

ON BI- Γ -HYPERIDEALS OF Γ -SEMIHYPERGROUPS

Saleem ABDULLAH¹, Kostaq HILA², Muhammad ASLAM³

In this paper, we introduce the strongly prime, prime, semiprime, strongly irreducible and irreducible bi- Γ -hyperideals of Γ -semihypergroups. The space of strongly prime bi- Γ -hyperideals is topologized. We also characterize those Γ -semihypergroups for which each bi- Γ -hyperideal is strongly prime.

AMS Classification [2000] 20N20, 20N15, 20M17

Keywords: Prime bi- Γ -hyperideals; Strongly prime bi- Γ -hyperideals; Semiprime bi- Γ -hyperideals; Strongly irreducible and irreducible bi- Γ -hyperideals.

1. Introduction

The algebraic hyperstructure notion was introduced in 1934 by a French mathematician F. Marty [16], at the 8th Congress of Scandinavian Mathematicians. He published some notes on hypergroups, using them in different contexts: algebraic functions, rational fractions, non commutative groups. Algebraic hyperstructures are a suitable generalization of classical algebraic structures. In a classical algebraic structure, the composition of two elements is an element, while in an algebraic hyperstructure, the composition of two elements is a set.

In 1986, Sen and Saha [23] defined the notion of a Γ -semigroup as a generalization of a semigroup. One can see that Γ -semigroups are generalizations of semigroups. Many classical notions of semigroups have been extended to Γ -semigroups and a lot of results on Γ -semigroups are published by a lot of mathematicians, for instance, Chattopadhyay [4, 5], Chinram and Jirojkul [6], Chinram and Siammai [7], Hila [12, 13], Saha [16], Sen and et. al. [18, 19, 20, 21, 22, 25] and Seth [23]. Recently, Davvaz, Hila and et. al. [2, 11, 14, 17] introduced the notion of Γ -semihypergroup as a generalization of a semigroup, a generalization of a semihypergroup and a generalization of a Γ -semigroup. They

¹ Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan, e-mail: saleemabdullah81@yahoo.com

² Department of Mathematics & Computer Science, Faculty of Natural Science, University of Gjirokastra, Albania, e-mail: kostaq_hila@yahoo.com

³ Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan, e-mail: draslamqau@yahoo.com

presented many interesting examples and obtained a several characterizations of Γ –semihypergroups. In [2] the notion of a Γ –hyperideal of a Γ –semihypergroup is introduced. A Γ –hyperideal of a Γ –semihypergroup is a generalization of an ideal of a semigroup, a generalization of a hyperideal of a semihypergroup and a generalization of a Γ –ideal of a Γ –semigroup. The notion of a bi-ideal was first introduced by Good and Hughes [10], as early as 1952, and it has been widely studied. Recently, Davvaz et al. generalized this notion introducing the notion of bi- Γ –hyperideal in Γ –semihypergroups [2]. This paper deals with some classes of bi- Γ –hyperideals of Γ –semihypergroups.

In this paper, we introduce the strongly prime, strongly semiprime, strongly irreducible and irreducible bi- Γ –hyperideals of Γ –semihypergroups. The space of strongly prime bi- Γ –hyperideals is topologized. We also characterize those Γ –semihypergroups for which each bi- Γ –hyperideal is strongly prime. We also prove, a Γ –semihypergroup S is completely regular if and only if every bi- Γ –hyperideal of S is semiprime.

2 Preliminaries

In this section, we recall certain definitions and results needed for our purpose.

Definition 2.1 [18, 22] Let $S = \{a, b, c, \dots\}$ and $\Gamma = \{\alpha, \beta, \gamma, \dots\}$ be two non-empty sets. Then S is called a Γ –semigroup if there exists a mapping $S \times \Gamma \times S \rightarrow S$ written as $(a, \gamma, b) \rightarrow a\gamma b$ satisfying the following identity $(a\gamma b)\beta c = a\gamma(b\beta c)$ for all $a, b, c \in S$ and for all $\alpha, \beta \in \Gamma$. Let K be a non-empty subset of S . Then K is called a sub Γ –semigroup of S if $a\gamma b \in K$ for all $a, b \in S$ and $\gamma \in \Gamma$.

Definition 2.2 A map $\circ: S \times S \rightarrow \mathcal{P}^*(S)$ is called hyperoperation or join operation on the set S , where S is a nonempty set and $\mathcal{P}^*(S) = \mathcal{P}(S) \setminus \{\emptyset\}$ denotes the set of all nonempty subsets of S . A hypergroupoid is a set S with together a (binary) hyperoperation. A hypergroupoid (S, \circ) , which is associative, that is $x \circ (y \circ z) = (x \circ y) \circ z$, $\forall x, y, z \in S$, is called a semihypergroup.

