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THEORETICAL AND EXPERIMENTAL INVESTIGATIONS
ON A SPECIAL ROTARY PIEZOELECTRIC MOTOR WITH
TUBULAR GEOMETRY

George C. ZARNESCU'

Aceasta lucrare descrie o abordare teoretica §i experimentald asupra unui
motor piezoelectric cu geometrie tubulard. Teoria este dezvoltata pornind de la
ecuatiile de baza ale piezoelectricitdtii pentru efectul direct §i invers scris sub forma
tensoriald si ecuatiile diferentiale ale deplasarilor si tensiunilor mecanice radiale si
circumferentiale. Aceste ecuatii sunt combinate intr-o modelare matematica care
impreund cu simuldrile 3D ale migcdrii mecanice descriu intreaga interactiune
electromecanicd. Sectiunile urmdtoare se concentreazd asupra metodelor de
actionare, a caracteristicilor si performantelor motorului. Influenta frecventei si a
Jfortelor axiale este comparatd atdt theoretic cdt si experimental.

This paper describes an experimental and theoretical approach on a rotary
piezoelectric motor with tubular geometry. Theory is developed starting from the
basic piezoelectric equations of direct and inverse piezoelectric effect written in
tensorial form and the differential equations of inner radial and circumferential
mechanical stresses and deformations. These equations are combined in one
modelling type and 3D simulations of mechanical movement to give a description of
the entire electromechanical interaction. Next sections concentrate on the driving
methods, electromechanical characteristics and performances. The influence of
frequency and axial forces is compared both theoretically and experimentally.
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1. Introduction

Many types of piezoelectric micromotors have been constructed by now
starting from the idea of ultrasonic electromechanical conversion of electrical
energy into useful mechanical thrust.

Among them, a micromotor with cylindrical stator shape and panhead or
spherical rotor is studied here. The micromotor is described also in national patent
no. 122516 /2007 granted to the author.

The working principle of this piezoelectric motor can be explained in
single phase supply by Rayleigh surface waves motion. The elliptical waves are
produced at stator-rotor contact surface when the tubular piezoceramic element is
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excited by a sinusoidal voltage at resonant frecquency. The rotor is forced to
move by friction forces in the opposite travelling wave direction. This type of
ultrasonic micromotor has the advantage of a simple manufacturing technology,
compactness, large axial force support at low angular speed and a good precision
and control. Two major disadvantages are the reliability for long operation due to
friction and the need for an ultrasonic frequency power supply with at least 25 V
peak voltage.

Section 2 describes the micromotor construction and the principle of
operation. In section 3 we propose a mathematical modeling algorithm accurate
enough to predict the real time motor performances. Section 4 concentrates on the
experimental work, the basic micromotor functional characteristics, mechanical
and electrical parameters determination, different vibration modes and frequency
variation intervals settings. Section 5 makes a comparison between theoretical and
experimental results and part 6 concludes the paper.

2. Tubular micromotor construction and operating principle

In Fig. 1 is shown the structure of the tubular piezoelectric motor. The
operation of rotary piezoelectric micromotor is based on surface progressive
waves generation in piezoceramic materials.

Rotary piezoelectric micromotor is composed from a tubular piezoceramic
stator (1) having a diameter between 11-28 mm and a length between 10-20 mm,
a compression system (2), a conical or spherical rotor (4), shaft (5), a screw nut
(6), a bearing system (9), stator support (3), electrical wiring (7), inner and outer
cylindrical conductive surface (8) and case (10), see Fig. 1.

