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SOLVING A CLASS OF NONLINEAR BOUNDARY VALUE

PROBLEMS WITH SINC-COLLOCATION METHOD BASED ON

DOUBLE EXPONENTIAL TRANSFORMATION

J. Rashidinia1, M. Nabati2, A. Parsa3

Sinc-collocation method based on double exponential transformation for
solving nonlinear second order two-point boundary value problems has been devel-
oped with nonhomogeneous boundary conditions. Also we developed Sinc method
based on single exponential transformations. These methods are tested on several
problems. T he obtained results from Sinc collocation based on single and double
exponential transformations are compared with each other, and with the existing
methods too. The numerical result confirm that these methods are considerably
efficient and accurate, and can be applied to singular and regular problems.
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1. Introduction

Nonlinear two point boundary value problems arise in a variety of areas in
applied mathematics, theoretical physics, engineering and chemical reaction. These
categories of problems have been handled by a reasonable number of researches who
are working both numerically and analytically. The majority of these problems
cannot be solved analytically, so we have to use the numerical methods. Several
techniques are available for approximating these problems [1–16], but there is not
an unified method to handle all types of problems.

The Sinc method has been developed for solving linear boundary value prob-
lems by F.Stenger, more than thirty years ago [17]. It is well known that the
approximation by Sinc methods has the order of accuracy O(exp(−k

√
n)), where k

is positive constant and n is the number of nodes or bases functions [17–20].
In 1974, Takahasi and Mori proposed a new transformation for the efficient

evaluation of integrals of an analytic function with end point singularity, which is
called double exponential transformation [21]. Sugihara composed this transforma-
tion by Sinc method and he showed that the error in Sinc method based on double
exponential transformation is O(exp(−k′n/logn)) with some positive k′ [22] [23].
After that, Mori, Sugihara and their co-workers extended the Sinc method based
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on double exponential transformation in several fields in applied mathematic such
as integral equations [24] initial value problems with ordinary differential equations
[25], linear boundary value problems in ordinary differential equations [26], [27], [28]
and Green function [29]. Furthermore, they have studied the suitable choice of the
classes of functions for double exponential transformation to evaluate the integral
formulas [30] and also the choice of the classes of functions for the DE-Sinc approx-
imations [31].

In this paper we consider a class of nonlinear two-point boundary value prob-
lem in general form: y′′(x) + p(x)y′(x) + q(x)y(x) + r(x)N(y(x)) = f(x), a ≤ x ≤ b,

y(a) = α, y(b) = β,
(1)

where p, q, r and f are analytic functions in an open interval (a, b) and possibly
singular in a or b or both, and N(y) is analytic function of y.

A Special case of (1) when N(y) = yn with vanishing boundary conditions
at x = a and x = b has been considered in [10] and solved by single exponential
Sinc function. The Sinc method in [10] mainly based on transformation of the bases
function from (−∞,∞) to a finite interval (a, b). In this study, we developed the
Sinc-collocation methods based on double and single exponential transformations
for problem (1). Our approach is based on transformation of problems from interval
[a, b] to interval (−∞,∞) and used the bases functions on their natural domains
(−∞,∞).

The paper is organized as follows. In section (2), we introduced Sinc function
and reviewed some definitions, theorems and notations. In section (3) we described
transformation for converted nonhomogeneous conditions to homogeneous one [18].
In section (4), we developed Sinc-collocation method on the entire interval (−∞,∞)
for problem of (1) by homogeneous boundary conditions. In section (5) we developed
Sinc-collocation method based on double and single exponential transformations on
the general interval [a, b]. In section (6), we tested our methods on various kinds of
boundary value problems. The obtained results were compered with each others and
also with the results in the existing methods. Finally, in section (7) the conclusions
of the study were given.

2. The Sinc function properties and double exponential transforma-
tion

In this section, some definitions, notations and theorems from [18] and [23]
are recalling.

The Sinc function is defined on the whole real line −∞ < x <∞ by

Sinc(x) =

{
sin(πx)
πx , x ̸= 0

1, x = 0.