Let A and B be two non-empty subset of S . Then we define

$$A \circ B = \bigcup_{a \in A, b \in B} a \circ b, a \circ A = \{a\} \circ A \text{ and } a \circ B = \{a\} \circ B.$$

Definition 2.3 [17] Let S and Γ be two non-empty sets. Then S is called a Γ -semihypergroup if every $\gamma \in \Gamma$ is a hyperoperation on S , i.e., $x\gamma y \subseteq S$ for every $x, y \in S$, and for every $\alpha, \beta \in \Gamma$ and $x, y, z \in S$ we have $x\alpha(y\beta z) = (x\alpha y)\beta z$.

If every $\gamma \in \Gamma$ is an operation, then S is a Γ -semigroup. If (S, γ) is a hypergroup for every $\gamma \in \Gamma$, then S is called a Γ -hypergroup.

Let A and B be two non-empty subset of S . Then we define

$$A\Gamma B = \bigcup_{\gamma \in \Gamma} A\gamma B = \bigcup \{a\gamma b \mid a \in A, b \in B \text{ and } \gamma \in \Gamma\}.$$

Let (S, \circ) be a semihypergroup and let $\Gamma = \{\circ\}$. Then S is Γ -semihypergroup. So every semihypergroup is Γ -semihypergroup.

Let S be a Γ -semihypergroup and $\gamma \in \Gamma$. A non-empty subset A of S is called a sub Γ -semihypergroup of S if $x\gamma y \subseteq A$ for every $x, y \in A$. A Γ -semihypergroup S is called *commutative* if for all $x, y \in S$ and $\gamma \in \Gamma$, we have $x\gamma y = y\gamma x$.

Example 2.4 Let $S = [0, 1]$ and $\Gamma = \mathbb{N}$. For every $x, y \in S$ and $\gamma \in \Gamma$, we define $\gamma : S \times S \rightarrow \wp^*(S)$ by $x\gamma y = \left[0, \frac{xy}{\gamma}\right]$. Then γ is hyperoperation. For every $x, y, z \in S$ and $\alpha, \beta \in \Gamma$, we have $(x\alpha y)\beta z = \left[0, \frac{xyz}{\alpha\beta}\right] = x\alpha(y\beta z)$. This means that S is a Γ -semihypergroup.

Example 2.5 Let S be a non-empty set and let Γ be a non-empty subset of S . If we define $x \circ y = \{x, y, y\}$, for every $x, y \in S$ and $\gamma \in \Gamma$, then S is a Γ -semihypergroup.

Example 2.6 Let (S, \circ) be a semihypergroup and Γ be a non-empty subset of S . We define $x\gamma y = x \circ y$ for every $x, y \in S$ and $\gamma \in \Gamma$. Then S is a Γ -semihypergroup.

Definition 2.7 [2] A non-empty subset A of a Γ -semihypergroup S is a right (left) Γ -hyperideal of S if $A\Gamma S \subseteq A$ ($S\Gamma A \subseteq A$), and is a Γ -hyperideal of S if it is both a right and a left Γ -hyperideal.

Definition 2.8 A non-empty subset B of a Γ -semihypergroup S is called bi- Γ -hyperideal of S if the following two conditions hold

- (1) $B\Gamma B \subseteq B$
- (2) $B\Gamma S\Gamma B \subseteq B$

A bi- Γ -hyperideal B of Γ -semihypergroups S is proper if $B \neq S$.

Example 2.9 Let $S = (0,1)$, $\Gamma = \{\gamma_n | n \in \mathbb{N}\}$ and for every $n \in \mathbb{N}$ we define the hyperoperation γ_n on S as follows

$$x\gamma_n y = \left\{ \frac{xy}{2^k} \mid 0 \leq k \leq n \right\}, \forall x, y \in S.$$

Then, $x\gamma_n y \subset S$ and for every $m, n \in \mathbb{N}$ and $x, y, z \in S$

$$(x\gamma_n y)\gamma_m z = \left\{ \frac{xyz}{2^k} \mid 0 \leq k \leq n+m \right\} = x\gamma_n(y\gamma_m z)$$

So S is a Γ -semihypergroup. Now let $S = \left(0, \frac{1}{2^i}\right)$, where $i \in \mathbb{N}$. It easily to see

that S_i is a bi- Γ -hyperideal of S and $\bigcap_{i \in I} S_i = \Phi$

Example 2.10 Let S be the Γ -semihypergroup in Example 2.9, and let for every $i \in \mathbb{N}$, $B_i = \{i, i+1, \dots\}$. Therefore B_i is a bi- Γ -hyperideal of S and $\bigcap_{i \in I} S_i = \Phi$.