Two versions of this motor with similar geometry where constructed, a
smaller one with an outside diameter of 15 mm and 10 mm height (MPR15) and
the other having an outside diameter of 33 mm, an inner diameter of 25 mm and
height of 20 mm (MPR33). Piezoceramic cylinder can be supplied either from a
single phase, either by a biphasic voltage source, generating a mechanical
progressive wave at ultrasonic frequencies that is rotating the conical or spherical
rotor. Movement is transmitted through direct mechanical contact between the
upper part of piezoelectric cylinder and rotor conical surface. The compression
system with a spring, nut and bolt is adjusting the contact pressure between the
pan head rotor and the piezoceramic cylinder, mounted on the stator support using
also the rotor shaft and the ball bearing system at the bottom. Electrical
connections are soldered to four external cylindrical electrodes for a biphasic
supply and the inner cylindrical electrode is considered null. Electrodes are made
from a conductive silver lake applied on piezoceramic tube.
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Fig. 1. Section through rotor and stator of piezoelectric converter
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In a single phase supply mode, micromotor operation can be explained
with the help of Rayleigh surface waves. The basic principle is to produce
elliptical waves at stator-rotor interface. When tubular piezoceramic element is
excited by a sinusoidal voltage signal it will produce a longitudinal vibration
along radial direction. Since the pan head rotor has an angle of 45 degrees of the
slope (or is spherical) the impact between tubular converter and rotor will be
inclined, causing a secondary axial vibration. Radial vibration and axial
(transversal) one will compose resulting in an elliptical motion at the contact
surface of between stator and rotor.

In bi-phased regime, these two waves are created directly by 90 degrees
electrical phase shifting. The two stationary waves are composed resulting a
elliptical movement trajectory of the surface points. This wave will interact with
rotor generating a rotation movement [3].

3. Theoretical modelling and simulations

For this tubular piezoelectric converter we have developed a mathematical
model that is accurate enough to predict its real behavior and performances.
Equations are used in mathematical modeling or for a preliminary actuator design.
Each piezoelectric constant is in fact a tensor and is describing the effect on each
polar or Cartesian coordinate.

First of all we must take in consideration the geometry and all mechanical
stresses for our piezoceramic element. Mechanical stresses can be either external,
either internal. External forces balance is derived from classical mechanics. A
more complicated way is to determine the internal mechanical stress inside
piezoelectric material. This is where differential equations of material science
interfere with both classical mechanics and piezoelectricity.

Because electric displacement field doesn’t have any component along the
axial direction, we can consider that the mechanical stress on that axis is zero.
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Also other projections that are not from the established polar coordinate system
are nullified. The only remaining mechanical stresses and most important are
radial and circumferential ones.

General mechanical stress equations can be simplified and reformed
because of tubular geometry (relation 1). Shear stress and circumferential angle &
dependence are excluded from further calculation.

aO-rr + O-rr B 0-09
or r

=0 (1)

This first equation is rewritten to take in account equilibrium and
compatibility conditions. The result is a system of partial derivatives from that the
solution is extracted. Differential equations solving is skipped due complexity and
space limitation. In the end the solution looks like:

a2pi bZ
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Where a is inner radius, b outer radius, p, the pressure given from rotor to

2)

stator inner surface, and o, , 0, are radial and circumferential stresses. This

inner pressure and frictional forces are dependent mainly on rotor weight and
other axial loads. Outer surface pressure is considered zero, no external force is
acting on that surface.

So, we can see that radial and circumferential stresses o

s Ogp are
changing with inverse square radius. This dependence takes into account the
piezoceramic element geometry and will be further used to replace stresses in
piezoelectricity relations.

If equation of compatibility is ignored then equilibrium equations system
will give multiple solutions. So, compatibility equation and pressure boundary
conditions are generating unique solutions (see system 2).

The connection between mechanical stress and deformation for an usual
material is just Hook’s law, but for a piezoelectric material Hook’s law must be
extended and integrated to form general equations of piezoelectricity.

In our particular case of a piezoceramic cylinder, radial and
circumferential mechanical stress dependence function of deformation and electric
field can be written in 3D polar coordinates like:
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L-specific deformation relative to geometric dimension [—1]; s-
x
2

compliance [% ]; d-piezoelectric charge accumultation coefficient [m/V or C/N],

o -mechanical stress; ¢ -total electrical permitivity; E-applied electrical field
[V/m];

Stiffness ¢ is the reciprocal of compliance s, c¢=s ', n is another
piezoelectric constant and is directly connected to compliance s and piezoelectric
charge or polarization coefficient d by d =n-s or n=d -c relations. Even if we
don’t know the stiffness and the electric field constant, we can express them by
the other coefficients d and s (charge coefficient and compliance). Comsol
calculation was made using the same system (3).

