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STUDY ON FINE HAND MOVEMENT BASED ON HIDDEN 

MARKOV MODEL 

Haifeng CAO1*, Jianwei CUI2 

How to achieve effective human-computer interaction is the shackle of the 

development of the assistive hand because it lacks information connection with the 

human brain. Aiming at the real-time opening and closing control of single-degree-

of-freedom assistive hand's continuous motion, a supervised learning control 

algorithm for assistive hand based on Markov chain was proposed in this paper. 

Firstly, the motion information of the upper limb arm and forearm of the disabled 

person was used as the basis of human action intention recognition, and an 

algorithm which can greatly reduce the data storage structure of the state transition 

matrix was proposed. Then, the Markov model of the assistive hand control was 

established. Finally, a supervised learning data acquisition device, a data 

processing method and a model training method were designed based on wearable 

devices. The experimental results show that the Markov chain can effectively 

describe the complex daily behaviors and processes of human beings and has good 

sensitivity and reliability when applied to the control of assistive hands. 

Keywords: Markov chain; assistive hand; supervised learning; degree-of-

freedom; data glove 

1. Introduction 

According to the results of the sixth national population census and the 

second national sampling survey of the disabled in 2010, there were more than 85 

million disabled people in China at the end of 2010, including about 24.72 million 

with physical disabilities [1]. Among the patients with physical disabilities, 

13.15% are likely to have upper limb dysfunction, of which 43.16% are disabled 

above grade III [2]. People with upper limb dysfunction not only lack the ability 

to work, but also have many inconveniences in daily life. The patients themselves 

and their families are under considerable pressure. 

As a tool to improve the incomplete shape and function of disabled 

patients, assistive limbs are a hot issue in the field of assistive robots. Grasping is 

the most basic function of a dexterous hand for the disabled, and its basic 

condition is force balance between each finger through grasping objects, which 
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requires accurate measurement and control of finger position and force [3,4]. 

Another difficulty of the dexterous hand for the disabled is that the movement of 

the assistive hand must correctly reflect the movement consciousness of the 

human brain, so as to give full play to its function of helping the disabled. Many 

researchers can identify the signs on the hands or arms, the skin color of the 

human body and the shape features of the limbs by using the method of machine 

vision and finish the task planning of the arms and dexterous hands by using the 

method of machine learning [5-7]. However, this method needs a camera around 

the disabled patient, which is not very convenient to use, and similar problem 

exists in dexterous hand control technology based on speech recognition 

technology [8]. 

Another research focus of disability assistance is to control the assistive 

hand using the human body's own signals, such as myoelectric signals [9], 

electroencephalogram signals, and even the implanted nervous system. In 2008, 

Duke University in the United States realized walking by controlling a robot with 

monkeys' thinking activities. In 2015, Gregg A. Tabot and others from the 

University of Chicago verified the possibility of human hand tactile reconstruction 

based on brain-computer interface [10], and the importance and possibility of 

tactile reconstruction were also explained in the reference [11] from different 

angles. Therefore, it is possible to develop a "real" hand for assisting the disabled 

based on the control of the human brain's nervous system in the future, but it is 

still a long way off. The electrical signals excited by the human nervous system 

are the results of billions of years of evolution. The recognition rate of human 

movements by both myoelectric and electroencephalogram signals is still limited 

and unstable, and far from being competent for the needs of assistive hands. Many 

assistive hands are equipped with myoelectric control signals, but they are not 

stable enough. Therefore, the myoelectric prosthetic hand is also equipped with a 

switch button for controlling the opening and closing of the mechanical prosthetic 

hand. Although the button control is reliable, it is extremely inconvenient to use. 

Regardless of single degree-of-freedom or multiple degrees of freedom, how to 

realize effective human-computer interaction is the fetter for the development of 

assistive hands. 

In recent years, the recognition of daily movements based on wearable 

devices has attracted much attention. Some representative studies include: in 

2016, Wu Donghui of Dalian University of Technology studied the recognition of 

people standing, walking, running and jumping [12], and achieved good accuracy. 

In 2017, Wu Rongrong of xidian university studied 21 gestures related to writing 

[13]. In 2018, Yu Shilong of National University of Defense Technology studied 

the recognition of part of human motions in the kitchen [14]. In recent years, there 

are many studies combining speech and gesture to achieve effective control of an 

object based on hidden Markov model (HMM) [15, 16]. These studies focus on 
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the recognition of single action types of people in different scenes. For the 

assistive hand, it is more urgent to identify the posture that should be taken in a 

continuous movement process, especially the posture that "finger" should take in 

the process of contact with tools or objects. 