Example 2.11 Let $S = [0,1]$ and $\Gamma = \mathbb{N}$. Then with hyperoperation $x\gamma y = \left[0, \frac{xy}{\gamma}\right]$ is a Γ -semihypergroup. Let $T = [0, t]$ be sub set of $S = [0,1]$, where $t \in (0,1]$. Then, T is a left (right, bi)- Γ -hyperideal of S .

3. Prime Bi- Γ -hyperideals

In this section, we study some properties of prime bi- Γ -hyperideals in a Γ -semihypergroup.

Definition 3.1 A bi- Γ -hyperideal B of a Γ -semihypergroup S is called a prime (strongly prime) bi- Γ -hyperideal if $B_1\Gamma B_2 \subseteq B$ ($B_1\Gamma B_2 \cap B_2\Gamma B_1 \subseteq B$) implies $B_1 \subseteq B$ or $B_2 \subseteq B$ for any bi- Γ -hyperideals B_1 and B_2 of S . A bi- Γ -hyperideal B of a Γ -semihypergroup S is called a semiprime bi- Γ -hyperideal if

$B_1^2 \subseteq B$ implies $B_1 \subseteq B$ for any bi- Γ -hyperideal B_1 of S .

Every strongly prime bi- Γ -hyperideal of a Γ -semihypergroup S is a prime bi- Γ -hyperideal and every prime bi- Γ -hyperideal is a semiprime bi- Γ -hyperideal. A prime bi- Γ -hyperideal is not necessarily strongly prime and a semiprime bi- Γ -hyperideal is not necessarily prime.

Definition 3.2 A bi- Γ -hyperideal B of a Γ -semihypergroup S is called an irreducible (strongly irreducible) bi- Γ -hyperideal if $B_1 \cap B_2 = B$ ($B_1 \cap B_2 \subseteq B$) implies $B_1 = B$ or $B_2 = B$ ($B_1 \subseteq B$ or $B_2 \subseteq B$).

Every strongly irreducible bi- Γ -hyperideal of a Γ -semihypergroup is an irreducible bi- Γ -hyperideal but the converse is not true.

Lemma 3.3 The intersection of any family of prime bi- Γ -hyperideal of a Γ -semihypergroup is a semiprime bi- Γ -hyperideal.

Proof. Straightforward.

Theorem 3.4 Every strongly irreducible, semiprime bi- Γ -hyperideal of a Γ -semihypergroup S is a strongly prime bi- Γ -hyperideal.

Proof. Let B be a strongly irreducible semiprime bi- Γ -hyperideal of S . Let B_1, B_2 be any bi- Γ -hyperideal of S such that $B_1 \Gamma B_2 \cap B_2 \Gamma B_1 \subseteq B$. Since $(B_1 \cap B_2)^2 \subseteq B_1 \Gamma B_2$ and $(B_1 \cap B_2)^2 \subseteq B_2 \Gamma B_1$, $(B_1 \cap B_2)^2 \subseteq B_1 \Gamma B_2 \cap B_2 \Gamma B_1 \subseteq B$. Since B is a semiprime bi- Γ -hyperideal, $B_1 \cap B_2 \subseteq B$. Because B is a strongly irreducible bi- Γ -hyperideal of S , so either $B_1 \subseteq B$ or $B_2 \subseteq B$. Thus B is a strongly prime bi- Γ -hyperideal of S .

Definition 3.5 An element a of the Γ -semihypergroup S is called regular if there exists $x \in S$ and $\alpha, \beta \in \Gamma$ such that $a \in a\alpha x \beta a$. If every element of Γ -semihypergroup S is regular, then S is called a regular Γ -semihypergroup. The following are equivalent definitions

- (1) For every $A \subseteq S$, $A \subseteq A\Gamma S \Gamma A$.
- (2) For every element $a \in S$, $a \in a\Gamma M \Gamma a$

Theorem 3.6 Let B be a bi- Γ -hyperideal of a Γ -semihypergroup S and $a \in S$ such that $a \notin B$. Then there exists an irreducible bi- Γ -hyperideal I of S such that $B \subseteq I$ and $a \notin I$.

