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DETERMINANTS WITH BERNOULLI POLYNOMIALS AND
THE RESTRICTED PARTITION FUNCTION

Mircea Cimpoeas!

Let r > 1 be an integer, a = (ay,...,a,) a vector of positive
integers and let D > 1 be a common multiple of ay,...,a,. We study two
natural determinants of order r D with Bernoulli polynomials and we present
connections with the restricted partition function pa(n) := the number of
integer solutions (x1,...,2,) to Z;Zl ajr; =n with xy >0,...,2, > 0.

Keywords: restricted partition function, Bernoulli poly-
nomials, Bernoulli Barnes numbers.

MSC2010: 11P81, 11B68, 11P82.

1. Introduction

Let a := (ay,as,...,a,) be a sequence of positive integers, » > 1. The
restricted partition function associated to a is pa : N — N, pa(n) := the
number of integer solutions (xy,...,z,) of > ', a;z; = n with z; > 0. Let D
be a common multiple of aq,...,a,. The restricted partition function p,(n)
was studied extensively in the literature, starting with the works of Sylvester
[13] and Bell [3]. Popoviciu [10] gave a precise formula for » = 2. Recently,
Bayad and Beck [2, Theorem 3.1| proved an explicit expression of p,(n) in
terms of Bernoulli-Barnes polynomials and the Fourier Dedekind sums, in the
case that aq,...,a, are are pairwise coprime.

Let D be a common multiple of a4, ..., a,. In [7], we reduced the compu-
tation of pa(n) to solving the linear congruence aj; + - - - + a,.j, = n(mod D)
in the range 0 < j; < % —1,...,0 <4 < g — 1. In [8], we proved that if
a determinant A, p, see (2.5), which depends only on r and D, with entries
consisting in values of Bernoulli polynomials is nonzero, then p,(n) can be
computed in terms of values of Bernoulli polynomials and Bernoulli Barnes
numbers. In the second section, we outline several construction and results
from [§].
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In the third section, we study the polynomial

Bi(z1) . Bilzp) . By (z1) o Br(zp)
1 T r
Ba(z1) . Bal@zp) . Bry1(z1) . Br41(zp)
2 2 r4+1 r+1
Frp(zy,....zp)=| . . . . . ;
BT‘D(II) . BrD(xD) . B7'D+7'71(x1) . BT'D+7'71(xD)
rD rD rD+r—1 rD4+r—1

which is related to A, p by the identity

rD(rD+r) rD(rD+r—2) D —1 1
2z D 2 . ..

Arp = (~1)

In Theorem 3.1 we prove that

1 D E (x xp)
D,D—t(Z1,-..,ZD
Fip(z1,...,7p) = Dl H (x5 — xi)Z(*l)t 1 ;
" 1<i<j<D t=0

where Epo(x1,...,2p) =1, Ep1(x1,...,2p) = x1+- - -+xp etc. are the elementary
symmetric polynomials. In Proposition 3.3, we prove that

Fer(xl,...,xD): H (xj—l‘i)r-GnD(l'l,...,.%'D),
1<i<j<D

where G, p(z1,...,zp) is a symmetric polynomial, hence A, p # 0 if and only if
Gyp(E5t,...,0) #0.

In the last section, we propose another approach to the initial problem, studied
in [8], of computing pa(n) in terms of values of Bernoulli polynomials and Bernoulli
Barnes numbers. In formula (4.3) we show that

D—-1 _1\r—1pm+1
Z(—D)mdam(v) = TMBT_l_m(a), MoO<m<r-—1.
v=0

Seeing da m(v)’s as indeterminates and considering also the identities

r—1 D v

Bnimi1(5) (=)™ 'n!
o (V) DT Dl — Byt (2)—b0n <n<rD-r—1
0D dam(0)D S B = LS Bra(@)=don, ()0 < < rD—r—1,

m=0v=1

we obtain a system of 7D linear equations with a determinant AT, p. In Remark 4.1
we note that if A, p # 0, then dam(v), 0 < m <r—1,1 < v < D, are the unique

solutions of the above system. We consider the polynomial FT’ p € Qlxy,...,zp]
defined by
1 1 0 0
- 0 ces 0 . 1 . 1
F.p(z1,...,zp) == Bi(xz1) --- Bi(zp) --- 7Brix1) 73*(;“3)
BrD—"r'(xl) . Ber.r(l“D) ) Ber'l(zl) .. Brp-i1(zp)
rD—r rD—r rD—1 rD—1
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rD—r