As the human hand performs all kinds of daily actions under the traction 

of the arm, the motion state of the arm is the direct response of the human brain's 

intention, it is possible to understand the brain's intention to use the hand by 

observing the motion law of the arm, that is, in the absence of accurate expression 

of the human brain's intention, it is the result of arm motion to directly view the 

human hand's action. In this paper, the MPU6050 inertial sensor was installed on 

the upper arm and forearm of a person, which constitutes a wearable motion data 

acquisition device, as shown in Fig. 1, also known as a data glove, used to collect 

the motion and attitude data of the upper arm and forearm, including angular 

velocity and acceleration. And these data were used as the information to "drive" 

the hand. Obviously, these data had nothing to do with the arm span of a person. 

A data glove with a tactile sensor was used to measure the opening and closing 

information of a healthy human hand when grabbing an object as a result of 

"driving". Based on these two types of data, a supervised learning HMM model 

for healthy people to capture objects was constructed to express and learn the 

coordination relationship of body movements when healthy people ingest objects. 

 

 
Fig.1. Experimental device 

 

As long as the human hand has a thumb and an index finger, most of the 

daily actions can be completed, which is more similar to a two-finger or three-

finger hand with single degree-of-freedom. Based on the above methods and 

assumptions, an experimental study on real-time control of a single degree-of-

freedom hand with an assistive hand by hidden Markov model was carried out in 

this paper. 
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2. HMM Model of Daily Hand Movements 

The observation of the movements of human upper limbs reveals that the 

processes of different actions completed by each person are random due to their 

habits, situations, etc. The purpose and degree of the actions completed by each 

person depend on the instantaneous instructions of the human brain. Therefore, 

the movements of the arms have no aftereffect, and the Markov model can be 

used to describe the human hand habits. 

The commonly used data glove can directly measure the angular 

velocity, angular acceleration  and other parameters of the upper arm, forearm 

and palm. At time t, the state quantity of upper arm movement is QBt=[BPt , BRt, 

BYt, BPt, BRt, BYt], and that of forearm is QFt=[FPFt , FRt, FYt ,  FPt, FRt, FYt], 

where the angle mark B represents the upper arm, and F represents the forearm. P, 

R and Y represent the pitch angle, roll angle and heading angle of the arm 

movement, respectively. The set of upper limb movement state quantity is: Q={ 

QB QF}. In actual observation, these quantities have been filtered and averaged, so 

Q is actually the average value in a certain period of time. Connecting these 

averages will express the path information of the arm movement process, which 

also reflects people's habit of using hands. 

Firstly, the transition probability matrix between arm motion states was 

established. 

As mentioned earlier, there are 6 measurable state quantities of arm 

movement, and the upper arm and forearm totally have 12 state quantities. 

Therefore, a compromise is needed between the accuracy of the model and the 

computational resources used, mainly considering the dimension and depth of the 

state features. Firstly, each quantity is simplified to 10 grades according to its 

numerical value, and the combination of 12 state quantities has 1012 state values, 

while Markov's state transition matrix is a square matrix with a scale of 10121012, 

which is obviously not easy to realize. 

Considering that acceleration is the derivative of velocity, and the 

difference between two adjacent states in time series can represent the change of 

acceleration, only angular velocity is selected as the representation quantity, 

which is recorded as Qt=[BPt  BRt  BYt  FPFt  FRt  FYt]. The scale of state 

transition probability matrix of Markov chain is reduced to 106106, which is still 

very large for storage. 

Considering the continuity of motion, the velocity of the motion cannot be 

abruptly changed. As long as the sampling is sufficiently dense, the current state 

will only transition before the "proximity state". Between two adjacent states, 

there is at least one-dimensional angular velocity value +1 or -1 changed in Qt. 

Thus, a sequence Δ is constructed: 
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Δ=（-1，-1，-1，-1，-1，-1，1，1，1，1，1，1，0，0，0，0，0，0）  

Any 6 numbers from Δ constitute a vector ΔQ, which is added to Qt-1, i.e.  