Proof. Let \mathbf{A} be the collection of all bi- Γ -hyperideals of S which contain B and do not contain a . Then it is non-empty, because $B \in \mathbf{A}$. The collection \mathbf{A} is a partially ordered set under inclusion. If \mathbf{C} is any totally ordered subset of \mathbf{A} then $\cup \mathbf{C}$ is a bi- Γ -hyperideal of S containing B . Hence by Zorn's Lemma, there exists a maximal element I in \mathbf{A} . We show that I is an irreducible bi- Γ -hyperideal. Let C and D be two bi- Γ -hyperideals of S such that $I = C \cap D$. If both C and D properly contain I , then $a \in C$ and $a \in D$. Hence $a \in C \cap D = I$. This contradicts the fact that $a \notin I$. Thus $I = C$ or $I = D$.

Lemma 3.7 A Γ -semihypergroup S is completely regular if and only if $A \subseteq (A\Gamma A)\Gamma S\Gamma(A\Gamma A)$ for every $A \subseteq S$. Equivalently, a Γ -semihypergroup S is completely regular if and only if $a \in a\Gamma a\Gamma S\Gamma a\Gamma a$ for all $a \in S$.

Theorem 3.8 A Γ -semihypergroup S is completely regular if and only if every bi- Γ -hyperideal of S is semiprime.

Proof. Suppose S is a completely regular Γ -semihypergroup S . Let B be a bi- Γ -hyperideal, $a \in S$ and $a\Gamma a \subseteq B$. Then for some $x, y, z \in S$ and $\alpha, \beta, \gamma, \rho, \tau, \eta, \mu \in \Gamma$, it holds

$$\begin{aligned} a \in a\alpha x\beta a &= (a\gamma a\rho y)\alpha x\beta(z\tau a\eta a) = a\gamma(a\rho y\alpha x\beta z\tau a)\eta a \subseteq B\Gamma S\Gamma B \subseteq B \\ &\Rightarrow a \in B \end{aligned}$$

Thus B is semiprime.

Conversely, let $a \in S$. Then $a\Gamma a\Gamma S\Gamma a\Gamma a$ is a non-empty subset of S . Let $x, y \in (a\Gamma a)\Gamma S\Gamma(a\Gamma a)$ and $z \in S$. Then for some $s, t \in S$ and $\alpha, \beta, \gamma, \rho, \tau, \eta, \mu \in \Gamma$,

$$\begin{aligned} x\alpha z\beta y &= (a\gamma a\rho u\tau a\eta a)\alpha z\beta(a\gamma a\eta v\mu a) \\ &= a\gamma a\rho(u\tau a\gamma a\alpha z\beta a\gamma a\eta v)\mu a\gamma a \subseteq (a\Gamma a)\Gamma M\Gamma(a\Gamma a) \end{aligned}$$

Thus $x\alpha z\beta y \subseteq a\Gamma a\Gamma S\Gamma a\Gamma a$. Then

$$\begin{aligned} ((a\Gamma a)\Gamma S\Gamma(a\Gamma a))\Gamma((a\Gamma a)\Gamma S\Gamma(a\Gamma a)) &\subseteq ((a\Gamma a)\Gamma S\Gamma(a\Gamma a)) \\ \text{and } ((a\Gamma a)\Gamma S\Gamma(a\Gamma a))\Gamma S\Gamma((a\Gamma a)\Gamma S\Gamma(a\Gamma a)) &\subseteq (a\Gamma a)\Gamma S\Gamma(a\Gamma a) \end{aligned}$$

Hence $(a\Gamma a)\Gamma S\Gamma(a\Gamma a)$ is a bi- Γ -hyperideal of S for all $a \in S$. Since

$a\Gamma a\Gamma a\Gamma a\Gamma a\Gamma a = (a\Gamma a)\Gamma(a\Gamma a\Gamma a\Gamma a\Gamma a)\Gamma(a\Gamma a) \subseteq ((a\Gamma a)\Gamma S\Gamma(a\Gamma a))$ and $(a\Gamma a)\Gamma S\Gamma(a\Gamma a)$ is semiprime, we get $a\Gamma a\Gamma a\Gamma a$, $a\Gamma a \subseteq a\Gamma a\Gamma S\Gamma a\Gamma a$ and so $a \in (a\Gamma a)\Gamma S\Gamma(a\Gamma a)$. Hence by Lemma 3.7, S is a completely regular Γ -semihypergroup.

