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Rezultatele din această lucrare provin din studiul subvarietăţilor Rieman-
niene convexe, utilizând instrumente specifice invexităţii. Considerând o
structură Riemanniană g, o aplicaţie de ı̂mperechere η şi un câmp vecto-
rial F care satisface o anumită condiţie de ortogonalitate, definim şi studiem
subvarietăţile Riemanniene (F, g, η)-convexe şi demonstrăm faptul ca acestea
generalizează hipersuprafeţele convexe şi subvarietăţile H-convexe. Princi-
palul rezultat obţinut de noi constă ı̂n demonstrarea existenţei unei schimbări
de metrică şi a unei transformări a câmpului vectorial F induse de η, faţă
de care subvarietatea devine convexă.

The results in this paper are coming from the study of convex Rieman-

nian submanifolds using tools specific to invexity. Considering a Riemannian

structure g on a differentiable manifold, a pairing map η and a vector field

F satisfying a certain condition of orthogonality, we define and we study the

(F, g, η)-convexity of the Riemannian submanifolds, and we prove that this

kind of convexity is a generalization for the Riemannian convexity of hy-

persurfaces or for the Riemannian H-convexity of submanifolds. The main

result of this study consists in proving that there is a change of metric and a

change of the vector field F , induced by η, such that the submanifold becomes

Riemannian convex, relative to the new objects.
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1. Tools for Riemannian convexity of submanifolds

The convexity of hypersurfaces in Riemannian setting has been defined
and studied in [1]. Three mathematical ingredients were needed for this: the
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Riemannian structure of the manifold, the normal vector field of the hyper-
surface and the exponential map. At first sight, because of the connection
between the metric and the exponential map, it seems redundant to make ref-
erence to both of them. In fact, we will prove that each of this two elements
plays a specific role in convexity. In [2] and [3] the convexity is extended
to arbitrary Riemannian submanifolds. The main idea was to replace the
normal vector field from hypersurfaces with the mean curvature vector field.
The conclusion is that we can study the (F, g)-convexity of a submanifold for
each Riemannian structure g and each normal vector field F .

In the following two sections, we recall these definitions, together with
some properties of the convex submanifolds.

The papers ([4]-[10]) deal with the concept of invexity. We take over the
idea of replacing the local inverse of the exponential map by a vectorial map
generated by pairs of points (called pairing map) and we use this substitute
to define the (F, g, η)-convexity of a submanifold at a point x. We make
an important assumption, that is, η must be locally antisymmetric via the
parallel transport along geodesics. This time, F (x) needs to be normal to
a vectorial space induced by the given submanifold and by η. In Section 4,
we prove that, by replacing the metric and the vector field F with some new
elements controlled by η, we obtain an equivalence between the old concept
of convexity (involving the exponential map) and the new one (involving
the pairing map η). We also give some descriptions of the (F, g, η)-convex
submanifolds, using the second fundamental form.

In the last section, we point out the main ideas.

2. Riemannian convex hypersurfaces

We recall the results related to convex hypersurfaces obtained in [1]. We
consider an n-dimensional Riemannian manifold (M, g) and an oriented hy-
persurface N ⊂ M , endowed with the induced metric. We also denote by ξ
the normal vector field on N . For a fixed point x ∈ N , we consider a neigh-
borhood Vx of x in M such that the exponential map expx : TxM → Vx is a
diffeomorphism. The function

f : Vx → R, f(y) = g(exp−1x (y), ξ(x)) (1)

determines the totally geodesic hypersurface

TGHx = {y ∈ Vx| f(y) = 0}, (2)
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and the subsets

TGH−x = {y ∈ Vx| f(y) ≤ 0}, TGH+
x = {y ∈ Vx| f(y) ≥ 0}. (3)

We also consider the bilinear form

Ωx : TxN × TxN → R, Ωx(X, Y ) = g(h(X, Y ), ξ(x)), (4)

where h denotes the second fundamental form of the hypersurface.
We recall below the definition and the main properties of convex hyper-

surfaces [1].

Definition 1 The hypersurface N is called (ξ, g)-convex at x ∈ N if there
is an open neighborhood U ⊆ Vx ⊂ M of x such that U ∩ N ⊆ TGH−x or
U ∩N ⊆ TGH+

x .
The hypersurface N is called strictly (ξ, g)-convex at x if it is convex and

N ∩ U ∩ TGHx = {x}.

Theorem 1 If N is an oriented hypersurface in (M, g), (ξ, g)-convex at x,
then the bilinear form Ω is positive or negative semidefinite. If Ω is positive
or negative definite, then N is strictly (ξ, g)-convex at x.

