U.P.B. Sci. Bull., Series C, Vol. 84, Iss. 4, 2022 ISSN 2286-3540

STUDY ON FINE HAND MOVEMENT BASED ON HIDDEN
MARKOV MODEL

Haifeng CAO™™*, Jianwei CUI?

How to achieve effective human-computer interaction is the shackle of the
development of the assistive hand because it lacks information connection with the
human brain. Aiming at the real-time opening and closing control of single-degree-
of-freedom assistive hand's continuous motion, a supervised learning control
algorithm for assistive hand based on Markov chain was proposed in this paper.
Firstly, the motion information of the upper limb arm and forearm of the disabled
person was used as the basis of human action intention recognition, and an
algorithm which can greatly reduce the data storage structure of the state transition
matrix was proposed. Then, the Markov model of the assistive hand control was
established. Finally, a supervised learning data acquisition device, a data
processing method and a model training method were designed based on wearable
devices. The experimental results show that the Markov chain can effectively
describe the complex daily behaviors and processes of human beings and has good
sensitivity and reliability when applied to the control of assistive hands.

Keywords: Markov chain; assistive hand; supervised learning; degree-of-
freedom; data glove

1. Introduction

According to the results of the sixth national population census and the
second national sampling survey of the disabled in 2010, there were more than 85
million disabled people in China at the end of 2010, including about 24.72 million
with physical disabilities [1]. Among the patients with physical disabilities,
13.15% are likely to have upper limb dysfunction, of which 43.16% are disabled
above grade 111 [2]. People with upper limb dysfunction not only lack the ability
to work, but also have many inconveniences in daily life. The patients themselves
and their families are under considerable pressure.

As a tool to improve the incomplete shape and function of disabled
patients, assistive limbs are a hot issue in the field of assistive robots. Grasping is
the most basic function of a dexterous hand for the disabled, and its basic
condition is force balance between each finger through grasping objects, which
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requires accurate measurement and control of finger position and force [3,4].
Another difficulty of the dexterous hand for the disabled is that the movement of
the assistive hand must correctly reflect the movement consciousness of the
human brain, so as to give full play to its function of helping the disabled. Many
researchers can identify the signs on the hands or arms, the skin color of the
human body and the shape features of the limbs by using the method of machine
vision and finish the task planning of the arms and dexterous hands by using the
method of machine learning [5-7]. However, this method needs a camera around
the disabled patient, which is not very convenient to use, and similar problem
exists in dexterous hand control technology based on speech recognition
technology [8].

Another research focus of disability assistance is to control the assistive
hand using the human body's own signals, such as myoelectric signals [9],
electroencephalogram signals, and even the implanted nervous system. In 2008,
Duke University in the United States realized walking by controlling a robot with
monkeys' thinking activities. In 2015, Gregg A. Tabot and others from the
University of Chicago verified the possibility of human hand tactile reconstruction
based on brain-computer interface [10], and the importance and possibility of
tactile reconstruction were also explained in the reference [11] from different
angles. Therefore, it is possible to develop a "real” hand for assisting the disabled
based on the control of the human brain's nervous system in the future, but it is
still a long way off. The electrical signals excited by the human nervous system
are the results of billions of years of evolution. The recognition rate of human
movements by both myoelectric and electroencephalogram signals is still limited
and unstable, and far from being competent for the needs of assistive hands. Many
assistive hands are equipped with myoelectric control signals, but they are not
stable enough. Therefore, the myoelectric prosthetic hand is also equipped with a
switch button for controlling the opening and closing of the mechanical prosthetic
hand. Although the button control is reliable, it is extremely inconvenient to use.
Regardless of single degree-of-freedom or multiple degrees of freedom, how to
realize effective human-computer interaction is the fetter for the development of
assistive hands.

In recent years, the recognition of daily movements based on wearable
devices has attracted much attention. Some representative studies include: in
2016, Wu Donghui of Dalian University of Technology studied the recognition of
people standing, walking, running and jumping [12], and achieved good accuracy.
In 2017, Wu Rongrong of xidian university studied 21 gestures related to writing
[13]. In 2018, Yu Shilong of National University of Defense Technology studied
the recognition of part of human motions in the kitchen [14]. In recent years, there
are many studies combining speech and gesture to achieve effective control of an
object based on hidden Markov model (HMM) [15, 16]. These studies focus on
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the recognition of single action types of people in different scenes. For the
assistive hand, it is more urgent to identify the posture that should be taken in a
continuous movement process, especially the posture that "finger" should take in
the process of contact with tools or objects.

