U.P.B. Sci. Bull., Series C, Vol. 72, Iss. 4, 2010 ISSN 1454-234x

CODE-SMELLS IN AOP

Serban DRAGANESCU', Nicolae TAPUS?

In aceastd lucrare ne propunem si prezentam cdteva “code smells” pe care
le-am identificat studiind implementari clasice pentru sabloane de proiectare, care
folosesc programarea orientatda pe aspecte. Sunt probleme de design de natura sa
afecteze performanta care nu ar fi existat daca tehnologia orientatd pe aspecte nu
ar fi fost folosita. Cazurile prezentate sunt exemplificate cu sabloane de proiectare,
in implementari clasice §i originale.

We intend to present in this article a few “code smells” we identified by
studying classic implementations of design patterns, that are using aspect oriented
programming. The identified issues are design problems that affect the performance,
problems that would not have existed if aspect oriented technology would not had
been used. The cases are presented with design pattern examples, in classic and
original implementations.

Keywords: code smell, bad smell, Aspect], AOP, design pattern,
performance hash, syncronized

1. Code smells

Code smells is an expression used for shallow signs showed by source
code of programs that may indicate a deeper problem. The problem itself is
usually not a functional matter, but it may hinder performance or be considered
bad practice, in the sense that code may be difficult to understand, extend, debug
or maintain. The expression was originally coined by Kent Beck in [1] for the
purpose of finding heuristics for refactoring object oriented programs. Examples
of classic code smells are considered to be code that is duplicated, methods with
too many parameters, methods with big or too little bodies or a class that
excessively use another class. These “smells” are just signs that something may be
wrong or could be done better. There are cases where even code duplication, our
first “smell” example, is just necessary to prevent run-time decisions at the
expense of compile-time decisions (code duplication) in areas where performance
is critical.

' Eng., Faculty of Automatic Control and Computers, University POLITEHNICA of Bucharest,
Romania, e-mail: draganescu@gmail.com

2 Prof, Faculty of Automatic Control and Computers, University POLITEHNICA of Bucharest,
Romania

4 Serban Draganescu, Nicolae Téapus

2. Aspect oriented code smells

There are two directions of study in this field. One of them is centred on
removing traditional, OOP, code-smells with the means offered by AOP. The
other one focuses on identifying code-smells that are generated by AOP, like [5]
and the current paper.

During our studies of AOP overhead we took several approaches, one’ of
them being the study of software constructs that appear as side-effects of AOP
technology. While looking at design patterns implementations using AOP we
have realised that some software constructs® are recurring in the solutions we find,
constructs that would not exist if aspect oriented programming would have not
been used. A good example for these constructs is the implementation of the
Observer design pattern. We present in Illustration 1 a variant of the solution
published by Hannemann and Kiczales in [2]. We will also refer to the object
oriented version, but because it is well known, we will not present it here. The
standard Java implementation (java.util.Observable) may be used as reference
instead. Other authors (like Monteiro in [7]) have taken a critic look at the AOP
design pattern implementations from [2] but none from the performance penalty
perspective. The works of Monteiro in [7] mostly refer usability and functionality
issues.
public abstract aspect ObserverProtocol {

private WeakHashMap perSubjectObservers=new WeakHashMap(); (1)
protected synchronized List getObservers(Object s) { (2)
List observers = (List)perSubjectObservers. get(s);
if (observers == null) {
observers = new LinkedList();
perSubjectObservers. put (s, observers);

}
return observers;

}

public synchronized void addObserver (Object s, Object o) { (3)
getObservers (s). add (o) ;

}

public synchronized void removeObserver (Object s,Object o) { (4)
getObservers (s). remove (o) ;

1

protected abstract pointcut subjectChange (Object s); (5)

3 Another one is the study of intrinsic AOP overhead, which happens when everything is

equal between AOP and non AOP implementations, like in [3].
We are not calling them “patterns” to avoid a confusion with the already established
design patterns, even though they are similar.