We have that A, p = (—D)D(g)+( 2 )an(%,...,
show that

,0). In formula (4.9) we

o=

FT,D(xl,...,xD) = (—1)(D+1)(;) H (xj—xi)’" GT,D(.Tl,...,:IZD),
1<i<j<D

where G, p is a symmetric polynomial with deg G, p < r(rD;T) +D(3) — r(l;).
Using the methods of Olson [9], in Proposition 4.1 we prove that for any D > 1
we have
1 _ 112! (D — 2)!
(1) Fip(z1,...,2p) = D=1 H (zj — i), (2) A,p = (—D)D

" 1<i<j<D

By our computer experiments in SINGULAR [6], we expect that the following formula
holds

r 20 (r— 113
Fra(an, z2) = (-1 r!([:'f—'l)! -(- : (271«)‘—] 1)

r—1
j(@2—21)" [[((za—21)*=3%)7, (V)r > 1,
7=0

some justifications being noted in Remark 4.2. Also, we propose a formula for Fyp,
see Conjecture 4.2, but we are unable to “guess” a formula for F,. p in general.

2. Preliminaries

Let a := (a1,a2,...,a,) be a sequence of positive integers, » > 1. The re-
stricted partition function associated to a is pa : N — N,

pa(n) := #{(x1,...,z,) e N" : Zaimi =n}, (V)n > 0.
i=1

Let D be a common multiple of aj,...,a,. Bell [3] has proved that pa(n) is a
quasi-polynomial of degree r — 1, with the period D, i.e.

pa(n) = da,—1(n)n" '+ +da1(n)n + dao(n), (V)n >0, (2.1)

where dam(n + D) = dam(n), (V)0 < m < r—1,n > 0, and da,—1(n) is not
identically zero. The Barnes zeta function associated to a and w > 0 is

Ca(s,w) := Z m, Res > r,

n=0

see [1] and [12] for further details. It is well known that (4(s,w) is meromorphic on
C with poles at most in the set {1....,7}. We consider the function

Ca(s) = J}i{n(o(ga(sa w) —w™?). (2.2)
In [7, Lemma 2.6] we proved that
1 r—1 D v
Gals) = 55 D> dagm(v)D¢(s —m, ) (2.3)
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where ((s,w) :=> "7, m, Res > 1, is the Hurwitz zeta function. The Bernoulli

numbers B; are defined by

z > 2
e —1 :ZBJ.?

By=1, By = —%, By = %, By = —3—10 and B, = 0 if n is odd and greater than 1.
The Bernoulli polynomials are defined by

Pz x N
— = E B, (x)—.
_ |
(e — 1) o n!
They are related with the Bernoulli numbers by

Bn(z) = i (Z) B,_pat.

k=0

<.
Il
o

The Bernoulli-Barnes polynomials are defined by

z"e

(emz —1)---(e®z —1) -

Tz > Zj
Bj(x; a)ﬁ.
=0

J
The Bernoulli-Barnes numbers are defined by
Ba=noa= > ;7 B s
. A\ lly ey Oy
11+ Fir=y

In [8, Formula (2.9)] we proved that

r—1 D
Buimni() (=) n
ntm EntmA+I\p) _
D D dan (o) DS = S S B (@) ~ oo, (€N, (2.4)
m=0v=1
1, n=0, . . .
where dg, = is the Kronecker symbol. Given values 0 <n <rD —1 in

0, n>1

(1.9) and seeing da ,(v)’s as indeterminates, we obtain a system of linear equations
with the determinant A, p :=

31(1%) . Bll(l) . DT—liBTE_%) . pr—1 Brr(l)
DBZ(Q%) DB22(1) Dr Br+1(1%) Dr BT+11(1)
r4+ r4+
prb-1 BTf’é%) ... prb-1 BT7PD(1) ... prbtr-2 BT,DE;;:(l%) ... pDrD+r—2 B;%:_r;_lﬁl)
(2.5)

Using basic properties of determinants and the fact that

B,(1—2x) = (—-1)"B,(z) for all n > 0,
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it follows that