    Qt =  Qt-1+Δ                                                (1) 

Note that the elements in Δ are -1, 0, and 1, so the number of adjacent 

states cannot be calculated from the combination  (the state 

transition matrix in Table 1 does not have 18,564 columns). Take unit vector:  

I=[1,1,1,1,1,1] 

ΔQ´=ΔQ+I                                                    (2) 

Then 

 Qt= Qt-1+ΔQ´                                                 (3) 

Then ΔQ´ is a vector regularized after Δ translation. Only three values of 

0, 1 and 2 of elements in ΔQ´ can generate a "3" decimal number from ΔQ´, 

which is defined as offset: 

Offset=ΔQ´（1）35+ΔQ´（2）34+ΔQ´（3）33 + ΔQ´（4）32+ ΔQ´（5）
3+ΔQ´(4) 

By examining the value range of Offset, the number N of adjacent states 

can be obtained as N=36=729. 

A decimal modulus value qot of Qt is defined to represent the size of Qt: 

qot=Qt（1）105+ Qt（2）104+ Qt（3）103+ Qt（4）102+ Qt（5）102+ 

Qt (5) 

 

Qt sorted by qot: Of the 729 possible transition states for Qt, the first 364 

state values are less than Qt-1, the 365th state value is the same as Qt-1, and the 

following 364 state values are greater than Qt-1. 

A 106729 matrix is defined according to Table 1, wherein the first 

column of the matrix represents the number qot of all 106 state quantities, which is 

also the line number 0-99999; Each row has 729 possible migration states 

corresponding to this state quantity, with proximity state number 0-728 listed in 

the first row. 

The elements in each row in the table represent the probability or 

frequency of transition from one state to another state in the vicinity, where the 

first 364 columns of the first row are constant zeros, the first 363 columns of the 

second row are constant zeros, and so on. From rows 365-99,635, the elements in 

each column may not be zero. Column 729 in line 99,635 is always zero, columns 

728 and 729 in line 99,636 are also always zero, and so on. In line 999,999, all 

columns after 365 are always zero, i.e. a total of 365×729 cells in the matrix are 
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always zero. Cells with a constant value of zero represent mathematically possible 

migration states, but have no physical significance, and the number proportion is 

only 0.0365%, so no special treatment is required. 
 

Table 1  

Calculation of state transition probability matrix A 

 

     aij 

qot 

Transition probability A or frequency aij 

0 2 3  363 364 365  727 728 

[000 

000] 

0 0 0  [000 

000] 

[000 

001] 

[000 

010] 

 [111 

110] 

[111 

111] 

  

[555 

555] 

[444 

445] 

[444 

455] 

 [444 

456] 

 [555 

555] 

 [555 

556] 

[555 

565] 

  [666 

665] 

[666 

665] 

  

[999 

999] 

 [888  

888] 

 [888 

889] 

[888 

899] 

 [999 

999] 

0 0 0  0 

Note： The values listed in [] in this table are the numbers of the corresponding transition 

states, but the initialization value of aij is 0. 

 

At this point, the state transition probability matrix of HMM model is 

defined: 

A=[aij]。i= qot =0⁓999999， j =0⁓728 

The data glove can also measure the bending angle of five fingers. 

Considering that the normal working state of the assistive hand with single 

degree-of-freedom is two states of opening and closing controlled by force, but 

the degree of opening and closing depends on the size of the grasped object, it is 

stipulated that the force on the tip of the finger, where the thumb and forefinger 

are open and the other fingers are stretched, is zero, and that the force on the tip of 

the finger when the thumb and forefinger are closed and the other fingers are bent 

is not zero. Reading the bending angle of the index finger and specifying that the 

bending angle is greater than 100 degrees or the force is zero, the finger is 

considered to be open. In addition, considering the practical application, it is 

stipulated that the assistive hand cannot be closed for a long time, which will be 

recorded as an error. If an error occurs, the system will automatically change to 

open after identification. These three quantities are recorded as V={0,1,2} as 

observed values, as shown in Table 2, and the observation probability matrix B is 

established: 
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Table 2  

Observation probability matrix 

V Q0 Q2  Q999999 

0     

1     

 

The initial state probability vector is defined π=（πi）,i=0-999999: 

                                     (6) 

It means that the motion state of the arm at the initial position of the upper 

limb is the static state numbered [555555], and it is stipulated that the upper limb 

will naturally droop, and the fingers will open at this time. 

Therefore, the HMM model is expressed as:  

3. Model Training 

The data glove is used as the data acquisition equipment, and the HMM 

control model of hand movement can be trained by using supervised learning. 