Theorem 2 If the Riemannian manifold (M, g) supports a function with pos-
itive definite Hessian, then, for each compact and oriented hypersurface N of
M , there is a point x ∈ N such that Ωx is definite.

Theorem 3 If the Riemannian manifold (M, g) supports a function with pos-
itive definite Hessian, then

1. there are no minimal compact hipersurfaces in M ;

2. if a hypersurface N is connected and compact, with the Gauss curvature
nowhere zero, then N is strictly (ξ, g)-convex.

Theorem 4 If ϕ : M → R is a differentiable function with positive defi-
nite Hessian, then its constant level hypersurfaces, which do not contain any
critical points of ϕ, are strictly (gradϕ, g)-convex.

3. Riemannian H-convex submanifolds
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In this section, we recall the theory of Riemannian H-convex submanifolds
(see [2], [3]). Again, (M, g) is an n-dimensional Riemannian manifold, N is an
m-dimensional submanifold endowed with the induced metric and H denotes
the mean curvature vector field on N . If x ∈ M is a fixed point such that
H(x) 6= 0 and Vx is a neighborhood of x as above, we define the function

f : Vx → R, f(y) = g(exp−1x (y), H(x)) (5)

and the bilinear form

Ωx : TxN × TxN → R, Ωx(X, Y ) = g(h(X, Y ), H(x)), (6)

where h denotes again the second fundamental form of N .
We add the subsets

TGH−x = {y ∈ Vx| f(y) ≤ 0}, TGH+
x = {y ∈ Vx| f(y) ≥ 0}

and
TGHx = {y ∈ Vx| f(y) = 0}.

Definition 2 The submanifold N is called (H,g)-convex at x ∈ N if there
is an open neighborhood U ⊂ Vx of x in M such that U ∩ N ⊆ TGH−x or
U ∩N ⊆ TGH+

x .
The Riemannian submanifold N is called strictly (H,g)-convex at x if N

is (H, g)-convex and N ∩ U ∩ TGHx = {x}.

Theorem 5 If the submanifold N is (H, g)-convex at x ∈ N , then the bilinear
form Ωx is positive or negative semidefinite. If the bilinear form Ωx is definite,
then N is strictly (H, g)-convex at x.

Theorem 6 If (M, g) is a Riemannian manifold and c : I →M is a differen-
tiable curve having nonzero mean curvature, then c is a strictly (H, g)-convex
submanifold of M .

Remark. We can define and study in a similar way the (F, g)-convex
submanifolds, where F denotes an arbitrary normal vector field of the inves-
tigated submanifold. The following result holds.

Theorem 7 If F is a normal vector field of a submanifold N such that N is
(F, g)-convex at x ∈ N , then the bilinear form

Ωx : TxN × TxN → R, Ωx(X, Y ) = g(h(X, Y ), Fx), (7)

is semidefinite. If the bilinear form Ωx is definite, then N is strictly (F, g)-
convex at x.
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Remark. The normal vector field F and the Riemannian structure play
an equally important role in convexity. In order to enforce this idea we use
the term of (F, g)-convexity, especially if we need to specify the Riemannian
structure that creates the convexity. Furthermore, in the following section
we prove that there is also a third parameter involved in convexity, that is,
the local inverse of the exponential map. By taking variations for this third
geometric parameter, we define and study next the (F, g, η)-convexity.

4. (F, g, η)-Convex submanifolds

In this section (M, g) continues to be an n-dimensional Riemannian man-
ifold, N is an m-dimensional Riemannian submanifold, and Vx is a neighbor-
hood of x such that expx : TxM → Vx is a diffeomorphism.

Definition 3 A vectorial map

η : M ×M → TM, η(y, x) ∈ TxM (8)

is called pairing map.

From now on, we suppose that the restriction

η(x) : Vx → TxM, η(x)(y) = η(y, x)

is a diffeomorphism.

Definition 4 The pairing map η : M ×M → TM is called locally antisym-
metric via the parallel transport if, for each point x ∈M there is a neighbor-
hood V such that, for each point y ∈ V and each geodesic connecting x and
y, we have

Tyη(y, x) = −η(x, y), ∀x, y ∈M, (9)

where Tyη(y, x) is the parallel transport of η(y, x) from x to y along that
geodesic.