Bi(P5) B1(0) B(%50) ... B
1 i r
Bg(%) Bs(0) Br1(251) . Br+1(0)
AT,D =C 2 2 r-f-l ' r—!—l ’ (26)
B’I‘D(%) . B’V‘D(O) L. BTD+7‘71(%) . BTD+7‘71(0)
rD rD rD4+r—1 rD4+r—1

rD(rD+r) rD(rD+r—2)
2 D 2

where C' = (—1)

Proposition 2.1. (See [8, Proposition 2.1] and [8, Corollary 2.2])
With the above notations, if A, p # 0, then
ATH

dam(V) = A M1<v<D0<m<r—1,

where A:’lg is the determinant obtained from A, p, as defined in (2.5), by re-

placing the (mD+v)-th column with the column (an—&-r(a)_énO)OgngrD—l-

(n+r)!
Consequently,
1 r—1
pa(n) = — > Alyn™, (V)n € N.
D m=0

Proof. The first part follows from the Cramer rule applied to the system (2.4).
The second part is a consequence of the first part and (2.1). O

Remark 2.1. In [8] it was conjectured that A, p # 0 for any r,D > 1. An
affirmative answer was given in the case r = 1, r = 2 and D = 1. In the general
case, an equivalent form was given in [8, Corollary 2.14], which reduced the
problem to show that a r x r determinant is non zero. In the next section we
tackle this problem from another point of vue, by studying a polynomial F}. p

is D indeterminates with the property that A, p = F, p(251,..., 5, 0).

3. Determinants with Bernoulli polynomials

Let r, D > 1 be two integers. We consider the polynomial

Bi(@) . Bilep) . Br(21) . Br(zp)
1 T T
Bo(z1) . Ba(zp) . Bri1(z1) . Bri1(zp)
2 2 r+1 r+1
FT,D(xlv"‘vxD) = . . . . . . .
Byp(z1) . Brp(xp) . Brpyr—i1(z1)  Brpir-1(zp)
rD rD rD4+r—1 rD+r—1
(3.1)

According to (2.6) and (3.1), using the notations from the previous section, we have
that

"D (rD+ D(rD+r—2) D—-1
T 7‘2 r)Dr (r2 r .

1
A p=(-1) D )

,0). (3.2)
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Lemma 3.1. For any r > 1 we have that

1 1 1
11 b ,
A|? 3 T U2 (= 1)
BN C T ) (2r — 1)
1 1
ror+l 2r—1
Proof. We let
r! r! r!
Z A T
(£ (D! (r+1)!
Ay = 1 2 pry |
el @en e
T r+1 2r—0

Note that A = rl(r + 1)!---(2r — 1)!A;. We have A, = (r — 1)I. For 1 </ <r, we
have

r! r!
7 1
(D! (r+1)! r!
Ay = (T B 1)' +1 T (r—1)!
(QT;Z)! ' (27‘—‘@! (27‘—'8—1)!
Ty T -1 (r—1)!

Multiplying the first line accordingly and adding to the next lines in order to obtain
zeroes on the last column, it follows that

A= (r— ) det (AHhApe=) | =
1<k<r—
= (r = D)IEE Ay = ((r = O)20A
hence the induction step is complete. O
Proposition 3.1. We have that
I EA R (e DI
rl(r+ 1)1 (2r — 1)!

Proof. We have B, (z) = 2"+ terms of lower order, hence the result follows from
Lemma 3.1. N

Proposition 3.2. Forr =1 and D > 1 we have that:
(1) There ezists a symetric polynomial G1 p(z1,...,xp) of degree D such that

FLD(.’L'l,...,.CL‘D): H (xj_$i)G1,D($1a---axD)-
1<i<j<D

"+ terms of lower degree.

Fm(x)

(2) Gip(z1,...,xp) = %561332 ---xp+ terms of lower degree.
_1)P
(3) G1,p(0,---,0) = {5y
Proof. (1) From (3.1) it follows that

Bi(xz1) Bi(ze) --- Bi(zp)
1 [Ba(z1) Ba(ze) -+ Ba(zp)

= 5 (3.3)

Fl,D(xlv e ,:L“D)

Bp(z1) Bp(ws) -~ Bplxp)
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Moreover, for any permutation o € Sp, we have that

F1 p(T(1), - To(py) = €(0)F1,p(71, ..., 2D). (3.4)
Since
(xj —x3)|Be(xj) — Be(xi), (V)1 <€<D,1<i<j<D,
from (3.3) and (3.4) it follows that

Fyp(z1,...,2p) = Gip(z,...,zp) - [ (25— ), (3.5)
1<i<j<D
where G1p € Q[z1,...,2p] is a symmetrical polynomial of degree D.