Theorem 3.9 For a Γ -semihypergroup S , the following assertions are equivalent:

- (i) S is both regular and intra-regular.
- (ii) $B\Gamma B = B$ for every bi- Γ -hyperideal B of S .
- (iii) $B_1 \cap B_2 = B_1\Gamma B_2 \cap B_2\Gamma B_1$ for all bi- Γ -hyperideals B_1 and B_2 of S .
- (iv) Each bi- Γ -hyperideal of S is semiprime.
- (v) Each proper bi- Γ -hyperideal of S is the intersection of irreducible semiprime bi- Γ -hyperideals of S which contain it.

Proof. (i) \Leftrightarrow (ii) It follows by Theorem 3.8 and [24, Cor. 9.6 and Cor. 9.1]

(ii) \Rightarrow (iii) Let B_1 and B_2 be any two bi- Γ -hyperideals of the Γ -semihypergroup S . Then by our hypothesis,

$$B_1 \cap B_2 = (B_1 \cap B_2)\Gamma(B_1 \cap B_2)$$

$$B_1 \cap B_2 \subseteq B_1\Gamma B_2$$

$$\text{Similarly } B_1 \cap B_2 \subseteq B_2\Gamma B_1$$

Thus

$$B_1 \cap B_2 \subseteq B_1\Gamma B_2 \cap B_2\Gamma B_1 \quad (1)$$

Now $B_1\Gamma B_2$ and $B_2\Gamma B_1$ are bi- Γ -hyperideals being the products of bi- Γ -hyperideals. Also, $B_1\Gamma B_2 \cap B_2\Gamma B_1$ is a bi- Γ -hyperideal. Then

$$\begin{aligned} B_1\Gamma B_2 \cap B_2\Gamma B_1 &= (B_1\Gamma B_2 \cap B_2\Gamma B_1)\Gamma(B_1\Gamma B_2 \cap B_2\Gamma B_1) \\ &\subseteq (B_1\Gamma B_2)\Gamma(B_2\Gamma B_1) \\ &\subseteq B_1\Gamma S\Gamma B_1 \subseteq B_1 \end{aligned}$$

$$\text{Similarly, } B_1\Gamma B_2 \cap B_2\Gamma B_1 \subseteq B_2$$

Thus,

$$B_1\Gamma B_2 \cap B_2\Gamma B_1 \subseteq B_1 \cap B_2 \quad (2)$$

Hence, from (1) and (2) we have

$$B_1 \cap B_2 = B_1\Gamma B_2 \cap B_2\Gamma B_1$$

(iii) \Rightarrow (iv) Let B_1 and B be bi- Γ -hyperideals of S such that $B_1\Gamma B_1 \subseteq B$. By hypothesis,

$$B_1 = B_1 \cap B_1 = B_1\Gamma B_1 \cap B_1\Gamma B_1 = B_1\Gamma B_1$$

Thus

$$B_1 \subseteq B$$

Hence every bi- Γ -hyperideal of S is semiprime.

(iv) \Rightarrow (v) Let B be a proper bi- Γ -hyperideal of S . Then B is contained in the intersection of all irreducible bi- Γ -hyperideals of S which contain B . Theorem 3.6 guarantees the existence of such irreducible bi- Γ -hyperideals. If $a \notin B$ then there exists an irreducible bi- Γ -hyperideal of S which contains B but does not contain a . Hence B is the intersection of all bi- Γ -hyperideals of S which contain it. By our hypothesis, every bi- Γ -hyperideal is semiprime, and so each bi- Γ -hyperideal is the intersection of irreducible semiprime bi- Γ -hyperideals of S containing it.

(v) \Rightarrow (ii) Let B be a bi- Γ -hyperideal of S . If $B\Gamma B = S$, then clearly B is idempotent, that is, $B\Gamma B = B$. If $B\Gamma B \neq S$, then $B\Gamma B$ is a proper bi- Γ -hyperideal of S containing $B\Gamma B$ and so by our hypothesis

$$B\Gamma B = \bigcap_{\alpha} \{B_{\alpha} : B_{\alpha} \text{ is irreducible semiprime bi-}\Gamma\text{-hyperideal of } S\}$$

Since each B_{α} is a semiprime bi- Γ -hyperideal, $B \subseteq B_{\alpha}$ for all α and so $B \subseteq \bigcap_{\alpha} B_{\alpha} = B\Gamma B$. Hence each bi- Γ -hyperideal in S is idempotent.

Theorem 3.10 *Let S be a regular and intra-regular semigroup. Then the following assertions, for a bi- Γ -hyperideal B of S , are equivalent:*

- (i) B is strongly irreducible.
- (ii) B is strongly prime.