For h > 0 the translated Sinc function with evenly spaced nodes is given by

S(k, h)(x) ≡ Sinc(
x− kh

h
) ≡

{
sin((π/h)(x−kh))

(π/h)(x−kh) , x ̸= kh

1, x = kh,
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where k = 0,±1,±2, ... . The S(k, h)(x) is the kth Sinc function with step size h
evaluated at x. If a function f(x) is defined over the line, then for h > 0 the series

C(f, h)(x) =
∞∑

k=−∞
f(kh)Sinc(

x− kh

h
),(2)

is called the Whittaker cardinal expansion of f whenever this series converges. The
properties of Whittaker cardinal expansion have been extensively studied on [19].
Definition 2.1 Let Dd denote the infinite strip region with 2d(d > 0) in the complex
plane:

(3) Dd ≡ {zϵC | |Imz| < d},

and for 0 < ε < 1, let Dd(ε) be defined by

(4) Dd(ε) ≡ {zϵC | |Rez| < 1/(ε), |Imz| < d(1− ε)}.

Let H1(Dd) be the Hardy space over the region Dd, i.e., the set of functions f
analytic in Dd such that

lim
ε→0

∫
∂Dd(ε)

|f(z)||dz| <∞.(5)

The following theorem, due to Sugihara [23], presents the convergence result
of Sinc approximation on (−∞,∞), which shows that the convergence rate is given
by O(exp(−kn/logn)).
Theorem 2.2 [23] Assume, with positive constants α, β, γ and d that
1) f belongs to H1(Dd)
2) f decays double exponentially on the real line, that is,

(6) |f(x)| ≤ α exp(−β exp(γ|x|)), for all xϵR,

then we have

(7) sup
−∞<x<∞

∣∣ f(x)− N∑
j=−N

f(jh)S(j, h)(x)
∣∣ 6 C exp

[ −πdγN
log(πdγN/β)

]
,

for some C, where the mesh size h is taken as:

(8) h =
log(πdγN/β)

γN
.

Many problems that arise in applied mathematics do not have the whole real
line as their natural domain. There are two points of view. One is to change variables
in the problem so that, in the new variables, the problem has a domain correspond-
ing to that of the numerical process. A second procedure is to move the numerical
process and to study it on the new domain. The former approach is the method
chosen here. The development for transform Sinc method from one domain to an-
other is accomplished via conformal mappings. Approximation can be constructed
for infinite, semi-infinite and finite intervals. To construct the approximation on the
interval (a, b), for Sinc method, we may consider two maps:
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Case 1

x = ψSE(t) =
b− a

2
tanh(t/2) +

b+ a

2
,(9)

t = ϕSE(x) = ψ−1
SE(t) = log(

x− a

b− x
),(10)

(9) is called single exponential (SE) transformation, and when combined by Sinc
function we have SE-Sinc approximation. The SE transformation map R onto (a, b)
and map Dd onto the domain

ψSE(Dd) = {zϵC : | arg(z − a

b− z
)| < d},(11)

Case 2

x = ψDE(t) =
b− a

2
tanh(

π

2
sinh(t)) + (

b+ a

2
),(12)

t = ϕDE(x) = ψ−1
DE(t) = log

[ 1
π
log(

x− a

b− x
) +

√
1 + { 1

π
log(

x− a

b− x
)}2

]
,(13)

which is called double exponential (DE) transformation and the Sinc approximation
with DE transformation is called DE-Sinc approximation. Also the DE transforma-
tion maps R onto (a, b) and map Dd onto the domain

ψDE(Dd) = {zϵC :
∣∣ arg( 1

π
log(

z − a

b− z
) +

√
1 + { 1

π
log(

z − a

b− z
)}2)

∣∣ < d},(14)

By DE transformation, the convergence of the Sinc approximation on the in-
terval (a, b) is guaranteed by the following theorem
Theorem 2.3 [23] Assume that, for a variable transformation x = ψ(t), the trans-
formed function f(ψ(t)) satisfies assumptions 1 and 2 in Theorem 2.2 with some
positive constants α, β, γ and d. Then we have:

(15) sup
a<x<b

∣∣ f(x)− N∑
j=−N

f(ψ(jh))S(j, h)(ψ−1(x))
∣∣ 6 C exp

[ −πdγN
log(πdγN/β)

]
,

for some C, where the mesh size h is taken as:

(16) h =
log(πdγN/β)

γN
.