(2) The homogeneous component of highest degree of Fi p is

1 T2 -+ Tp 1 1 1
2 2 2
1 |23 23 -+ 2P ry-xp | o1 To Tp Z1-+ D
Dl : : O 5T : : : N 5 H (=),
T T . p-1 .p-1 ___ .D-1 - lsi<usb
D R P
hence G p(x1,...,xp) = =1 - - - xp+ terms of lower order.
: RN D!
(3) For any integers j > 0 and 1 <n < D, we let
Lj(z1,...,x,) = the sum of all monomials of degree j in z1,...,x,,

ie. Li(xy,...,xp) =1+ + Tp, Lo(T1,...,0,) = 22+ -+ 22 + 2109 +
oo+ X, 1x,, etc. It is easy to check that
Lj(l’l, ey Tp—9, ZL’n) — Lj(l'l, N ,J]n_l) = (.Tn — xn—l)Lj—l(xla e ,l‘n>. (36)

We let
Bj(wy) — Bj(w1)

By(z1, xy) = , (M1I<k<Dl>1.
T — X1
Inductively, for 1 < j < k < D and ¢ > 1, we define
B R - B R
Bg(xl’...,xj717$k) — Z(Ila 7xj 27xk> Z(Ila 7$j 1)' (37)
Tp — Tj-1

We prove by induction on 57 > 1 that

r—jt1

14

By(w1,.. ., mj1,28) = <t+j B 1>sz+1tLt($1, s mo,ag), (V)<< D.
=0

(3.8)
Indeed, since By(z) = Zfzo (f)Bg,tajt, it follows that (3.8) holds for j = 1. Now,
assume that j > 2. From the induction hypothesis, (3.7), (3.6) and (3.8) it follows
that

) o —j+2 ¢ ) Li(x1,...,xj2,25)—Le(x1,..,25-1)
Bg(xh cees Lj—1, l‘k) - t=1 (t+j_2)Bf—]+2—t ' Tp—aj_1 =
42 ¢ _
= Zut=1 (tJrj,Q)BE—j-i—Z—tLtfl(:Ela sy Lj—1, l’k;) -
il

14
- t=0 (tJrj,l)Bﬁ—j—i—l—tLt(:Uly sy Lj—1, :L‘k)a
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hence the induction step is complete. Using standard properties of determi-
nants, from (3.3) it follows that

Bl(.l‘l) 1 tee 1
1 By(x1) Ba(w1,22) -+ Ba(z1,2p)
FLD(xl,...,xD):ﬁ H (xj—:nl) . . . . =
9<j<D : : : :
Bp(x1) Bp(x1,72) --- Bp(x1,7p)
Bl(l‘l) Bl(l‘l,l‘g) Bl(l‘l,...,ﬂfp)
1 Bg(l‘l) Bg(l‘l,xg) BQ(CL‘l,...,QZD)
T 1<i<j<D : : : :
Bp(xz1) Bp(xi,22) --- Bp(z1,...,zp)

hence the last determinant is D!- Gp(z1,...,2p). Note that (3.8) implies that

By(z1,...,25) =0, (V)1 <€ <j—2<D-2,By(x1,...,2441) =1, (V)1 <L < D-1.
(3.10)
From (3.9) and (3.10) it follows that F p(z1,...,2p) = 3 [licicj<p(mj—m:):

Bu(1) 1 0 0
Ba(x1) By (x1,x2) 1 0
: : : . : (3.11)
Bp_i(xr1) Bp-_i(x1,22) --- Bp_i(z1,...,2p_1) 1
Bp(z1)  Bp(x1,22) --- Bp(xi,...,zp-1) Bp(x1,...,2p)

Also, from (3.8), we have By(0,...,0) = (jfl)Bg,jH, hence, from (3.5) and
(3.11), we get

B, 1 0 0
Bs (2)B: 1 0
MD I:D!GLD(O,...,O): : : :
Bp_4 (Dfl) Bp_g --- (Di) By 1
Bp (?) Bpy - (DD—Q) By (DD—l)Bl
(3.12)

Since Mp is the determinant of a lower Hessenberg matrix, according to [4,
pag.222, Theorem|, we have the recursive relation