3.1 Hardware device with tactile perception 

Wearing data gloves, a universal man-machine interface, can obtain the 

posture data of the wearing parts in the movement process in real time, track the 

gestures of the wearer, locate the spatial information and so on. In this paper, DN-

02A data glove made in China by Chengdu Big Bird Intelligent Technology Co., 

Ltd. is selected, which can capture the degree of bending of five fingers in both 

left and right hands, and the attitude angle data of palm, upper arm and forearm at 

the same time, including acceleration, angular velocity and angle, and feedback 

from eight motion nodes in each hand. The control part of the data glove can 

communicate with the host computer through USB or wireless Bluetooth. In this 

paper, the motion parameters of fingers and arms are measured through data 

gloves, which are transmitted to the PC for background processing, as shown in 

Fig. 2: 

 

Fig. 2. DN-02A data glove 
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3.2 Force tactile sensor 

A201 thin-film piezoresistive sensor of FlexiForce Company is selected to 

measure the tactile information of fingertip by attaching it to the thumb tip of data 

glove, and a comparator is designed to measure the opening and closing of finger. 

The closing of the finger only refers to whether the thumb "pinches" the operated 

object in cooperation with other fingers. Since the human hand has adaptive force 

balance ability in grasping, so does the assistive hand due to its shape, attention is 

only paid to whether it is "pinched" to form state observed quantities 0 and 1, as 

shown in Fig. 3: 

 
Fig. 3. Shape of FlexiForce A201 pressure sensor 

 

3.3 Data acquisition and processing 

Due to the large range of the data glove, the angular velocity of the 

subject's arm under daily conditions is observed to be no more than 80
。

/s in many 

experiments. While recording and archiving the original data, the data are 

translated, oriented, rounded and graded according to the following formula: 

´=[（+100.05）/200]10（。
/s）              (7) 

For example, in the initial state, the upper limbs naturally droop and the 

fingers open, ≈0, and ´=5 is calculated, so the initial state Q0=[5 5 5 5 5 5]. 

Suppose that a state vector Q t-1 is obtained after ranking the data measured 

at the t-1th sampling: 

Qt-1 =[BPt-1  BRt-1  BYt-1  FPFt-1  FRt-1  FYt-1]       (8) 

And the observed quantities: V t-1, V t-1 {0,1,2} 

to calculate the line No. i:  

i=BPt-1105+BRt-1104+BYt-1103 +FPFt-1 102+ FRt-110+ FYt-1]  (9) 

The t-th sample data is graded to get a state vector: 

Qt =[BPt  BRt  BYt  FPt   FRt  FYt]          (10) 

The difference between the state vectors is calculated to get a vector 

whose element is 0 or 1: 

ΔQt = Qt —Qt-1=[ΔBPt  ΔBRt  ΔBYt  ΔFPt  ΔFRt, ΔFYt]    (11) 

The column No. j is calculated:  

j=ΔBPt35+ΔBRt34+ΔBYt33+ΔFPFt32+ΔFRt3+ΔFYt+365   (12) 

The frequency of state transition is calculated: aij= aij+1, where the 

initialization value of aij is 0. The frequency of observation is calculated: bji=bji+1, 



Study on fine hand movement based on hidden Markov model                    269 

where the initialization value of bij is 0; i is the same as above, and j=Vt . Thus, the 

frequencies of the state transition matrix A and the observation matrix B are 

obtained respectively.  

3.4. Model training method 

The purpose of HMM model training is to obtain the state transition 

probability matrix A and observation probability matrix B. the method is as 

follows： 

1. Obtain measurement data. Experiments were conducted according to 

3.1 and 3.2 above to obtain the arm motion data of N groups of people when 

completing daily movements, and the data were processed according to 3.3. 

2. Calculate the state transition matrix 

The probability value in row I and column J of the state transition matrix 

A is recorded as PAij, which represents the probability that the ith state will 

migrate to the jth state in the data sequence of a daily action. The calculation 

method is as follows: 

PAij=aij/ =

n

j ija0  

3. Calculate the state observation matrix 

The probability value in row I and column J of the state observation matrix 

B is recorded as PBij, which indicates that in the data sequence of a daily action, 

the observed value is the probability of the ith observation in the jth state. The 

calculation method is as follows: 

PBij=bij/(b0j+b1j) 

4. Control method of disabled hands based on HMM model 

HMM model has two possible uses for helping the disabled: (1) because 

people's daily actions are "habitual repetition", integrating the state value 

converted by the angular velocity of the upper limb in Table 1 with time 

represents a spatial path when people complete the action, and this path also 

corresponds to the state sequence in table 1 of HMM state transition matrix A, 

which can be used to distinguish the types of actions that people complete; (2) 

The observation matrix B represents the opening and closing state of the disabled 

hand in a complex action, which can be used to control the disabled hand. This 

article only discusses and verifies the second use. 