1

For PZT5 material relative constants are:

dy, =-171, dy; =374, d =584, ¢&,=1730, &,;=1700
s, =164, s,; =188, s5,=-574, s5,=-7.22

Absolute values are:

2
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In analogue mode, knowing that there is no dependence of & variable for
radial and circumferential deformations and shear deformation is eliminated due
to symmetry, we can ignore any partial derivative of circumferential angle 6.

ur
Loy =~
B
ou,
L, =—" “4)
or
e 0 = 0
L,, —relative circumferential deformation; L, —relative radial

deformation; u, —radial deformation, y,, —shearing deformation.

General equation of mechanical equilibrium and piezoelectric equations
must be satisfied in any case. So, replacing radial and angular mechanical stresses
from equation 2, with general piezoelectric expressions from system 3 we obtain a
complete differential equation of relative deformations that can be resolved. But
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relative radial and circumferential deformations are directly changing with the real
radial displacement, like we see in system 4. If we further replace relative radial
and angular displacements from system 4 to the final differential equation we will
have a single variable to resolve. After another derivation of r radius and
expression rearrangements we will have the radial displacement equation.

A simplified solution of radial displacement is showed below (see also Fig.
2, [1]:

dy;s; —dy,

u, =Ar+£+s11 % E, (5)
r

831533

Initially we have solved mechanical stress expressions for our tubular
geometry, now a simple way to calculate A and B constants from radial
displacement equation 5 is to impose boundary conditions a,,,(a)z— D;»

b’ +a’ 24’ :
o, (b)=0, 0'9¢9(a):m J2 aga(b):ﬁ p, and to replace mechanical
stresses from system 2, more exactly into secondary equation [1]. So, after this
arithmetic artifice the full expression of radial displacement is finally revealed.

Sy +58,)-a’p, Sy =S, )-a’h’p,
A:(Bbzf)az p’+d33Er B=(33 b212_)a2 Pi (6)

Above we have showed a static solution model that is highly accurate in
comparison with some other types of electromechanical modelling. If we need an
immediate answer on piezoelectric motor behaviour maybe is more proper to
work with electromechanical schemes and impedances at resonance frequency.
This other electromechanical approach can give faster results but is not accurate
enough, unless is improved by further additions. A static model can be useful but
is more interesting to estimate the dinamic behaviour of rotary piezoelectric
motor. For this we need to focus on ultrasonic wave propagation.

We start from a simplified version of general wave propagation equation
written in polar coordinates (equation 7). Using variable separation method for
radial, circular displacement and time, a solution of wave propagation is described
in expression 8.

*u  ,(0*u 10u
Y e st 7
or? V”(arz r 6rj M

u(r,t)=K, -u, -cos(ot — k6) ®)
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K, =( J is a factor (modal factor) that depends on vibration mode
—-a

and piezoceramic element geometry, 2" in our case of first vibration mode and

cylinder average radius, @ — angular frequency.

0= 2K, fsinfor k) ©

Linear speed v of the transverse traveling wave was written as a
displacement variation with time. A maximum value of angular speed corresponds
to a maximum linear speed and to a maximum variation of the radial deformation.

Angular speed obtained by calculation from relation 10 is greater than the
one determined by experimental means at mechanical resonance frequency of 159
kHz, approximate five times greater than electrical frequency of 32000 Hz. 3D
simulation model will be confirmed also by simulations (same displacements).

p= 0V _ 60 Kou f
27 a 2w a

(10)

In reality radial vibrations u, and axial vibrations u_, are combined

resulting an overall displacement u,, u, = \/u} +u’ . The maximum rotational

speed n is estimated to 16 rpm (from the wave movement, we need a correction
parameter for the rotor movement).
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Fig. 2. Radial displacement variation for MPR 33 function of cylinder radius
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MPRI3

Rotational Speed [rpm]

Fig. 3. Angular speed estimation function of voltage and axial force

For a voltage that varies between 0+100) and an axial force being in
0+20 N range, applying radial displacement solution from equation 5 and
calculating expression 10 we can approximately estimate the maximum angular
speed. Speed can be calculated for any voltage and axial force.