As the human hand performs all kinds of daily actions under the traction
of the arm, the motion state of the arm is the direct response of the human brain's
intention, it is possible to understand the brain's intention to use the hand by
observing the motion law of the arm, that is, in the absence of accurate expression
of the human brain's intention, it is the result of arm motion to directly view the
human hand's action. In this paper, the MPU6050 inertial sensor was installed on
the upper arm and forearm of a person, which constitutes a wearable motion data
acquisition device, as shown in Fig. 1, also known as a data glove, used to collect
the motion and attitude data of the upper arm and forearm, including angular
velocity and acceleration. And these data were used as the information to "drive"
the hand. Obviously, these data had nothing to do with the arm span of a person.
A data glove with a tactile sensor was used to measure the opening and closing
information of a healthy human hand when grabbing an object as a result of
"driving"”. Based on these two types of data, a supervised learning HMM model
for healthy people to capture objects was constructed to express and learn the
coordination relationship of body movements when healthy people ingest objects.

data glove

assistive hands

Fig.1. Experimental device

As long as the human hand has a thumb and an index finger, most of the
daily actions can be completed, which is more similar to a two-finger or three-
finger hand with single degree-of-freedom. Based on the above methods and
assumptions, an experimental study on real-time control of a single degree-of-
freedom hand with an assistive hand by hidden Markov model was carried out in
this paper.
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2. HMM Model of Daily Hand Movements

The observation of the movements of human upper limbs reveals that the
processes of different actions completed by each person are random due to their
habits, situations, etc. The purpose and degree of the actions completed by each
person depend on the instantaneous instructions of the human brain. Therefore,
the movements of the arms have no aftereffect, and the Markov model can be
used to describe the human hand habits.

The commonly used data glove can directly measure the angular
velocityw, angular acceleration € and other parameters of the upper arm, forearm
and palm. At time t, the state quantity of upper arm movement is Qgt=[wgrt, ®BRt,
®BYHE BPt, €BRt, €BYt], and that of forearm is Qr=[wrprt, WFRt, WFYt, € FPt, EFRt, EFYL],
where the angle mark B represents the upper arm, and F represents the forearm. P,
R and Y represent the pitch angle, roll angle and heading angle of the arm
movement, respectively. The set of upper limb movement state quantity is: Q={
Qg Qr}. In actual observation, these quantities have been filtered and averaged, so
Q is actually the average value in a certain period of time. Connecting these
averages will express the path information of the arm movement process, which
also reflects people's habit of using hands.

Firstly, the transition probability matrix between arm motion states was
established.

As mentioned earlier, there are 6 measurable state quantities of arm
movement, and the upper arm and forearm totally have 12 state quantities.
Therefore, a compromise is needed between the accuracy of the model and the
computational resources used, mainly considering the dimension and depth of the
state features. Firstly, each quantity is simplified to 10 grades according to its
numerical value, and the combination of 12 state quantities has 102 state values,
while Markov's state transition matrix is a square matrix with a scale of 101?x10'?,
which is obviously not easy to realize.

Considering that acceleration is the derivative of velocity, and the
difference between two adjacent states in time series can represent the change of
acceleration, only angular velocity is selected as the representation quantity,
which is recorded as Qi=[wspt wBrt ®BYt OFPFt WFRt ®Fyt]. The scale of state
transition probability matrix of Markov chain is reduced to 108x10°, which is still
very large for storage.

Considering the continuity of motion, the velocity of the motion cannot be
abruptly changed. As long as the sampling is sufficiently dense, the current state
will only transition before the "proximity state". Between two adjacent states,
there is at least one-dimensional angular velocity value +1 or -1 changed in Q.
Thus, a sequence A is constructed:
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A= ('1’ ‘1, ‘1, '19 ‘1’ ‘19 19 19 19 17 17 17 07 07 07 07 O’ 0)

Any 6 numbers from A constitute a vector AQ, which is added to Qt., i.e.