Code-smells in AOP 5

after (Object s): subjectChange(s) { (6)
synchronized (this) {
Tterator iter = getObservers(s).iterator();
while (iter.hasNext()) {
updateObserver (s, iter.next());
}
}

}
protected abstract void updateObserver(Object s, Object o); (7)

}
lllustration 1: Implementation for Observer design pattern, [2]

The modifications of the implementation (from the original presented in
[2]) are underlined and they consist mainly in methods being synchronised in
order to support multi-threaded hash access.

The example in Illustration 1 is the abstract aspect. It needs to be extended
by a concrete aspect that implements the abstract pointcuts and methods. In order
to understand how this aspect works, we will give an example of concrete aspect
in [llustration 2. Any Mouse instance can be a subject, and Cats are observers that
watch mice's method “move”.

public aspect MouseObserver extends ObserverProtocol {
public pointcut subjectChange(Object subject) : (8)
execution(public void Mouse+.move(. .)) && this(subject);

public void updateObserver (Object subject, Object observer) {(9)
Mouse m = (Mouse) subject;
Cat ¢ = (Cat) observer;
System. out. println(“Cat

”

+ c.name + 7 sees ” + m. name) ;
}
}

Hllustration 2: Concrete aspect for Observer design pattern

What this implementation does is to modify all join-points that are caught
by the “subjectChange” pointcut (5 and 8) and after each of them to call the
advice (6) where all of the registered observers are notified. To make this even
clearer, in Illustration 3 we present a usage case.

6 Serban Draganescu, Nicolae Téapus

Mouse jerry = new Mouse (”Jerry”);

Mouse roquefort = new Mouse ("Roquefort”);

Cat tom = new Cat("Tom”);
MouseObserver. aspectOf (). addObserver (jerry, tom);
MouseObserver. aspectOf (). addObserver (roquefort, tom);
roquefort. move (2, 2);

jerry.move (3, 2);

Hllustration 3: Usage of the Observer design pattern

For each existing subject in the virtual machine, one concrete aspect will
be created, but the abstract aspect would be shared for all the subjects. Therefore
the code inside the abstract aspect (Illustration 1) would be shared, including the
hash defined in (1), which will contain subject-observer pairs for the whole virtual
machine. To make this clear, we will spell out how the 3 usage cases are working:
observer notification, observer adding and observer removing. Notifying an
observer consists of:

-retrieving the subject (of the current joinpoint) from the hash shown in (1)

-if the subject exists then an iterator of all observers is created

-all observers from the iterator are notified.

Adding an observer consists of:

-looking up the associated subject in the hash and add it if it does not exist

-adding the observer in the subject's associated list
Removing an observer consists of:

-looking up the associated subject in the hash

-removing the observer from the subject's associated list.

Join point resolution

The first AOP code smell we identified is the usage of a hashmap
construct, (1), for the storage of types or instances. This is the first step in all three
usage cases. We realised that this needs to happen because pointcuts are defined
in relation with types (names of fields, methods and classes) while the constructs
might apply to subtypes or instances. Therefore hashes would store the members
of the relation: subtypes of a type or instances of a type. We named join point
resolution the process of associating the join points from a pointcut with an
instance or subtype.

Hashes are not needed in a normal object-oriented implementation, as the
list of observers is found directly as a member of the subject.

Hashes are a common construct in software, and whole development
paradigms rely on their usage, like J2EE web applications. Their main overhead

Code-smells in AOP 7

consists of the lookup or modification computation time, which is quite efficient

and therefore easy to tolerate.
Table 1
Join point resolution

Overhead type | Hash lookup of the Subject

OOP situation | Notification code is placed inside each Subject and called from there

Other problems | Using a hash also implies the need for synchronised access

Synchronisations

Using hashes, however, leads to a second code smell: their operations need
to be synchronised, which is another performance overhead! Occasionally, in
applications hashes can be used without the synchronisation, because the
operations are known to be serial. However, if the operations need to be generic,
like in a library, they need to be protected for concurrent access and read accesses
(2) and write accesses (3 and 4) are protected by a synchronised zone in
Ilustration 1.