D—1
Mp = (Dlz 1) BiMp-1 + ;(_1>D_€ <D ﬁi _ g) Bpi1-eMy—1, (V)D > 1,
B (3.13)
where M, := 1. We prove that
Mp = ﬂ V)D > 1 (3.14)
+1’ -
using induction on D > 1. For D = 1 we have M; = By = —%, hence the

(3.14) holds. If D > 2 then from induction hypothesis and (3.14) it follows
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that
D—1 -1 D
Mo = ()P B + 3 (1) <D . 1) Bpp T = (P > : (;_ﬂ) Boi-t.
i - (3.15)
Since (V1) = Z(,7)), (V)1 < £ < D, from (3.15) it follows that
()Pt /D +1 ()Pt (TR /D +1
M = B ) = B —V — 1
D D +1 ZZI / D+1-¢ D +1 KZI / D+1-¢
(3.16)

On the other hand ZDH (DH)BDH ¢ = Bpi1(1) — Bpy1(0) = 0, hence
(3.16) completes the induction step. Therefore, we proved (3.14) and thus

_1)D }

Gp(0,...,0) = %, as required. O
For any integer n > 1, we denote E, o(z1,...,2yn) := 1, Ep1(z1,...,2y) =

14+ T, o, Epp(21, ..., 2,) i= 2122 - - - Ty, the elementary symmetric polyno-

mials in Q[x1,...,xy).

Theorem 3.1. With the above notations, we have that
D

1 ED,D—t($17-'-7$D)
FLD(l'l,...,xD):ﬁ H (.I'j—.%'i) (—1)t t—|—1 .
1<i<j<D t=0
Proof. We use induction on D > 1. For D = 1 we have
1 Fio(x
Fi1(w1) = Bi(z) = w1 — 3= Ey11(x1) — 1’02(1),

hence the required formula holds. For D > 2, from (3.3) it follows that

Fip(z1,...,2p) = ) Z 1P Bp(x) Fp-1(21, ..., 5, ..., D), (3.17)

where 7 means that the Varlable x) is omitted. From the induction hypothesis and
(3.17) it follows that Fy p(x1,...,zp) =

D D-1

. 1 D4k eED,LD,l,g(.’L'l,...,@,...,Z'D)
= 51 2 (1" Bp(x) H vj—w) Y (= ] :
k=1 1<i<j<D (=0
i.j#k
(3.18)
i . . D!Fy p(x1,...,.cp)
The relation (3.18) is equivalent to e o
D D-1 —~
_ 1 Ep_1p-1—¢(z1,...,Z,...,TD)
=) ()P < Bp(a) ) (-1) :
;::1 [T (5 — k) ;:% f+1
(3.19)
From (3.19), in order to complete the proof it is enough to show that
zD:(—l)t Epp—i(z1,---,2p) _ A —1)P=1Bp(xp)Ep—_1,p-1-¢(1, - . . ,@wu,xD).
— t+1 == (€ 4+ 1) [Ty — 1)

(3.20)
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Since Bp (i) = 327, (") Bp_sa®, it follows that (3.20) is equivalent to

min{t

S “(P)Biex) " Ep 1 po1e(w, ... Tk, ..

7$D)

(—l)t Epp—i(x1,...,2D) _ zD:
t+1 ‘

D
ez:; (t+1) Hj;sk( — k)
(3.21)
for any 0 < ¢ < D. Since, by Proposition 3.2(3), we have that

D!F17D($1,...,.§CD)| (—1>D . (—1)DED,0<,T1,...,$D)
r1=--=xp=0 — ,
ngiq’gD(ij — ;) P D+1 D+1

it is enough to prove (3.21) for 0 <t < D — 1. Similarly, by Proposition 3.2(2)
we can dismiss the case t = 0. Assume in the following that 1 < ¢ < D — 1.
As the both sides in (3.21) are symmetric polynomials, it is enough to prove
that (3.21) holds when we evaluate it in xp_441 = -+ = zp = 0. Moreover, in
this case, Fp_1p-1-e(%1,...,Tk,...,xp) = 0 for any ¢ < t. Therefore, (3.21)
is equivalent to

D—t ~
T - J,’k, L1 T ""TpD—t
(o ,
t+ 1 Zl t+1 Hﬁsk j<p—t(Tr — ;)T
D—t—1
Ly

hence it is equivalent to Z o 1 0 y = 1, which can be easily proved

j#k, j<D— (TK—;
by expanding a Vandermonde determinant of order D — t. 0

Corollary 3.1. We have that

D D—1
pw+1) (D — DD —2)!--- 1! Epp-+(5 -5 1,0)
Ayp=(=1)" = DI > (1) tD+ 1 D'

t=0
Proof. From (3.2) and Theorem 3.1 it follows that

. . D D—1
D(D+1) _D(D-1) 1 —1 ED,D— T o 0
Ajp=(-1)"2 D =2 ol H (JD > Z(_l)t (75 D ).