Qt= Q1+ (1)

Note that the elements in A are -1, 0, and 1, so the number of adjacent
states cannot be calculated from the combination N = £, = 18564 (the state
transition matrix in Table 1 does not have 18,564 columns). Take unit vector:

I=[1,1,1,1,1,1]
AQ'=A0+1 2
Then
Q= Qu1+4Q’ (3)

Then AQ’ is a vector regularized after A translation. Only three values of
0, 1 and 2 of elements in AQ" can generate a "3" decimal number from AQ’,
which is defined as offset:

Offset=40" (1) x3+40" (2) x3*+40" (3) 3 +40" (4) 3+ 40" (5)
x3+40(4)

By examining the value range of Offset, the number N of adjacent states
can be obtained as N=3°=729.

A decimal modulus value got of Qt is defined to represent the size of Qt:

Qot=Qt (1) x10°+ Qt 2) x10%+ Q: 3) x10%+ Q:t 4) x10%+ Q:t (5) x10%+
Q:(5)

Qi sorted by qgor: Of the 729 possible transition states for Q, the first 364
state values are less than Qt.1, the 365th state value is the same as Qt1, and the
following 364 state values are greater than Qt.1.

A 10°x729 matrix is defined according to Table 1, wherein the first
column of the matrix represents the number gt of all 10° state quantities, which is
also the line number 0-99999; Each row has 729 possible migration states
corresponding to this state quantity, with proximity state number 0-728 listed in
the first row.

The elements in each row in the table represent the probability or
frequency of transition from one state to another state in the vicinity, where the
first 364 columns of the first row are constant zeros, the first 363 columns of the
second row are constant zeros, and so on. From rows 365-99,635, the elements in
each column may not be zero. Column 729 in line 99,635 is always zero, columns
728 and 729 in line 99,636 are also always zero, and so on. In line 999,999, all
columns after 365 are always zero, i.e. a total of 365x729 cells in the matrix are
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always zero. Cells with a constant value of zero represent mathematically possible
migration states, but have no physical significance, and the number proportion is
only 0.0365%, so no special treatment is required.

Table 1
Calculation of state transition probability matrix A
aij Transition probability A or frequency a;

ot 0 2 3 363 364 365 727 728
[000 0 0 0 [000 [000 [000 [111 [111
000] 000] 001] 010] 110] 111]
[555 [444 [444 [444 | ... [555 [555 | [b55 [666 | [666
555] 445] 455] 456] 555] 556] 565] 665] 665]
[999 [888 [888 [888 [999 0 0 0 0
999] 888] 889] 899] 999]

Note: The values listed in [] in this table are the numbers of the corresponding transition

states, but the initialization value of ajj is 0.

At this point, the state transition probability matrix of HMM model is
defined:
A=[ajj]. i=Qgot =0~999999, j=0~728

The data glove can also measure the bending angle of five fingers.
Considering that the normal working state of the assistive hand with single
degree-of-freedom is two states of opening and closing controlled by force, but
the degree of opening and closing depends on the size of the grasped object, it is
stipulated that the force on the tip of the finger, where the thumb and forefinger
are open and the other fingers are stretched, is zero, and that the force on the tip of
the finger when the thumb and forefinger are closed and the other fingers are bent
is not zero. Reading the bending angle of the index finger and specifying that the
bending angle is greater than 100 degrees or the force is zero, the finger is
considered to be open. In addition, considering the practical application, it is
stipulated that the assistive hand cannot be closed for a long time, which will be
recorded as an error. If an error occurs, the system will automatically change to
open after identification. These three quantities are recorded as V={0,1,2} as
observed values, as shown in Table 2, and the observation probability matrix B is
established:
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Table 2
Observation probability matrix

\% Qo Q2 Qao9999
0

1

The initial state probability vector is defined n= (m;) ,i=0-999999:
_ 0 i+ 555555
= [1 { = 555555 (6)

It means that the motion state of the arm at the initial position of the upper
limb is the static state numbered [555555], and it is stipulated that the upper limb
will naturally droop, and the fingers will open at this time.

Therefore, the HMM model is expressed as: 4 = (4, B, )

3. Model Training

The data glove is used as the data acquisition equipment, and the HMM
control model of hand movement can be trained by using supervised learning.