The collocation method requires derivatives of Sinc function evaluated at the
node so we need to use the following lemma.
Lemma 2.4 [18] Let S(j, h)(x) is the kth Sinc function with step size h, so

δ
(0)
jk = S(j, h)(kh) =

{
1, j = k
0, j ̸= k,

δ
(1)
jk = h

d

dz
[S(j, h)(z)](kh) =

{
0, j = k
(−1)k−j

k−j , j ̸= k,

δ
(2)
jk = h2

d2

dz2
[S(j, h)(z)](kh) =

{
−π2

3 , j = k
−2(−1)k−j

(k−j)2 , j ̸= k.
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For the assembly of the discrete system, it is convenient to define the following
matrices:

I(l) = [δ
(l)
jk ] l = 0, 1, 2,(17)

the matrix I(0) is the m×m identity matrix, the matrix I(1) is the m×m and skew
symmetric Toeplitz matrix, and I(2) is the m×m and symmetric Toeplitz matrix.

3. Treatment of boundary conditions

Before illustrating Sinc-collocation methods, we have to emphasize the treat-
ment of nonhomogeneous boundary conditions. The nonhomogeneous conditions
require a slight modification in the form of approximate solutions, so we can pro-
ceed in one of two ways

1-Converting the differential equation (1) to the new one with homogeneous
conditions by changing the variable.

2-Proceeding directly from the approximate solution to another one, which
satisfies the nonhomogeneous conditions.
In this paper we prefer the choice 1, so we define the following function :

Γ(x) = Ax+B,(18)

where A and B are real constants

A =
β − α

b− a
, B =

bα− aβ

b− a
,(19)

now, by using the following change of variable:

v(x) = y(x)− Γ(x).(20)

The problem (1) can be converted as the following form:{
v′′(x) + p(x)v′(x) + q(x)v(x) + r(x)N(v(x) + Γ(x)) = f̂(x),
v(a) = 0, v(b) = 0,

(21)

where f̂ = f − (Γ′′ + pΓ′ + qΓ).

4. Sinc-collocation method on the real line

Consider the following nonlinear two-point boundary value problem on the
interval (−∞,∞){

u′′(x) + p(x)u′(x) + q(x)u(x) + r(x)N(u(x) + Γ(x)) = f(x),
limx−→±∞ u(x) = 0.

(22)

To solve this problem, we assume the approximate solution um(x) of the form

(23) um(x) =

M∑
k=−M

ckSk(x), m = 2M + 1,

where the 2M + 1 coefficients {ck}Mk=−M are unknowns. Notice that um(x) satisfies
the boundary conditions in (22).

To determine the coefficients of ck
,s in (23), we have to substituting um(x), and

its first and second derivatives into (22) and then by replacing x by the collocation
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points xj = jh, j = −M,−M + 1, ...,M in which h is defined in Theorem 2.3, we
obtain the following nonlinear system:

M∑
k=−M

ck
( d2
dx2

Sk(xj) + p(xj)
d

dx
Sk(xj) + q(xj)Sk(xj)

)
+ r(xj)N(

M∑
k=−M

ckSk(xj) + Γ(xj)) = f(xj), j = −M, · · · ,M(24)

by using lemma 2.4 and we know that δ
(0)
jk = δ

(0)
kj , δ

(1)
jk = −δ(1)kj and δ

(2)
jk = δ

(1)
kj , we

can rewrite the above system in the following form

M∑
k=−M

ck
( 1

h2
δ
(2)
jk −p(xj)

1

h
δ
(1)
jk + q(xj)δ

(0)
jk

)
+ r(xj)N(cj + Γ(xj)) = f(xj), j = −M, · · · ,M.(25)

To write down the above system in Matrix-vector form, we need the notation
of ’D’ which is defined as follows. For any function of g(x) we define the m × m
diagonal matrix:

(26) D(g) = diag
(
g(x−M ), · · · , g(x0), · · · , g(xM )

)
.

By this notation and notice to the notation of I(l) in lemma 2.4 we may write
the system of (25) in the following Matrix-vector form system

(27) A C + B N(C + Γ) = H,

where

A =
1

h2
I(2) − 1

h
D(p)I(1) +D(q)I(0),(28)

B = D(r),(29)

N(C + Γ) = (N(c−M + Γ(x−M )), ..., N(cM + Γ(xM )))T ,(30)

H = (f(x−M ), f(x−M+1), ..., f(xM ))T ,(31)

C = (c−M , c−M+1, .., cM )T ,(32)

we can solve (27) by using Newton,s method.

5. Sinc-collocation method on the interval (a, b)

To applied Sinc-collocation method in the problem on interval (a, b), first of
all we translate the problem onto interval (−∞,∞) by SE or DE transformation,
described in pervious section.