T 1<i<j<D t=0

On the other hand

i D—1)(D—2)!---1!
I (5)- 0=t e

1<i<j<D
hence, from (3.22) and (3.23) we get the required result. O

Unfortunately, in the general, it seems to be very difficult to give an exact

formula for F,. p(z1,...,2p). We prove the following generalization of Proposition
3.2(1):

Proposition 3.3. For any integers v, D > 1, there exists a symmetric polynomial
G, p of degree < 2 (D;rl) — r(g) such that

FT',D(:I:la"'7:ED): H (:Ej*:ti)TGT’D(ZL‘l,...,CL‘D),
1<i<j<D

)
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where, with the notations from (3.7), we have that G, p(z1,...,xp) =
Bi(z1) .. Bilzi,..zp) Br(z1) o Br(%1,-..sp)
) 1
_ 2 2 r+1 r+1
Brp(z1) .. Brp(xi,wzp) . Brpyr-i1(®1) . Brpir—i(21,..2D)
rD rD rD4+r—1 rD4+r—1
Proof. Using standard properties of determinants, as in the proof of formula (3.9),
we get the required decomposition. The fact that G, p(x1,...,2p) is symmetric
follows from the identity Fy.p(2(1),---,Te(p)) = (o) Fpp(71,...,2;), (V)o € Sp
and the decomposition ¥, p(21,...,2p) = [[1<;cj<p(¥j—2:)"Grp(21, ..., 2D). U

4. An approach to compute p,(n)

Let a := (a1, a9, ...,a,) be a sequence of positive integers, r > 1. Let D be a
common multiple of a1, ..., a,. Using the notations and definitions from the second
section, according to [7, Proposition 2.4] and (2.3), the function (a(s) is meromorphic
in the whole complex plane with poles at most in the set {1,...,r} which are all
simple with residues

)

-1

LN @), (O<m<r—1.  (41)

Riy1 = Ress—m11Ca(s) = D

S
Il
o

On the other hand, according to [7, Theorem 2.10] or [11, Formula (3.9)] and (2.2),
we have that
(_1)7“717771

mBr—l—m(al, cnar), (V0<m<r—1 (4.2)

Rerl =

It follows that

D-1 _1\r—1pm+1
S (D)o (v) = MBT_l_m(a), M0<m<r—1  (43)
v=0

On the other hand, from (2.4) it follows that

U Ly (=1)Inl

S g (oyprn Brmeah)

- B'I‘ n _5717 S S D— —1.
n+m-+1 (n+7r)! n(@)=0on, (V)0 <n <rD-r

m=0v=1

(4.4)
If we see dam(v) as indeterminates, (4.3) and (4.4) form a system of linear equations
with the determinant A, p :=

1 1 0 0
0 0 (=D)r1 (—D)—1
- r—1 1 .
— Bi(3) Bi(1) DiBha) w
DTD_“IJ.BTvafr»(%) ' DTD*M'BTD_T(D . DTD‘2B.,,-D71(%) D™P2B,p_1(1)
rD—r e e =y » 7y m =y » Sy e
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From (4.5) and the identity B,(1 —z) = (—1)"B,(z) it follows that

1 1 0 0
0 0 1 1
_ r rD—r
A, p = (-D)PE)H(T) BBl ... Bo) - EZ . BO
Bip—r(Pp) | Bepr(® . Bepo(Ppt) | Bepoa(0)
rD—r rD—r rD—1 rD—1
(4.6)

Remark 4.1. Similarly to Proposition 2.1, if A, p # 0, then dan,(v), 0 <
m < r—1, 1< v < D are the solutions of the system of linear equations
consisting in (4.3) and (4.4).