Remark. For each point x ∈ M and a neighborhood Vx of x such that
expx : TxM → Vx is a diffeomorphism, we denote by η

(x)
0 the map defined by

η
(x)
0 : Vx → TxM, η

(x)
0 (y) = exp−1x (y). (10)

Furthermore, we consider an arbitrary extension η0 : M ×M → TM of
the previous map, satisfying η0(y, x) = η

(x)
0 (y), ∀x ∈M, ∀y ∈ Vx. Then η0 is

an example of a locally antisymmetric pairing map.
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If η : M ×M → TM is a locally antisymmetric pairing map on M and
x ∈M is a fixed point, we consider the vector field

U (x)(y) = −η(x, y).

In the following, we consider x ∈ N a fixed point. We know that both
η(x) : Vx → TxM and expx : TxM → Vx are diffeomorphisms. It follows that
the map

ϕ(x) : Vx → Vx, ϕ
(x)(y) = expx(η(x)(y)) (11)

is also a diffeomorphism on Vx having x as fixed point (i.e. ϕ(x)(x) = x).
We consider the submanifold Ñ = ϕ(x)(N ∩ Vx) with the induced metric

g.

Lemma 8 If η : M × M → TM is a locally antisymmetric pairing map,
differentiable in the first argument, then

ϕ(x)
∗ X = ∇XU

(x), ∀X ∈ TxM. (12)

Proof. Let us consider x ∈ M and X ∈ TxM and let α : I → M be a
geodesic such that α(0) = x and α̇(0) = X. We know that there is some open
neighborhood V of x where η is antisymmetric (as in definition). We suppose
that Im(α) ⊂ V and, if Y (x) ∈ TxM and Y ∈ X (M) is a parallel extension
of Y (x) along the geodesic α, we have

g(η(α(t), x), Y (x)) = −g(η(x, α(t)), Y (α(t))) = g(U (x)(α(t)), Y (α(t)))⇒

d

dt
[g(η(α(t), x), Y (x))− g(U (x)(α(t)), Y (α(t)))]|t=0 = 0⇒

g(Z(x), Y (x)) = 0,∀Y ∈ X (M),

where

Z(x) = [
d

dt
ηi(α(t), x)|t=0 − (∇XU

(x))i]
∂

∂xi
|x.

It follows that
d

dt
η(α(t), x)|t=0 = ∇XU

(x)

and

ϕ(x)
∗ X =

d

dt
expx(η(α(t), x))|t=0 =

d

dt
η(α(t), x)|t=0 = ∇XU

(x).
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The immediate consequence of the previous Lemma is that

TxÑ = {∇XU
(x)| X ∈ TxM}.

From now on, F ∈ X (M) is a vector field such that Fx ∈ T⊥x Ñ , that is

F (x)⊥gTxÑ , (13)

where ⊥g denotes the orthogonality with respect to the metric g.
For a fixed point x ∈M , we introduce the function

f (x) : Vx → R, f (x)(y) = g(η(y, x), F (x)) (14)

on M , similar to the height function used in the study of convex hypersurfaces
orH-convex submanifolds. Also we use the subsets TGHx, TGH−x and TGH+

x

associated to f (x).

Definition 5 The submanifold N is called (F, g, η)-convex at x ∈ N if there
is an open neighborhood U ⊂ Vx of x in M such that U ∩ N ⊆ TGH−x or
U ∩N ⊆ TGH+

x .
The submanifold N is called strictly (F, g, η)-convex at x if N is (F, g, η)-

convex at x and N ∩ U ∩ TGHx = {x}.

Remark. If N is an oriented hypersurface of (M, g), if F is the normal
vector field and η = η0, we regain the definition of convex hypersurfaces.
Moreover, if η = η0 and F = H, then we obtain the definition of H-convex
submanifolds. Generally, if η = η0 and F is a normal vector field of the
submanifold N , we regain the (F, g)-convexity.

The function f (x) can also be expressed as

f (x)(y) = g(exp−1x (ϕ(x)(y)), F (x)).

Let g = ϕ(x)∗g be the Riemannian metric on Vx induced by ϕ(x) and let
∇ be the associated Levi-Civita connection. Then

ϕ(x)
∗ (∇XY ) = ∇

ϕ
(x)
∗ X

ϕ(x)
∗ Y, ∀X, Y ∈ X (Vx).

We also consider
F (x) = ϕ(x)−1

∗,x (F (x)).

Because F (x) ∈ TxÑ , it follows that g(F (x),∇XU
(x)) = g(F (x), X) =

0, ∀X ∈ TxN , that is
F (x)⊥gTxN. (15)
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At this moment, we have two Riemannian submanifolds: (N, g) and (Ñ , g),
both containing x, and two normal vectors

F (x)⊥gTxN and F (x)⊥gTxÑ .

We prove below that there is some relation between the convexities of
those two structures.