Consider the problem (21) as follow: v′′(x) + p(x)v′(x) + q(x)v(x) + r(x)N(v(x) + Γ(x)) = f̂(x),

v(a) = 0, v(b) = 0,

(33)

suppose an appropriately selected variable transformation x = ψ(t) so that

(34) ψ : (−∞,∞) −→ (a, b).
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By this transformation the problem (33) is transformed into following problem
on (−∞,∞)

u′′(t) + (p(ψ(t))ψ′(t)− ψ′′(t)
ψ′(t) )u

′(t) + (ψ′(t))2q(ψ(t))u(t)

+(ψ′(t))2r(ψ(t))N(u(t) + Γ(ψ(t))) = ψ′(t)2f̂(ψ(t)),
limt−→±∞ u(t) = 0,

(35)

where v(ψ(t)) = u(t).
Now we have a problem which is defined on the interval (−∞,∞). To solve

this problem, by considering the previous section 4, and the Sinc-collocation method
to the problem (35), the arising nonlinear system can be obtained as

(36) A C + B N(C + Γ) = H,

where

A =
1

h2
I(2) − 1

h
D
(
p(ψ)ψ′ − ψ′′

ψ′

)
I(1) +D

(
q(ψ)(ψ′)2

)
I(0),(37)

B = D
(
(ψ′)2r(ψ)

)
,(38)

N(C + Γ) =
(
N(c−M + Γ(ψ(−Mh))), ..., N(cM + Γ(ψ(Mh)))

)T
,(39)

H = D
(
(ψ′)2)(f̂(ψ(−Mh)), ..., f̂(ψ(Mh))

)T
,(40)

C =
(
c−M , c−M+1, .., cM

)T
,(41)

by solving the above system and determine the coefficients C, we can find the ap-
proximate solution um(x) defined in (23).

In the transformed problem (35), if we use ψSE from (9) the obtained method
is SE-Sinc collocation, also if we choose ψDE from (12) the resulting method is
DE-Sinc collocation. The formulas required for solving the transformed differential
equation (35) can be defined as follow:

ψ′
SE(t) =

(
ψSE(t)− a

)(
b− ψSE(t)

)
,(42)

ψ′
DE(t) =

π

b− a
cosh(t)

(
ψDE(t)− a

)(
b− ψDE(t)

)
,(43)

ψ′′
SE(t)

ψ′
SE(t)

= −2ψSE(t) + (a+ b),(44)

ψ′′
DE(t)

ψ′
DE(t)

=
π

b− a
cosh(t)

(
− 2ψDE(t) + (a+ b)

)
+ tanh(t).(45)

6. Numerical Results

In this section, we consider five test problems. We applied the DE-Sinc-
collocation problems with β = π

2 , γ = 1 and d = π
4 on problems of 1-4, and β = π,

γ = 1 and d = π
4 on problem 5, different Ms are chosen and h can be determined by

h = log(πdγM/β)
γM , also SE-Sinc-collocation is applied with γ = 1

2 , d = π
2 on problems

of 1-4, and γ = 1, d = π
2 on problem 5 with h =

√
πd
γM [19].
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The absolute numerical errors are checked on 999 equally-spaced points U
defined as:

U = {z1 = a, z2, ..., z999 = b},(46)

zk = a+ khu, hu =
b− a

1000
, k = 1, 2, ..., 999.(47)

For solving the nonlinear system of (36) by Newton,s method, we start with

an initial guess C0 =
−→
0 and use the Newton iteration as follow:

Cj+1 = Cj − J−1(Cj) F (Cj),(48)

where

F (Cj) = A Cj +B N(Cj + Γ)− H,(49)

J(Cj) = A+ B D(N ′(Cj + Γ)),(50)

where A,B,H,C and N are defined in (37)− (41) and N ′ is ∂
∂CN . Here, Cj is the

current iterate and Cj+1 is the new iterate. A common numerical practice is to stop
the Newton iteration wherever the distance between two successive iterates is less
than a given tolerance , i.e., when ∥Cj+1 − Cj∥ ≤ ε where the Euclidean norm is
used.