Proof. Straightforward.

Next we characterize those Γ -semihypergroups in which each bi- Γ -hyperideal is strongly prime and also those Γ -semihypergroups in which each bi- Γ -hyperideal is strongly irreducible.

Theorem 3.11 *Each bi- Γ -hyperideal of a Γ -semihypergroups S is strongly prime if and only if S is regular, intra-regular and the set of bi- Γ -hyperideals of S is totally ordered by inclusion.*

Proof. Suppose that each bi- Γ -hyperideal of S is strongly prime. Then each bi- Γ -hyperideal of S is semiprime. Thus by Theorem 3.9, S is both regular and intra-regular. We show that the set of bi- Γ -hyperideals of S is totally ordered. Let B_1 and B_2 be any two bi- Γ -hyperideal of S . Then by Theorem 3.9,

$B_1 \cap B_2 = B_1 \Gamma B_2 \cap B_2 \Gamma B_1$. As each bi- Γ -hyperideal is strongly prime, $B_1 \cap B_2$ is strongly prime. Hence either $B_1 \subseteq B_1 \cap B_2$ or $B_2 \subseteq B_1 \cap B_2$. If $B_1 \subseteq B_1 \cap B_2$, then $B_1 \subseteq B_2$. If $B_2 \subseteq B_1 \cap B_2$, then $B_2 \subseteq B_1$.

Conversely, assume that S is regular, intra-regular and since the set of bi- Γ -hyperideals of S is totally ordered under inclusion. Then we want to show that each bi- Γ -hyperideal of S is strongly prime. Let B be an arbitrary bi- Γ -hyperideal of S and B_1, B_2 be bi- Γ -hyperideals of S such that

$$B_1 \Gamma B_2 \cap B_2 \Gamma B_1 \subseteq B$$

Since S is both regular and intra-regular, by Theorem 3.9,

$$B_1 \cap B_2 = B_1 \Gamma B_2 \cap B_2 \Gamma B_1$$

Also $B_1 \Gamma B_2 \cap B_2 \Gamma B_1 \subseteq B$ implies $B_1 \cap B_2 \subseteq B$. Since the set of bi- Γ -hyperideals of S is totally ordered under inclusion, so either $B_1 \subseteq B_2$ or $B_2 \subseteq B_1$, that is, either $B_1 \cap B_2 = B_1$ or $B_1 \cap B_2 = B_2$. Thus either $B_1 \subseteq B$ or $B_2 \subseteq B$.

Theorem 3.12 *If the set of bi- Γ -hyperideals of a semigroup S is totally ordered, then S is both regular and intra-regular if and only if each bi- Γ -hyperideal of S is prime.*

Proof. Suppose that S is both regular and intra-regular. Let B be any bi- Γ -hyperideal of S and B_1, B_2 be bi- Γ -hyperideals of S such that $B_1 \Gamma B_2 \subseteq B$. Since the set of bi- Γ -hyperideals of S is totally ordered, either $B_1 \subseteq B_2$ or $B_2 \subseteq B_1$. Suppose $B_1 \subseteq B_2$. Then $B_1 \Gamma B_1 \subseteq B_1 \Gamma B_2 \subseteq B$. By Theorem 3.9, B is semiprime so $B_1 \subseteq B$. Hence B is a semiprime bi- Γ -hyperideal of S .

Conversely, assume that every bi- Γ -hyperideal of S is prime. Since the set of bi- Γ -hyperideals of S is totally ordered so the concepts of prime and strongly prime coincide. Now, by Theorem 3.11, we see that S is both regular and intra-regular.

Theorem 3.13 *For a semigroup S the following assertions are equivalent:*

- (i) *The set of bi- Γ -hyperideals of S is totally ordered under inclusion.*
- (ii) *Each bi- Γ -hyperideal of S is strongly irreducible.*
- (iii) *Each bi- Γ -hyperideal of S is irreducible.*

Proof. (i) \Rightarrow (ii) Let B be an arbitrary bi- Γ -hyperideal of S and B_1, B_2

two bi- Γ -hyperideals of S such that $B_1 \cap B_2 \subseteq B$. Since the set of bi- Γ -hyperideals of S is totally ordered, either $B_1 \subseteq B_2$ or $B_2 \subseteq B_1$. Thus either $B_1 \cap B_2 = B_1$ or $B_1 \cap B_2 = B_2$. Hence $B_1 \cap B_2 \subseteq B$ implies either $B_1 \subseteq B$ or $B_2 \subseteq B$. This shows that B is strongly irreducible bi- Γ -hyperideal.