A maximum deformation of cylinder means also a maximum amplitude for
ultrasonic wave and angular speed. Cylinder deformation was also simulated
using COMSOL program. At different moments of time that can be established
geometrically where maximum and minimum radial and axial displacements can
appear. This is a dynamic simulation closely related to real situation. We know
that at =0 we have sin(k@)=1= k@ =7/2. Every separation limit of two

neighbor electrodes with 7/2 diphase geometrically and electrically gets
maximum displacements (Fig. 4).

'\.. // N

Fig. 4. MPR33 cylinder deformation at different oscillating times 0,1/8, 2/8....8/8*T, coresponding
to period T
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Fig. 4 simulates cylinder deformation using (-Sin)(-Cos)(Sin)(Cos) diphase
voltage supply, creating a progressive wave inside piezoelectric material [4]. All
inner surface is connected to the ground. We can observe that we have eight main
steps in order to complete a full osicllating period. Each step corresponds to an
angle in radians O(2ﬂ),£,£,3—”,ﬁ,5—”,3—ﬂ,7—” . At zero time coordinate or full

42 4 4 2 4
period T(27) we have a maximum amplitude of 50 V and at 1 and 5 positions,
respectively 45° and 225°, we obtain quite uniform stresses for the entire tubular
geometry. The maximum displacement is 0.6 gm and each of four sectors is
electrically supplied with 0.707 - U voltage.

Time=7.612352-6  Subdomain: Total displacement [m] Edge: Total displacement [m] Deformation: Displacement [ra] Max: 8.4430-8  Max: .4432-5
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Fig. 5. 3D simulation of total cylinder deformation at 2T/8 period of time, the point where cosinus
is minimum and sinus is maximum

At 7 angle it is peak value of 1.18 gm for deformation, meaning that the

cosinusoidal signal is reaching the voltage limit of 50 V. For 7/2 angle or 27/8
position, altough we obtain only 0.0844 wm, we clearly see that zones supplied

with sinusoidal signal are the most stressed and the ones of cosinusoidal signal
don’t have any vibrations (see Fig. 5). The red spots are maximum deformation
zones, green and yellow zones are under average or little above average and blue
or dark blue zones are the minimum deformations zones. Main deformation zones
are localized on cylinder edges or at separation limit between sectors.

All simulations where realized using basic equations and constant matrix
values that are presented in chapter 3.
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4. Experimental micromotor characteristics and functional
parameters determination

Experimental tests were focused on resonance frequency identification,
different vibration modes and variation intervals, torque and friction forces
analysis, determination of main working motor characteristics, like speed control
function of frequency at constant torque and voltage or axial force and contact
pressure influence on piezoelectric motor speed and overall performances.

Motor speed is controlled from a variable frequency source with a
maximum voltage amplitude of 50 V.

In Fig. 6 a) and 6 b) are presented two characteristics, one for MPR33
motor and the other for MPR15, of angular speed variation function of frequency.
Characteristics are determined for different axial loads, 6 N and 4 N, in case of
MPR33 tests or 0.23 N and 1.73 N (spherical rotor weights), for the case of
MPRI15.

An important observation in both cases is the rapid variation of angular
speed for a relative narrow frequency range. For MPR33 the frequency variation
interval is between 32 and 33.5 kHz and for MPR15 between 22 and 23 kHz. At
the end of both intervals motor speed is very low or practically zero. In the middle
of angular speed variation curve will reach a maximum value, 9 rpm for MPR33
and 8 rpm for MPR15.

Experimental curves have a maximum at 32700 Hz resonance frequency
for MPR33 and 22200 Hz for MPR15 model. Axial force modification gives a
resonance point displacement of about 100 Hz down with the increase of axial
load from 6 N to 4 N. This can be explained as a changing in mass for the entire
stator-rotor electromechanical system and also a microcontact variation.