4. Analysis of Experimental Results 

In this paper, the model simulation experiment and the comparative 

experiment of single degree-of-freedom assistive hand were made. 
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4.1. Data analysis of model simulation experiment 

Experimental process: The test set data collected in 3 were analyzed and 

compared. Five subjects were selected, and each group received 50 trials in 

different time periods. The first 40 trials were used as the training set, and the last 

10 trials were used as the test set. During the test, the subjects first kept standing 

still with their arms naturally drooping, opened their thumb and forefinger, and 

started the experiment according to the command to move their right hand 

naturally to the abdomen to hold the zipper, close it, and loosen their fingers. An 

experiment was over. During the experiment, the data glove recorded each group 

of data at the sampling rate of 50Hz. The duration of each experiment was 

generally not more than 3 seconds, and the amount of data collected each time 

was about 140 groups. Matlab was used for data processing and the experimental 

data curve was drawn. A typical zipper pulling process is shown in Fig. 4. The 

abscissa in the figure shows the order of data acquisition. 
 

 

 

Fig. 4. Three-axis angular velocity of arm, palm and forearm in data 1 
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Five processes in the whole zipper pulling process are marked in Fig. 4. 

Part I represents the initial state of rest readiness; Part II is the process before the 

hand moved to the lower abdomen; Part III is the process to close the finger and 

tighten the zipper; Part IV is the zipper pulling process, during which slight and 

short-term zipper stuck sometimes occurs, which is characterized by slight 

oscillation of the arm; Part V is the pause after the zipper pull is completed when 

the fingers are released and ready to move away. By comparing the acceleration 

diagram with the angular velocity diagram, it is found that the expression of 

acceleration for the zipper pulling process is not as intuitive as that of angular 

velocity. The test set data is deduced by the trained model and compared with the 

actual test data. The results are shown in Table 3 below: 
 

Table 3  

Data comparison 

Data set Data 1 Data 2 Data 3 Data 4 Data 5 Total data 

Total number of sampling points 1393 1451 1423 1405 1413 7085 

Number of points for judging the 

correct state 
1329 1389 1361 1386 1354 6810 

Accuracy (%) 95.4 95.7 95.6 98.6 95.8 96.2 

 

4.2 Simulation experiment of assistive hand control 

Five subjects were respectively equipped with data gloves and held the 

assistive hand to simulate the zipper pulling action of the disabled hand. The 

movement of the upper limb was collected at a rate of 5Hz, and the opening and 

closing instructions of the computer to the assistive hand were used to replace the 

aforementioned closing data of the hand. Another observer was asked to control 

the opening and closing of the assistive hand through the cable, and the process of 

the observer controlling the assistive hand was taken as a theoretical process.  
 

In order to avoid the experiment failure caused by the stuck zipper caused 

by the quality, it is set as the blocking state (observed value π=2) when the finger 

closing time exceeds 2s and the arm state is [555555]. At this time, the assistive 

hand will be automatically opened since it is designed as a failure in task. The 

simulation curves of five subjects are shown in Fig. 5: 
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Fig. 5. Curves of simulation experiment 

 

By analyzing the above figures, the control method of assistive hand based 

on HMM model basically coincides with that of observer, but the response of 

assistive hand controlled by HMM model to action is more sensitive than that of 

observer, and there are observable advances in the beginning of closing and 

pinching and the end of opening, as shown in the following Table 4: 
 

Table 4  

Test data 

 Test 1 Test 2 Test 3 Test 4 Test 5 

Closing at the beginning  -0.2s 0 — — -0.2 

Opening at the end -0.4 -0.5 -0.6 -0.2 -0.3 

5. Conclusions 

In this paper, a control algorithm for the assistive hand based on Markov 

chain was proposed, including establishing a Markov model and improving the 

data structure of state transition matrix, which effectively reduces the storage 

space of state transition matrix. The data collection and processing method, 

experimental equipment and model training method of supervised learning were 

put forward. The results show that Markov chain can effectively describe people's 

complex daily behaviors and processes, and it has good sensitivity and reliability 

when applied to the control of assistive hands. In the future, it may be further 

expanded to enable assistive hands to smoothly complete other daily actions, so as 

to become a general control method for assistive hands. 
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