM 
SIGPLAN Notices, vol. 37, issue 11 , pages: 161–173, 2004 

[3] Ş. Drăgănescu, N. Ţăpuş, COSTUL DE PERFORMANŢĂ AL PROGRAMĂRII 
ORIENTATE PE ASPECTE (Performance cost of AOP), Revista Română de Informatică şi 
Automatică, vol. 19, nr. 4, Bucureşti, 2009 

[4] V.C. Garcia, E.K. Piveta, D. Lucredio, A. Alvaro, E. Santana de Almeida, A. Francisco do 
Prado, L.C. Zancanella, Manipulating Crosscutting Concerns, SugarLoafPLoP 2004 

[5] E.K. Piveta, M. Hecht, M.S. Pimenta, R.T. Price, Bad Smells em Sistemas Orientados a 
Aspectos (Bad smells in Aspect Oriented Systems), SBES 2005 

[6] M. Iwamoto, J, Zhao,Refactoring Aspect-Oriented Programs, The 4th AOSD Modeling With 
UML Workshop, 2003 

[7] M. Pessoa Monteiro, J.M. Fernandes, Pitfalls of AspectJ Implementations of Some of the 
Gang-of-Four Design Patterns, Desarrollo de Software Orientado a Aspectos, 2004 



12                                                 Şerban Drăgănescu, Nicolae Ţăpuş 

[8] M. Pessoa Monteiro, J.M. Fernandes, An illustrative example of  refactoring object-oriented 
source code with aspect-oriented mechanisms, Software—Practice & Experience, vol 38, 
issue 4, pages: 361-396, 2008 

[9] E.K. Piveta; M. Hecht, M.S.Pimenta, R.T. Price, - Detecting Bad Smells in AspectJ, Journal of 
Universal Computer Science, vol. 12, no. 7 2006. 

 
 