3.1 Hardware device with tactile perception

Wearing data gloves, a universal man-machine interface, can obtain the
posture data of the wearing parts in the movement process in real time, track the
gestures of the wearer, locate the spatial information and so on. In this paper, DN-
02A data glove made in China by Chengdu Big Bird Intelligent Technology Co.,
Ltd. is selected, which can capture the degree of bending of five fingers in both
left and right hands, and the attitude angle data of palm, upper arm and forearm at
the same time, including acceleration, angular velocity and angle, and feedback
from eight motion nodes in each hand. The control part of the data glove can
communicate with the host computer through USB or wireless Bluetooth. In this
paper, the motion parameters of fingers and arms are measured through data
gloves, which are transmitted to the PC for background processing, as shown in
Fig. 2:

Fig. 2. DN-02A data glove
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3.2 Force tactile sensor

A201 thin-film piezoresistive sensor of FlexiForce Company is selected to
measure the tactile information of fingertip by attaching it to the thumb tip of data
glove, and a comparator is designed to measure the opening and closing of finger.
The closing of the finger only refers to whether the thumb "pinches” the operated
object in cooperation with other fingers. Since the human hand has adaptive force
balance ability in grasping, so does the assistive hand due to its shape, attention is
only paid to whether it is "pinched" to form state observed quantities 0 and 1, as
shown in Fig. 3:
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Fig. 3. Shape of FlexiForce A201 pressure sensor

3.3 Data acquisition and processing

Due to the large range of the data glove, the angular velocity of the
subject's arm under daily conditions is observed to be no more than 80" /s in many
experiments. While recording and archiving the original data, the data are
translated, oriented, rounded and graded according to the following formula:

o=[ (»+100.05) /200]x10 (" /s) (7)
For example, in the initial state, the upper limbs naturally droop and the
fingers open, ®~0, and ®’=5 is calculated, so the initial state Qo=[55555 5].
Suppose that a state vector Q +1 is obtained after ranking the data measured
at the t-1th sampling:

Qt1 =[wBPt-1 @WBRt-1 WBYL1 WFPFt1 WFRt1 OFY:-1] (8)
And the observed quantities: V +1, V+1£{0,1,2}
to calculate the line No. i:
i=wBpt-1 X10°+ @BR-1X10*+ @By1-1x10% + wrprr1 x10%+ wrre1x10+ wrvea] (9)

The t-th sample data is graded to get a state vector:
Qt =[Pt wBRt WBYt WFPt WFRt WFYt] (10)

The difference between the state vectors is calculated to get a vector
whose element is 0 or 1:

AQt = Qt —Qu1=/Awnrt Aarrt Awsyt Awrpt Aarry, Awkryt] (11)
The column No. j is calculated:
Jj=Awepitx3°+ 4 werix3*+4 wrvi X33+ 4 wrprix32+ A4 wrrix3+A wrvi+365  (12)

The frequency of state transition is calculated: aj= aj+1, where the
initialization value of ajjis 0. The frequency of observation is calculated: bji=bji+1,
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where the initialization value of bjj is O; i is the same as above, and j=V;. Thus, the
frequencies of the state transition matrix A and the observation matrix B are
obtained respectively.

3.4. Model training method

The purpose of HMM model training is to obtain the state transition
probability matrix A and observation probability matrix B. the method is as
follows:

1. Obtain measurement data. Experiments were conducted according to
3.1 and 3.2 above to obtain the arm motion data of N groups of people when
completing daily movements, and the data were processed according to 3.3.

2. Calculate the state transition matrix

The probability value in row | and column J of the state transition matrix
A is recorded as Paij, which represents the probability that the ith state will
migrate to the jth state in the data sequence of a daily action. The calculation
method is as follows:

Paij=aij/ Zj':o a;
3. Calculate the state observation matrix

The probability value in row | and column J of the state observation matrix
B is recorded as Pgij, which indicates that in the data sequence of a daily action,
the observed value is the probability of the ith observation in the jth state. The
calculation method is as follows:

Peij=Dij/(Doj+byj)
4. Control method of disabled hands based on HMM model

HMM model has two possible uses for helping the disabled: (1) because
people's daily actions are "habitual repetition”, integrating the state value
converted by the angular velocity of the upper limb in Table 1 with time
represents a spatial path when people complete the action, and this path also
corresponds to the state sequence in table 1 of HMM state transition matrix A,
which can be used to distinguish the types of actions that people complete; (2)
The observation matrix B represents the opening and closing state of the disabled
hand in a complex action, which can be used to control the disabled hand. This
article only discusses and verifies the second use.