(ii) \Rightarrow (iii) Let B be an arbitrary bi- Γ -hyperideal of S and B_1, B_2 two bi- Γ -hyperideals of S such that $B_1 \cap B_2 = B$. Then $B \subseteq B_1$ and $B \subseteq B_2$. By hypothesis, either $B_1 \subseteq B$ or $B_2 \subseteq B$. Hence either $B_1 = B$ or $B_2 = B$. That is, B is irreducible bi- Γ -hyperideal.

(iii) \Rightarrow (i) Let B_1 and B_2 be any two bi- Γ -hyperideals of S . Then $B_1 \cap B_2$ is a bi- Γ -hyperideal of S . Also $B_1 \cap B_2 = B_1 \cap B_2$. So by hypothesis, either $B_1 = B_1 \cap B_2$ or $B_2 = B_1 \cap B_2$, that is, either $B_1 \subseteq B_2$ or $B_2 \subseteq B_1$.

Let S be a Γ -semihypergroup, \mathbf{B} be the set of all bi- Γ -hyperideals of S and \mathbf{P} be the set of all strongly prime proper bi- Γ -hyperideals of S : Define for each $B \in \mathbf{B}$

$$\begin{aligned}\Theta_B &= \{J \in \mathbf{P} : B \dot{\cup} J\} \\ \mathfrak{I}(\mathbf{P}) &= \{\Theta_B : B \text{ is a bi-}\Gamma\text{-hyperideal of } S\}\end{aligned}$$

Theorem 3.14 *If S is a regular and intra-regular semigroup. Then $\mathfrak{I}(\mathbf{P})$ forms a topology on the set \mathbf{P} .*

Proof. Since $\{0\}$ is a bi- Γ -hyperideal of S ,

$$\begin{aligned}\Theta_0 &= \{J \in \mathbf{P} : \{0\} \dot{\cup} J\} \\ &= \emptyset \text{ because } 0 \text{ belongs to every bi-}\Gamma\text{-hyperideal of } S\end{aligned}$$

Also, since S is a bi- Γ -hyperideal of S ,

$$\Theta_S = \{J \in \mathbf{P} : S \dot{\cup} J\} = \mathbf{P}$$

because \mathbf{P} is the collection of all strongly prime proper bi- Γ -hyperideal of S .

Let $\{\Theta_{B_i} : i \in I\} \subseteq \mathfrak{I}(\mathbf{P})$. Then $\bigcup_{i \in I} \Theta_{B_i} = \{J \in \mathbf{P} : B_i \dot{\cup} J\}$ for some $i \in I\} = \{J \in \mathbf{P} : \bigcup_{i \in I} B_i \dot{\cup} J\} = \Theta_{\bigcup_{i \in I} B_i}$, where $\bigcup_{i \in I} B_i$ is the bi- Γ -hyperideal of S generated by $\bigcup_{i \in I} B_i$.

Now let Θ_{B_1} and $\Theta_{B_2} \in \mathfrak{I}(\mathbf{P})$. If $J \in \Theta_{B_1} \cap \Theta_{B_2}$, then $J \in \mathbf{P}$ and $B_1 \dot{\cup} J$, $B_2 \dot{\cup} J$. Suppose $B_1 \cap B_2 \subseteq J$. Since S is both regular and intra-regular, $B_1 \cap B_2 = B_1 \Gamma B_2 \cap B_2 \Gamma B_1$. Hence, $B_1 \Gamma B_2 \cap B_2 \Gamma B_1 \subseteq J$. This implies either $B_1 \subseteq J$ or $B_2 \subseteq J$, a contradiction. Consequently, $B_1 \cap B_2 \dot{\cup} J$, which implies that $J \in \Theta_{B_1 \cap B_2}$. Thus $\Theta_{B_1} \cap \Theta_{B_2} \subseteq \Theta_{B_1 \cap B_2}$. If $J \in \Theta_{B_1 \cap B_2}$, then we have

$$J \in \mathbf{P} \text{ and } B_1 \cap B_2 \dot{\cup} J$$

This implies that $B_1 \dot{\cup} J, B_2 \dot{\cup} J$. Thus $J \in \Theta_{B_1}$ and $J \in \Theta_{B_2}$, and therefore

$J \in \Theta_{B_1} \cap \Theta_{B_2}$. Hence $\Theta_{B_1 \cap B_2} \subseteq \Theta_{B_1} \cap \Theta_{B_2}$.