Theorem 9 The following statements are equivalent:

1. the submanifold N is (strictly) (F, g, η)-convex at x;

2. the submanifold Ñ is (strictly) (F, g)-convex at x;

3. the submanifold N is (strictly) (F , g)-convex at x.

Proof. Because F (x)⊥gTxÑ and F (x)⊥gTxN , it makes sense to talk
about the (F, g)-convexity of Ñ , respectively the (F , g)-convexity of N . Fur-
thermore, the submanifold N is (F, g, η)-convex at x if there is a neighbor-
hood U of x in Vx such that f (x)(y) ≥ 0 or f (x)(y) ≤ 0, ∀x ∈ U ∩ N .
Now, if Ũ = ϕ(x)(U) and z ∈ Ũ ∩ Ñ , z = ϕ(x)(y), where y ∈ U ∩ N ,
then the previous inequalities become g(exp−1x (z), F (x)) ≥ 0, respectively
g(exp−1x (z), F (x)) ≤ 0, obtaining precisely the condition for Ñ to be (F, g)-
convex.

Furthermore, because ϕ
(x)−1
∗,x ◦ exp−1x = (expx)−1 ◦ϕ(x)−1, where exp is the

exponential map induced by g, the function f (x) can also be expressed by the
following relation

f (x)(y) = g(exp−1x (y), F (x))

and the above inequalities also express the fact that N is (F , g)-convex at
x. Similar arguments can be used to prove the equivalences in the strictly
convex case. �

Corollary 10 The following statements are true.

1. If N is (F, g, η)-convex at x ∈ N , then the bilinear form

Ω
(x)
1 : TxN × TxN → R, Ω

(x)
1 (X, Y ) = g(h(∇XU

(x),∇YU
(x)), F (x))

(16)
is semidefinite, where h denotes the second fundamental form of the
submanifold (Ñ , g).
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2. If N is (F, g, η)-convex at x ∈ N , then the bilinear form

Ω
(x)
2 : TxN × TxN → R, Ω

(x)
2 (X, Y ) = g(h(X, Y ), F (x)) (17)

is semidefinite, where h denotes the second fundamental form of the
submanifold (N, g).

3. If one of the previous two bilinear forms is definite, then the other one
is also definite and the submanifold N is strictly (F, g, η)-convex at x.

Proof. We suppose that N is (F, g, η)-convex at x ∈ N and, moreover,
U ∩N ⊆ TGH+

x . An immediate consequence is that Ñ is (F, g)-convex and,
similarly to the results from the previous paragraphs, it follows that

g(h(X̃, X̃), F (x)) ≥ 0, ∀X̃ ∈ Tx(Ñ),

or, equivalent

g(h(∇XU
(x),∇XU

(x)), F (x)) ≥ 0, ∀X ∈ TxN.

Furthermore, because N is also (F , g)-convex, we also have

g(h(X,X), F (x)) ≥ 0, ∀X ∈ TxN.

Conversely, we know that

g(h(X,X), F (x)) = g(h(∇XU
(x),∇XU

(x)), F (x))

and we suppose that one of them is strictly positive. With the same arguments
as in the previous paragraphs, it follows that Ñ is strictly (F, g)-convex at x
and N is strictly (F , g)-convex at x, therefore N is also (F, g, η)-convex at x.

Remark. When considering η = η0 in the previous theorem, we found, as
expected, the descriptions for the (F, g)-convex submanifolds. Indeed, when
considering η0(y, x) = exp−1x (y) (locally), we have

ϕ(x) = IdVx , Ñ = N ∩ Vx, ∇XU
(x) = X

and we obtain g(h(∇XU
(x),∇XU

(x)), F (x)) = g(h(X,X), F (x)).

5. Conclusions

The novelty of this paper consists in the study of convexity of Riemannian
submanifolds with respect to a pairing map η. The most relevant outcomes
of this analyze are:
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(1) The convexity of a hypersurface is a particular case of (F, g, η)-convexity,
when F is the normal vector field, g is the Riemannian structure of the mani-
fold and η is locally defined by the inverse of the exponential map. Similarly,
when F is the mean curvature vector field, the (F, g, η)-convexity is equivalent
to the H-convexity.

(2) Every (F, g, η)-convex submanifold is also (F , g)-convex, where F and
g are deformations induced by η. More precisely, η generates a local diffeomor-
phism of the manifold which transforms η into the inverse of the exponential
map.

(3) There are two descriptions for a (F, g, η)-convex submanifold, involv-
ing the second fundamental form of the given submanifold, respectively the
second fundamental form of the image of the given submanifold under the
local diffeomorphism induced by η.
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