Vibration transmission from piezoelectric converter to rotor is realized by
micromechanical contact. So, we must find the best available microcontact for an
efficient electromechanical conversion. This can be done when we find an optimal
pressure and of course an optimal axial force. In this way can be explained the
apparent anomaly of axial force and angular speed dependence.

Electrical resonance frequency is different from mechanical resonance
frequency. So, when we talk about resonance and frequency control it is all about
the electrical frequency responsible for mechanical resonance. By analogy, once
the axial force is increasing and is over the optimal value, rotor speed will tend to
decrease. By axial force variation we also have obtained an angular speed curve
similar to a Bode diagram. Lower axial forces as also higher axial forces
compared to the optimal axial force value give us a poor functional efficiency, this
can be directly observed from speed variation in Fig. 7 a).
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Fig. 6. a) Speed function of frequency characteristics for MPR33 motor with pan head rotor, at 6 N
and 4 N axial loads; b) Speed function of frequency characteristics for MPR15 motor with
spherical rotors having 0.23 N and 1.73 N loads

When we totally exceed these limits the rotor will stop rotating. For an
axial force under 1 N the rotor doesn’t have a good contact pressure and friction
force, so the electromechanical energy transfer is lost. In the same way, for an
axial force that exceeds the upper limit of 18 N, dynamic friction is so high that
all electromechanical energy is consumed by it, effective force generated by the
piezoceramic tube is much under dynamic friction force and the rotor will stop. In
the transmission of movement by mechanical contact we will always need the
friction force as a binding element between two surfaces.

MPR33 - Biphasic Supply

MPR33, Biphasic Supply, f=33800 Hz, Fax=8 N=ct.
T T T T
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Fig. 7. a) Rotational speed variation for different axial forces at two distinct resonance points of
MPR33; b) Total MPR33 torque function of rotational speed, mechanical characteristic around
resonance frequency
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In our case the dynamic friction force directly depends on the axial force
variation from the first law of motion ', = ,uk\/z -F,

> S0 in this way we can
explain the motor behaviour at different axial loads.

From previous diagrams we can conclude that speed regulation and control
can be realized either by frequency variation, either by changing the contact
pressure and axial force [5].

Mechanical characteristic is quite flexible permitting a speed variation

between 0 and 10 rpm. Friction torque is between 0.2..0.3 cNm.
5. Comparison between theoretical and experimental results

We saw from previous sections that piezoelectric displacement plays an
important role in estimating motor behaviour [6, 7]. The influence is very simple
because deformation is linearly increasing with voltage and angular speed
depends on vibration amplitude and frequency. In order to measure micrometric
and nanometric displacements we need special devices like a linear laser
interferometer or a feed finger. A laser interferometer uses two optical paths and
laser beams to be compared and to extract the nanometric displacement. It is
sufficient for the moving probe to change the path of one laser beam when a
retroreflector is fixed on it. Axial displacement was measured for the entire
frequency interval. It is interesting to observe that a maximum displacement
appears only at resonance frequency. This experimental evidence shows us that
even if an ultrasonic motor is supplied by a significant voltage the piezoelectric
effect is minimum outside resonance frequency.
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Fig. 8. MPR33 axial displacement at resonant 33.7 kHz frequency

Three conditions must be respected for this type of ultrasonic motor to
work: voltage must be high enough to ensure an optimum displacement,
frequency must be around resonance point and contact pressure or force must be
carefully chosen for optimum performances.
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Below is a comparison table of measured and calculated displacement
values near resonance frequency. Peak to peak voltage is 45 V and axial force is 3
N, both are kept constant to ensure the same conditions.

Table 1
Measured and calculated displacements
Measured axial Calculated axial | Measured radial | Calculated radial
MPR33 displacement displacement displacement displacement
PZT-5 Material [nm] [nm] [um] [pm]
Uvv=ct.=45 V 220 150 2 1.44
F=ct=3 N

We see that are no major differences between theoretical and experimental
results for radial and axial displacements.