Now, we consider the polynomial F,.p € Q[x1,...,zp] defined as
1 1 0 0
B 0 0 1 1
Frp(z1,...,2p) = Bi(z1) --- Bi(zp) .- Bl Bilep)
BTD—.T(-TI) . BTD—.T('TD) . BT‘D—.l(‘Tl) ... Brp-i(zp)
rD—r rD—r rD—1 rD—1
(4.7)
From (4.6) and (4.7) it follows that
— ” ro—nr — D - 1 1
A.p=(-D)PEHEE, =, 0). 48
,D ( ) 7D( D "D’ ) ( )

Note that if D =1 then (4.5) and (4.7) implies
A7",1 = (—D)(g) and Fr71($1, . ,I’r) = ]_,

therefore, in the following we assume D > 2.
Using elementary operations in (4.7) and the notations (3.7) it follows

that (—1)(D+1)(;>FT’D<£C1, . ,%D) =

By(z1,2: By(x1,
By(z1,22) -+ Bi(zi,xp) - M (ffww
= [I @o—z) : : : : =
2<j<D Brp—r(z1,22) . Brp-r(z1,@p) . Brp-i(zi,x2) . Brp-i(z1,2D)
rD—r rD—r rD—1 rD—1
Br(z1, Br(1,...,
By(z1,33) -+ Bi(x1,...,ap) - M M
T @—z) : : : :
1<i<j<D Brp_r(z1,22) . Brp-r(z1,..,xp) . Brp-i(z1,22) . Brp-i(z1,..,%p)
rD—r rD—r rD—1 rD—1
(4.9)
We denote the last determinant in (4.9) with G, p(z1,...,2p) and we note

that G, p is a symmetric polynomial with

deg(Grp) <7 (TD; r) +D (g) —r (12)) .
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Proposition 4.1. For any D > 2 we have that

1 _ 112! .. (D — 2)!
(1) Fip(z1,...,2p) = T _ H (zj =), (2) Aip = D
D-1! L) (=D)
Proof. (1) Using the method from [9, Page 262], we get
. 1
_ 1 Bi(z1) -+ Bi(zp)
F1,D(96’17~-,33D):m : ; : -
Bp_i(z1) -+ Bp-i(zp)
By 0 ) 1 1
1 @)Bl By o0 T D 1
o I vy O Gt
1<i<j<D
L o |
(4.10)
(2) The last identity follows from (1), (4.8) and (4.9). O
Remark 4.2. For D = 2, according to (4.9) we have that
Fro(zy,m0) = (—1)(2) (29 — 21)"Gro(x1,72), where (4.11)
Bi(wy,ap) Bl 2
Gra(w1,72) = : : : : (4.12)
By (z1,22) Bryi(zi,ze) . Bar—i(z1,m2)
r r+1 2r—1

On the other hand, according to (3.8), we have that

k—1 t
k
Bk(.iﬂl,ﬂ?g) = E ( )Bk—l—t E xi_sxg, (V)l S k S 2r — 1. (413)
s=0

—\t+ 1
In particular, from (4.12) and (4.13) it follows that
1 oo . xrr’l
Gro(z1,0) = ¢ : : : |+ terms of lower degree. (4.14)

From Lemma 3.1 and (4.14) it follows that
Rt e =11
ol D) (2r = 1)

Our computer experiments in SINGULAR [6] and Remark 4.2 yield us to
the following:

+ terms of lower degree.

Gr,Z (5171 ) 0)

Conjecture 4.1. For any r > 1, it holds that
_ ©) (2 (r =13

2

Fr,2(x17x2) = (-1 rl(r 4+ 1) (2r — 1)!

r—1

(wy —a1)" | [ (w2 — 21)* = %) 7.

Jj=
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We checked Conjecture 4.1 for r < 4 and we believe that the formula
holds in general. Our computer experiments in SINGULAR [6] yield us to:

Conjecture 4.2. For any D > 2, it holds that

Fyp(ri,...,zp) =KD) [ (zj—z)* Y ((aj—x)* 1),

1<i<j<D 1<i<j<D
where K (D) € Q. Moreover, K(D) # 0, hence Ay p # 0.

We checked Conjecture 4.2 for D < 4 and we believe it is true in general.
Unfortunately, we are not able to “guess” a general formula for F,p, the
situation being difficult even for D = r = 3 as G33 is an irreducible polynomial
of degree 18.
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