The computation developed on personal computer with 1 GIG memory by
MATLAB.
At first, in all examples we used transformation of (20) to convert the nonhomo-
geneous boundary conditions to the homogeneous one and then used the DE-Sinc-
collocation method based on Section5 .
Problem 1 Consider the following boundary value problem [6]:{

y′′(x) + 1
xy

′(x) + 1
x(1−x)y(x) + x sin

√
y(x) = f(x),

y(0) = 1 , y(1) = e,
(51)

in which f(x) = 1
x(1−x) [−(exp(x)(−2 + x2)) − (−1 + x)x2 sin

√
exp(x) ] , with the

exact solution y(x) = ex.
By using the transformation of (21) where Γ(x) = (e − 1)x + 1, the above

problem has been transformed to the following homogeneous BVP:{
v′′(x) + 1

xv
′(x) + 1

x(1−x)v(x) + x sin
√
v(x) + (e− 1)x+ 1 = f̂(x),

v(0) = 0 , v(1) = 0,
(52)

where
f̂(x) = 1

x(1−x) [−(exp(x)(−2+x2))−(−1+x)x2 sin
√

exp(x) ]− 1
x(e−1)− 1

x(1−x)((e−
1)x + 1), and The exact solution is v(x) = ex − (e − 1)x − 1. This example has
been solved by Sinc collocation method based on DE and SE transformations. The
absolute errors in the solution with our method forM = 30,M = 50, method of Sinc
collocation based on single exponential transformation and method of combining the
homotopy and reproducing Kernel Hilbert space (HRKH) [6] at specified points from
[6] are tabulated in Table (1). Also Table (2) shows the maximum absolute error in
the solution of Sinc collocation based on DE and Sinc collocation based on SE for
different Ms on uniform points U which has been introduced in (46).
Problem 2 Consider the following singular nonlinear BVP:
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Table 1. Absolute error in the solution of Problem 1

SE-Sinc collocation DE-Sinc collocation

x HRKH [6] M = 30 M = 50 M = 30 M = 50

0.001 4.04E − 07 2.28E − 07 2.21E − 09 2.58E − 11 3.32E − 13

0.08 2.39E − 06 1.35E − 07 4.19E − 09 2.75E − 11 3.16E − 13

0.16 2.91E − 06 1.53E − 07 4.02E − 09 2.56E − 11 2.90E − 13

0.32 1.84E − 06 3.64E − 07 3.92E − 09 2.09E − 11 2.36E − 13

0.48 3.10E − 06 8.39E − 08 1.01E − 09 1.65E − 11 1.82E − 13

0.64 5.53E − 06 1.22E − 07 2.11E − 11 1.18E − 11 1.26E − 13

0.80 4.03E − 06 1.82E − 07 3.37E − 10 6.78E − 12 7.05E − 14

0.96 7.46E − 07 4.10E − 09 4.25E − 11 1.50E − 12 1.40E − 14

Table 2. Maximum absolute error in the solution of Problem 1

M SE-Sinc collocation DE-Sinc collocation

2 1.4328E − 01 3.3225E − 02

5 5.0222E − 03 5.4528E − 03

10 1.6886E − 04 1.2663E − 04

20 6.6625E − 06 1.8183E − 07

30 4.1274E − 07 2.9494E − 11

40 3.7595E − 08 5.6031E − 13

50 4.3333E − 09 3.1922E − 13

{
y′′(x) + 1

xy
′(x) + 1

1−xy(x) + y2 = f(x),

y(0) = 0 , y(1) = 1,
(53)

where f(x) = 1
(1−x) [ 4− 4x+ x2 + x4 − x5 ], and the exact solution is y(x) = x2.

By applying the transformation of (21) it is easy to see that Γ(x) = x and we
will obtain the following homogeneous BVP:{

v′′(x) + 1
xv

′(x) + 1
(1−x)v(x) + (v(x) + x)2 = f̂(x),

v(0) = 0 , v(1) = 0,
(54)

in which f̂(x) = 1
(1−x) [ 4− 4x+ x2 + x4 − x5 ]− 1

x − x
(1−x) , and the exact solution

is v(x) = x2 − x.
The absolute error in the solution of this problem by method of Sinc collocation

based on double and single exponential withM = 30,M = 50, method of combining
the homotopy and reproducing Kernel Hilbert space (HRKH) [6], and method of
reproducing Kernel space (RKS) [3] at specified points from [6] are tabulated in
Table (3), also Table (4) shows the maximum absolute error of DE-Sinc collocation
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Table 3. Absolute error in the solution of Problem 2