Modifying axial force and keeping the voltage constant at 50 V for tubular
piezoceramic element will give us a speed variation like in Fig. 9. For a frequency
of 31250 Hz that is little under resonance we still observe a maximum angular
speed of 4.5 rpm. If we increase the axial force from 2 N up to 8 N we sense that
the rotor is significantly slowing down until it stops. At this frequency the motor
has poor performances and supports only lower axial forces. Theoretical and
experimental results are quite similar. The first curve from Fig. 7 a) shows us an

apparent anomaly, that the speed is increasing together with force or torque.
MPR33

Rotational Speed [rpm]

Axial Force [N]
Fig. 9. Theoretical and experimental angular speed characteristics function of applied
axial force.

If both torque and speed are increasing means also that we’ve got more
mechanical output power. A possible explanation is that efficiency is increasing
and losses are diminished. It is obvious that when we reach to an optimum axial
load the motor efficiency is increasing because of a larger developed
microdisplacement and a mechanical contact improvement.
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6. Conclusions

Using a laser interferometer we were able to determine the resonance
modes with 10 nm precision. Submicronic measured axial displacement of 220
nm could be compared with the theoretical axial displacement value of 150 nm.
For a 50 V peak to peak voltage a radial displacement of maximum 2 zm was

obtained. We can conclude that the MPR model is mainly based on radial and
axial vibrations of piezoelectric tube to generate movement.

All the experimental work was done to improve the overall motor
performances and obviously to establish the optimum working point, that
corresponds to a 12 N axial force and to a maximum rotational speed of 9 rpm.

We also saw that motor performances are drastically changing with
frequency. Even if we shift frequency with only some hundred Hertz from
resonant point, the angular speed is decreasing until the rotor stops. For an
electrical drive system voltage, axial force and frequency can be used for an
automatic control of angular speed. Axial force or contact pressure can be
modified by a secondary linear actuator (piezoelectric or electromagnetic). In
most cases voltage combined with frequency control is preferred.

Almost all theoretical results are confirmed by experiments so we can
conclude that our proposed mathematical model is sufficiently accurate to predict
motor behavior around resonance.

REFERENCES

[1] Chen Ying, Shi Zhi-fei, “Analysis of a functionally graded piezothermoelastic hollow cylinder”,
Journal of Zhejiang University Science, 2005, 6A, pag. 956-961

[2] T. Cimprich, F. Kaegi, W. Driesen, ,,Ultrasonic monolithic piezoelectric multi DOF actuators
for mobile microrobots”, 10™ International Conference on New Actuators (Actuator 2006)
Proceedings, p.114-117

[3] P. Juang, G. Da-Wei, ,,Analysis, measurement and control of a new disc-type ultrasonic motor
system”, Mechatronics, Vol 16, Issue 1, February 2006, p. 1-12

[4] O. Holub, T. Cimprich, A. Ferreira, ,,Dynamical modelling and position control of ultrasonic
monolithic piezoelectric actuator for mobile microrobots”, IEEE International Ultrasonic
Symposium, Vancouver, Canada, October 3-6 2006

[5] M. Ignat, G. Zdarnescu, “Comparative Study on The Equivalent Circuit of The Electric
Motor and Traveling Wave Piezoelectric Ultrasonic Motor”, ICEM 2006, Chania, Crete
Island, Greece, 2-5 Sept. 2006

[6] M. Cazacu, M. Ignat, C. Racles, G. Zarnescu, “Polydimethylsiloxane/silica composites
incorporating pyrite powders for actuation elements”, Polymer International, Vol. 58, Nr.
7, Pag. 745-751, Tul. 2009

[7] M. Cazacu, M. Ignat, A. Viad, M. Alexandru, G. Zarnescu, ,,Heat-cured silicone rubber
incorporating pyrite powders for actuation elements”, Optoelectronics and Advanced
Materials-Rapid Communications, Vol. 4, Nr. 3, Pag. 349-351, Mar. 2010