4. Analysis of Experimental Results

In this paper, the model simulation experiment and the comparative
experiment of single degree-of-freedom assistive hand were made.
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4.1. Data analysis of model simulation experiment

Experimental process: The test set data collected in 3 were analyzed and
compared. Five subjects were selected, and each group received 50 trials in
different time periods. The first 40 trials were used as the training set, and the last
10 trials were used as the test set. During the test, the subjects first kept standing
still with their arms naturally drooping, opened their thumb and forefinger, and
started the experiment according to the command to move their right hand
naturally to the abdomen to hold the zipper, close it, and loosen their fingers. An
experiment was over. During the experiment, the data glove recorded each group
of data at the sampling rate of 50Hz. The duration of each experiment was
generally not more than 3 seconds, and the amount of data collected each time
was about 140 groups. Matlab was used for data processing and the experimental
data curve was drawn. A typical zipper pulling process is shown in Fig. 4. The
abscissa in the figure shows the order of data acquisition.
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Fig. 4. Three-axis angular velocity of arm, palm and forearm in data 1
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Five processes in the whole zipper pulling process are marked in Fig. 4.
Part | represents the initial state of rest readiness; Part 11 is the process before the
hand moved to the lower abdomen; Part Il is the process to close the finger and
tighten the zipper; Part 1V is the zipper pulling process, during which slight and
short-term zipper stuck sometimes occurs, which is characterized by slight
oscillation of the arm; Part V is the pause after the zipper pull is completed when
the fingers are released and ready to move away. By comparing the acceleration
diagram with the angular velocity diagram, it is found that the expression of
acceleration for the zipper pulling process is not as intuitive as that of angular
velocity. The test set data is deduced by the trained model and compared with the
actual test data. The results are shown in Table 3 below:

Table 3
Data comparison

Dataset | Datal | Data2 | Data3 | Data4 | Data5 | Total data
Total number of sampling points | 1393 1451 1423 1405 1413 7085
Number of points for judging the | ;5,9 | 1389 | 1361 | 1386 | 1354 6810
correct state
Accuracy (%) 95.4 95.7 95.6 98.6 95.8 96.2

4.2 Simulation experiment of assistive hand control

Five subjects were respectively equipped with data gloves and held the
assistive hand to simulate the zipper pulling action of the disabled hand. The
movement of the upper limb was collected at a rate of 5Hz, and the opening and
closing instructions of the computer to the assistive hand were used to replace the
aforementioned closing data of the hand. Another observer was asked to control
the opening and closing of the assistive hand through the cable, and the process of
the observer controlling the assistive hand was taken as a theoretical process.

In order to avoid the experiment failure caused by the stuck zipper caused
by the quality, it is set as the blocking state (observed value n=2) when the finger
closing time exceeds 2s and the arm state is [555555]. At this time, the assistive
hand will be automatically opened since it is designed as a failure in task. The
simulation curves of five subjects are shown in Fig. 5:
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— Reality
Speculation

Finger opening and closing state

Fig. 5. Curves of simulation experiment

By analyzing the above figures, the control method of assistive hand based
on HMM model basically coincides with that of observer, but the response of
assistive hand controlled by HMM model to action is more sensitive than that of
observer, and there are observable advances in the beginning of closing and
pinching and the end of opening, as shown in the following Table 4:

Table 4
Test data
Test1 | Test2 | Test3 | Test4 | Testb
Closing at the beginning | -0.2s | 0 — — -0.2
Opening atthe end | -0.4 -0.5 -0.6 -0.2 -0.3

5. Conclusions

In this paper, a control algorithm for the assistive hand based on Markov
chain was proposed, including establishing a Markov model and improving the
data structure of state transition matrix, which effectively reduces the storage
space of state transition matrix. The data collection and processing method,
experimental equipment and model training method of supervised learning were
put forward. The results show that Markov chain can effectively describe people's
complex daily behaviors and processes, and it has good sensitivity and reliability
when applied to the control of assistive hands. In the future, it may be further
expanded to enable assistive hands to smoothly complete other daily actions, so as
to become a general control method for assistive hands.
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