SE-Sinc collocation DE-Sinc collocation

x RKS HRKH M = 30 M = 50 M = 30 M = 50

0.08 0.004 1.91E − 06 9.10E − 08 1.41E − 09 2.90E − 13 2.65E − 15

0.16 0.004 1.54E − 06 2.49E − 08 9.90E − 10 3.16E − 13 2.55E − 15

0.24 0.009 1.58E − 06 2.28E − 09 6.73E − 10 3.29E − 13 2.60E − 15

0.32 0.014 1.59E − 06 1.06E − 07 6.91E − 10 3.09E − 13 2.33E − 15

0.48 0.020 1.20E − 06 3.02E − 08 1.19E − 10 3.07E − 13 2.08E − 15

0.64 0.021 3.96E − 07 5.09E − 08 5.43E − 10 2.72E − 13 1.47E − 15

0.80 0.017 6.07E − 08 8.07E − 08 6.24E − 10 2.20E − 13 1.13E − 15

0.96 0.004 8.13E − 09 1.31E − 07 7.23E − 10 1.57E − 13 2.70E − 16

Table 4. Maximum absolute error in the solution of Problem 2

M SE-Sinc collocation DE-Sinc collocation

2 9.2150E − 02 2.2218E − 02

5 3.3927E − 03 2.2740E − 03

10 1.6926E − 04 2.2252E − 05

20 3.1596E − 06 2.3175E − 09

30 1.6245E − 07 3.4868E − 13

40 1.3287E − 08 9.3536E − 15

50 1.4108E − 09 2.0817E − 15

method and SE-Sinc collocation for different Ms on uniform points U which has
been introduced in (46).
Problem 3 We consider following two-point singular B.V.P arising in Astronomy:{

y′′(x) + 2
xy

′(x) + y5 = 0,

y(0) = 1 , y(1) =
√
3
2 ,

(55)

with exact solution
y(x) = 1√

1+x2

3

.

By using the transformation of (21) with Γ(x) = (
√
3
2 −1)x+1, can be converted

to the original problem as :{
v′′(x) + 2

xv
′(x) + (v(x) + (

√
3
2 − 1)x+ 1)5 = − 2

x(
√
3
2 − 1),

v(0) = 0 , v(1) = 0,
(56)

This problem has been considered by several authors [2], [4], [8], [10], [11],
[12], [13]. The Absolute error in the solution for several method is reported in Table
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Table 5. Absolute error in the solution of Problem 3

SE-Sinc collocation DE-Sinc collocation

x Spline[11] FD[11] M = 30 M = 50 M = 30 M = 50

0.125 1.29E − 06 9.59E − 05 1.43E − 08 4.25E − 10 1.20E − 11 0.00

0.250 1.10E − 06 7.33E − 05 3.45E − 08 8.71E − 10 1.17E − 11 1.11E − 16

0.375 8.26E − 07 5.55E − 05 4.35E − 08 2.95E − 10 3.87E − 13 1.11E − 16

0.500 5.28E − 07 3.89E − 05 2.70E − 08 2.48E − 10 4.09E − 12 0.00

0.625 2.61E − 07 3.41E − 05 1.57E − 08 7.64E − 10 7.75E − 12 1.11E − 16

0.75 7.00E − 08 1.29E − 05 9.83E − 09 1.27E − 09 4.88E − 14 0.00

0.875 1.93E − 08 9.60E − 06 7.15E − 08 9.69E − 10 4.39E − 13 0.00

Table 6. Maximum absolute error in the solution of Problem 3

M SE-Sinc collocation DE-Sinc collocation

2 2.2111E − 02 6.4439E − 03

5 4.8680E − 04 4.3040E − 04

10 4.9347E − 05 1.2318E − 05

20 1.3314E − 06 8.5545E − 09

30 9.3387E − 08 1.2231E − 11

40 1.0012E − 08 7.0676E − 14

50 1.3924E − 09 4.9960E − 16

(5) and the maximum absolute error in the solution by DE-Sinc collocation method
and SE-Sinc collocation for different Ms on uniform points U are summarized in
Table (6).
Problem 4 We consider the following singular nonlinear boundary value problem:{

y′′(x) + x2

1−xy
′(x) + xy(x) + x2

1−x
Ln(y)
y = f(x),

y(0) = 1 , y(1) = e,
(57)

where f(x) = 1
1−x [exp(x)+x3 exp(−x)], and the exact solution is y(x) = ex. In this

case Γ(x) = (e − 1)x + 1, so by using the transformation of (20) we have following
homogenous BVP:{

v′′(x) + x2

1−xv
′(x) + xv(x) + x2

1−x
Ln(v(x)+(e−1)x+1)
v(x)+(e−1)x+1 = f̂(x),

v(0) = 0 , v(1) = 0,
(58)

which is f̂(x) = 1
1−x [exp(x) + x3 exp(−x)] − x2

1−x(e − 1) − x + (1 − e)x2, The max-
imum absolute errors in the solution by DE-Sinc collocation method and SE-Sinc
collocation for different Ms on uniform points U are reported in Table (7).
Problem 5 Consider another nonlinear boundary value problem:
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Table 7. Maximum absolute error in the solution of Problem 4