Table 2
Synchronisations

Overhead type Synchronised area usage

OOP situation Subjects need not to be retrieved but Observers are stored in lists that need
protection for concurrent access and copy-on-write may be used as a solution.

Bottlenecks

The above mentioned synchronisation is done for all the subjects in the
virtual machine, as the aspect is a singleton aspect, and this is a potential
bottleneck in an application where all subjects and observers reside in the same
hash in the same synchronised area. Bottlenecks are the third code smell we
generally identified, and the Observer design pattern implementation helped
illustrate. Normally, an object oriented implementation of this pattern would keep
lists of observers inside each subject, therefore the bottleneck would not exists.

Table 3
Bottlenecks

Overhead type | Threads wait for each other on bottlenecks like single hash and single
synchronised area.

OOP situation | The Observers are distributed to each Subject, access to lists, hashes
or synchronised areas is done per Subject.

8 Serban Draganescu, Nicolae Téapus

Generous Decorations

One more subtle issue that may arise is what we have called “generous
decoration”. This code-smell consists in inserting a lot of advices that only fire
when some decision is taken at runtime. The pointcut defined in (5 and 8)
decorates all the calls of the “move” method, but if the respective mouse
participates or not in a Observer pattern is decided inside (6) when the iterator
turns out either full or empty. The runtime decision is not a huge overhead, but
implementers should take it into consideration, especially where the usage ratio
(number of cases where the advice fires divided to the total number of join-points
in the pointcut) is small. The chosen example does not underline well this smell.
A better example would make the case of the Decorator design pattern, in the
AOP implementation. In the AOP Decorator, any decoration would affect all

instances of one type.
Table 4
Generous Decoration

Overhead type | Code is added to innocent bystander areas

OOQP situation | Notification code is also added in all Subject instances.

3. Avoiding the smells

We are trying to show ways of avoiding some of the smells we have
described earlier. This chapter is not a recipe against the code smells as we
consider implementation to be a matter of taste and specific problems may have
specific solutions. However, in order to prove that there are also solutions that are
still aspect oriented and do not present the mentioned code-smells, we present
another Observer design pattern implementation, in Illustration 4 and a concrete
Observer in Illustration 5.

Code-smells in AOP 9

public abstract aspect ObserverProtocol
perthis (subjectCreation (Object)) { (10)

protected Object subject; (11)
private LinkedList observers = new LinkedList(); (12)
public void addObserver (Object o) { (13)

synchronized (subject) {
observers. add(o);

}

}
public synchronized void removeObserver (Object o) { (14)
synchronized (subject) {
observers. remove (0) ;
}
1
protected abstract pointcut subjectCreation(Object subject);
(15)
after (Object subject): subjectCreation(subject) { (16)
this. subject = subject;
1
protected abstract pointcut subjectChange (Object subject); (17)
after (Object subject): subjectChange (subject) { (18)
synchronized (subject) { (19)
Tterator iter = observers. iterator(); (20)

while (iter.hasNext()) {
updateObserver (iter. next()) ;
}
}
1

protected abstract void updateObserver (Object observer);

}

Hllustration 4: Smell-free Observer implementation, abstract part

We see at (20) that this aspect is declared “perthis”, which means that
there will be one instance of the aspect for each parameter to the “perthis” clause.
The parameter is a pointcut, which leads us to the down side of this approach:
there is a need for a second pointcut (15 and 23) that is used (16) for the
initialisation of the concrete aspect. Because the aspect is now “perthis”, there is
no need to have a hash to select the current instance and the linked list is stored
directly in the aspect. Also the synchronised zones that access the list are
synchronised on each subject, lowering the contention and removing the

10 Serban Draganescu, Nicolae Téapus

bottleneck we had earlier (Illustration 1), where all subjects in the virtual machine
resided in a single hash.

public aspect MouseObserver extends ObserverProtocol { (21)

public pointcut subjectChange (Object subject) : (22)
execution (public void Mouse+.move(. .)) &&
this (subject) ;

public pointcut subjectCreation(Object subject) : (23)
initialization (Mouse+.new(. .)) && this(subject);

public void updateObserver (Object observer) { (24)
Cat cat (Cat) observer;
Mouse m = (Mouse)subject;

cat. update (m. name) ;