Consequently, $\Theta_{B_1 \cap B_2} = \Theta_{B_1} \cap \Theta_{B_2}$.

This shows that $\mathfrak{I}(\mathbf{P})$ is a topology on \mathbf{P} .

R E F E R E N C E S

- [1] *S. M. Anvariyeh, S. Mirvakili, and B. Davvaz*, \emptyset^* – Relation on hypermodules and fundamental modules over commutative fundamental rings, *Communications in Algebra* 36 (2008), No. 2, 622-631.
- [2] *S. M. Anvariyeh, S. Mirvakili, and B. Dawaz*, On Γ – hyperideals in Γ – semihypergroups, *Carpathian J. Math.* 26 (2010), No. 1, 11-23.
- [3] *P. Bonansinga, and P. Corsini*, On semihypergroup and hypergroup homomorphisms, *Boll. Un. Mat. Ital.* B 6 (1982), No. 1, 717-727.
- [4] *S. Chattopadhyay*, Right inverse Γ – semigroup, *Bull. Cal. Math. Soc.* 93 (2001), 435-442.
- [5] *S. Chattopadhyay*, Right orthodox Γ – semigroup, *Southeast Asian Bull. Math.* 29 (2005), 23-30.
- [6] *R. Chinramand, and C. Jirojkul*, On bi- Γ – ideals in Γ – semigroups, *Songklanakarin J. Sci. Technol.* 29 (2007), 231-234.
- [7] *R. Chinramand, and P. Siammai*, On Green's relations for Γ – semigroups and reductive Γ – semigroups, *Int. J. Algebra*, 2 (2008), 187-195.
- [8] *P. Corsini, and V. Leoreanu*, " Applications of hyperstructure theory" , Kluwer Academic Publications (2003).
- [9] *B. Davvaz, and N. S. Poursalavati*, Semihypergroups and S – hypersystems, *Pure Math. Appl.* 11 (2000), 43-49.
- [10] *R. A. Good and D. R. Hughes*, Associated groups for a semigroup, *Bull. Amer. Math. Soc.* 58 (1952), 624-625.
- [11] *D. Heidari, S. O. Dehkordi and B. Davvaz*, Γ – Semihypergroups and their properties, *U.P.B. Sci. Bull., Series A*, 72 (2010) 197-210.
- [12] *K. Hila*, On regular, semiprime and quasi-reflexive Γ – semigroup and minimal quasi-ideals, *Lobachevskian J. Math.* 29 (2008), 141-152
- [13] *K. Hila*, On some classes of le- Γ – semigroups, *Algebras Groups Geom.* 24 (2007), 485-495.
- [14] *K. Hila, B. Davvaz and J. Dine*, Study on the structure of Γ – Semihypergroups, *Communications in Algebra*, accepted.

- [15] *K. Hila, B. Davvaz and K. Naka*, On Quasi-Hyperideals in Semihypergroups, Communications in Algebra, 39(11)(2011), 4183-4194.
- [16] *F. Marty*, Sur une generalization de la notion de groupe, 8iem congres Math. Scandinaves, Stockholm, 1934, 45-49.
- [17] *S. Mirvakili, S. M. Anvariye and B. Davvaz*, Regular relations on Γ – semihypergroups, submitted.
- [18] *N. K. Saha*, On Γ – semigroup II, Bull. Cal. Math. Soc. 79 (1987), 331-335.
- [19] *M. K. Sen, and S. Chattopadhyay*, Semidirect product of a monoid and a Γ – semigroup, East-West J. Math. 6 (2004), 131-138.
- [20] *M. K. Sen, and A. Seth*, On po- Γ – semigroups, Bull. Calcutta Math. Soc. 85 (1993), 445-450.
- [21] *M. K. Sen, and N. K. Saha*, Orthodox Γ – semigroups, Internat. J. Math. Math. Sci. 13 (1990), 527-534.
- [22] *M. K. Sen, and N. K. Saha*, On Γ – semigroup I, Bull. Cal. Math. Soc. 78 (1986), 180-186.
- [23] *A. Seth*, Γ – group congruences on regular Γ – semigroups, Internat. J. Math. Math. Sci. 15 (1992), 103-106.
- [24] *O. Steinfeld*, Quasi-ideals in Rings and Semigroups, Akademiai Kiado, Budapest, 1978.
- [25] *Z. X. Zhong, and M. K. Sen*, On several classes of orthodox Γ – semigroups, J. Pure Math., 14 (1997), 18-25.