M SE-Sinc collocation DE-Sinc collocation

2 4.4748E − 02 1.2241E − 02

5 3.1501E − 03 1.1947E − 03

10 3.1409E − 03 8.4486E − 06

20 3.4273E − 06 4.9487E − 09

30 1.8878E − 07 1.0772E − 12

40 1.5894E − 08 1.6653E − 15

50 1.7452E − 09 4.9960E − 16

Table 8. Absolute error in the solution of Problem 5

SE-Sinc-collocation DE-Sinc collocation

x HPM[1] EADM[5] SHM[7] M = 30 M = 50 M = 30 M = 50

0.1 0.1E − 09 6.9E − 07 0.8E − 06 4.0E − 07 4.2E − 11 7.0E − 10 1.1E − 15

0.2 0.5E − 09 1.3E − 06 2.8E − 06 3.6E − 07 1.8E − 09 5.8E − 10 4.4E − 16

0.3 0.5E − 09 1.9E − 06 5.4E − 06 1.8E − 07 9.7E − 10 6.3E − 10 1.1E − 15

0.4 0.1E − 09 2.3E − 06 7.5E − 06 6.7E − 08 6.5E − 10 3.9E − 10 1.2E − 15

0.5 0.1E − 09 2.5E − 06 8.3E − 06 1.2E − 07 4.2E − 10 5.1E − 10 1.4E − 15

0.6 0.6E − 09 2.3E − 06 7.5E − 06 6.7E − 08 6.5E − 10 3.9E − 10 1.1E − 15

0.7 0.6E − 09 1.9E − 06 5.4E − 06 1.8E − 07 9.4E − 10 6.3E − 10 7.7E − 15

0.8 0.7E − 09 1.3E − 06 2.7E − 06 3.6E − 07 1.8E − 09 5.8E − 10 2.7E − 16

0.9 0.9E − 09 6.9E − 06 0.6E − 06 4.0E − 07 4.2E − 11 7.0E − 10 1.4E − 15

{
y′′(x)− y2 = f(x),
y(0) = 0 , y(1) = 0,

(59)

in which f(x) = 2π2 cos(2πx)− sin4(πx), and the exact solution is y(x) = sin2(πx).
This problem has been solved by Homotopy perturbation method (HPM) [1],

the extended Adomian decomposition method (EADM) [5] and nonlinear Shooting
method (SHM) [7]. We solved this problem by SE-Sinc collocation and DE-Sinc
collocation methods and compared our numerical result with M = 30,M = 50 by
results of others methods. The numerical results are tabulated In Table (8).
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7. Conclusions

We developed Sinc collocation methods based on SE and DE transformation
which are rapidly convergent. We applied these methods to solve regular and sin-
gular nonlinear boundary value problems subjected to the homogeneous and non-
homogeneous boundary conditions. We tested DE and SE sinc collocation methods
on the five different nonlinear problems. The absolute errors in the solution are
compared with the methods in [1, 3, 5, 6, 11], and tabulated in the tables. The
results in these tables verified that our methods are more accurate in comparison
with the methods in [1, 3, 5, 6, 11].

REFERENCES

[1] C. Chun, R. Sakthivele, Homotopy perturbation technique for solving two-point boundary value

problems-comparison with other methods, Comput. Phys. Commun., 181(2010), 1021-1024.

[2] M.M. Chawla, R. Subramanian, H. Sathi, A fourth order method for a singular two point

boundary value problem, BIT, 28 (1988), 88-97.

[3] M.G. Cui, F.Z. Geng, Solving singular two-point boundary value problem in reproducing kernel

space, J. Comput. Appl. Math. 205 (2007),6–15.

[4] R.K. Jain, P. Jain, Finite difference methods for a class of singular two-point boundary value

problems, Int. J. Comput. Math. 27 (1989), pp. 113–120.

[5] R.K. Jain, P. Jain, Two-point boundary problems by the extended Adomian decomposition

method, J. Comput. Appl. Math. 21 (2008) , 253–262.

[6] R.K. Jain, P. Jain, Solving singular boundary value problems by combining the homotopy

perturbation method and reproducing kernel Hilbert space method, Int. J. Comput. Math. 87

(2010), 2024–2031.