}

Hllustration 5: Smell-free Observer implementation, concrete part

To summarise, we present Table 5, where the columns represent,
respectively, results for the Observer OOP implementation (eg
java.util.Observable), the AOP classic implementation (Illustration 1) and the

AOP smell-free proposal (Illustration 4).
Table 5

Code-smell presence

smell \ implementation (010 AOP1 AOP2
pointcut resolution No Yes No
synchronisation Yes* Yes Yes*
generous decoration Yes** Yes Yes
bottleneck No Yes No

*Synchronisation is present in all 3 implementations, but its usage is
different. In OOP and AOP?2 it is related to keeping track of multiple observers in
one subject (in a list) while in AOP1 it is also about keeping track of subjects (in a
hash), so it is actually needed at two levels but since the two resources (the hash
and the list) are used in the same place, only one synchronised zone is used. We
needed to mention that, because the synchronisation need for the hash is removed
in OOP and AOP2 implementations but the chosen example is not really helpful
in showing the removal of the code-smell.

Code-smells in AOP 11

**Generous decoration happens in all the implementations. In OOP the
Mouse type would extend Subject and contain all the necessary code, even if the
code is never called when there are no registered observers. However, a type that
just inherits Subject and does not call the notification it does not bear the overhead
in any way. In the AOP cases, if the type is caught in the pointcut, the notification
is fired, although the observer list is void. A better example of this situation might
be given by the AOP decorator design pattern: if a type gets decorated then a flag
1s needed to determine if the decoration should be executed or not, otherwise all
instances of the type are forcedly decorated.

4. Conclusion

We have identified four AOP code-smells and we have illustrated them
with implementations of the Observer pattern. Hashes, synchronisations, generous
decorations and bottlenecks are constructs that appear sometimes unnecessarily in
AOP implementations. Our AOP Observer design pattern implementation along
with the normal OOP implementation prove that those kind of constructs can be
avoided.

REFERENCES

[1] M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts, Refactoring: Improving the Design of
Existing Code, Addison-Wesley, 1999

[2] J. Hannemann, G. Kiczales, Design Pattern Implementation in Java and Aspect], ACM
SIGPLAN Notices, vol. 37, issue 11, pages: 161-173, 2004

[3] S. Dragdnescu, N. Tdpus, COSTUL DE PERFORMANTA AL PROGRAMARII
ORIENTATE PE ASPECTE (Performance cost of AOP), Revista Roména de Informatica si
Automatica, vol. 19, nr. 4, Bucuresti, 2009

[4] V.C. Garcia, EK. Piveta, D. Lucredio, A. Alvaro, E. Santana de Almeida, A. Francisco do
Prado, L.C. Zancanella, Manipulating Crosscutting Concerns, SugarLoafPLoP 2004

[5] E.K. Piveta, M. Hecht, M.S. Pimenta, R.T. Price, Bad Smells em Sistemas Orientados a
Aspectos (Bad smells in Aspect Oriented Systems), SBES 2005

[6] M. Iwamoto, J, Zhao,Refactoring Aspect-Oriented Programs, The 4th AOSD Modeling With
UML Workshop, 2003

[7] M. Pessoa Monteiro, J.M. Fernandes, Pitfalls of Aspect] Implementations of Some of the
Gang-of-Four Design Patterns, Desarrollo de Software Orientado a Aspectos, 2004

12 Serban Draganescu, Nicolae Téapus

[8] M. Pessoa Monteiro, J.M. Fernandes, An illustrative example of refactoring object-oriented
source code with aspect-oriented mechanisms, Software—Practice & Experience, vol 38,
issue 4, pages: 361-396, 2008

[9] E.K. Piveta; M. Hecht, M.S.Pimenta, R.T. Price, - Detecting Bad Smells in AspectJ, Journal of
Universal Computer Science, vol. 12, no. 7 2006.