[7] S.N. Ha, A nonlinear shooting method for two-point boundary value problems, Comput. Math.

Appl 42 (2001), 1411–1426.

[8] F.R. Hoog, R. Weiss, Difference methods for boundary value problems with singularity of first

kind, Math. Research center MRC 1536, University of Wiscosim-Madison (1975).

[9] R.K. Mohanty, P.L. Sachder, N. Jha, An O(h4)accurate cubic spline TAGE method for non-

linear singular two point boundary value problems, Appl. Math. Comput. 158 (2004), 853–868.

[10] A. Mohsen, M. EL-Gamel, On the Galerkin and collocation methods for two-point boundary

value problem using Sinc bases, J. Comput. Math. 56 (2008), 930–941.

[11] A.S.V. Ravi Kanth, Cubic Spline polynomial for non-linear singular two-point boundary value

problems, Appl. Math. Comput. 189 (2007), 2017–2022.

[12] P. Rentrop, A Taylor series method for numerical solution of two-point boundary value prob-

lems, Numer. Math. 31 (1979), 359–375.

[13] R.D. Russell, L.F. Shampine, Numerical methods for singular boundary value problems, SIAM

J. Numer. Anal. 12 (1975), 13–36.

[14] R. Abdur, A. Ismail, Numerical studies on two-dimensional Scrodinger equation by chebyshev

spectral a collocation method, U.P.B. Sci. Bull., Series A, 73, Iss 1, (2011), 101–110.

[15] S.D. Barforoushi, M. Rahimi, S. Danaee, Homotopy perturbation method for solving governing

equation of nonlinear free vibration of systems with serial linear and nonlinear stiffness on a

frictionless contact surface , U.P.B. Sci. Bull., Series A, 73, Iss 4, (2011), 107–118.

[16] S. Sohrabi, An efficient spectral method for high-order nonlinear integro-differential equations,

U.P.B. Sci. Bull., Series A, 74, Iss 3, (2012), 75–88.



26 J. Rashidinia, M. Nabati, A. Parsa

[17] F. Stenger, A Sinc-Galerkin method of solution of boundary value problems, J. Math. Comp.

33 (1979), 85–109.

[18] J. Lund, K. Bowers, Sinc methods for quadrature and differential equation, SIAM. Philadel-

phia. PA. (1992).

[19] F. Stenger, Numerical method based on Sinc and analytic function, Springer-Verlag New York

(1993).

[20] F. Stenger, Handbook of Sinc numerical methods, CRC Press. Taylor and Francis Group (2010).

[21] H. Takahasi, M. Mori, Quadrature formulas obtained by variable transformation, Numer.

Math. 21 (1973), 206–219.

[22] M. Sugihara, Optimality of the double exponential formula- functional analysis approch, Nu-

mer. Math. 75 (1997), 379–395.

[23] M. Sugihara, Near optimality of Sinc approximation, Math. Comput. 72 (2003), 767–786.

[24] T. Okayama, T. Matso, M. Sugihara, Sinc-collocation method for weakly singular Fredholm

integral equation of the second kind, J. Comp. Appl. Math. 234 (2010), 1211–1227.

[25] A. Nurmuhammad, M. Muhammad, M. Mori, Numericall solution of initial value problems

based on the double exponential transformation, Publ. RIMS. Kyoto Univ.41 (2005), 937–945.

[26] A. Nurmuhammad, M. Muhammad, M. Mori, M. Sugihara, Double exponential transforma-

tion in the Sinc-collocation method for a boundary value problem with fourth-order ordinary

differential equation, J. Comp. Appl. Math. 182 (2005), 32–50.

[27] M. Sugihara, Double exponential transformation in the Sinc-collocation method for two-point

boundary value problems, Appl. Math. 149 (2002), 239–250.

[28] X. Wu, W. Kong, C. Li, Sinc collocation method with boundary treatment for two-point

boundary velue problems, J. Comp. Appl. Math. 196 (2006), 229–240.

[29] M. Mori, T. Echigo, Numerical Green function method based on the DE transformation, Japan

J. Indust. Appl. Math. 23 (2006), 193–205.

[30] K. Tanaka, M. Sugihara, K. Murata, M. Mori, Function clasess for double exponential inte-

gration formulas, Numer. Math. 111 (2009), 631–655.

[31] K. Tanaka, M. Sugihara, K. Murata, Function clasess for successful DE-Sinc approximations,

Math. Comput. 78 (2009), 1553–1571.


