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NUMERICAL SIMULATION OF THE MECHANICAL
FEEDBACK SERVOPUMPS BY AMESIM

Georgiana Claudia VASILIU', Daniela VAS}LIU{ Nicolae VASILIU?,
Dragos ION GUTA4

The paper presents the mathematical modeling, and the numerical simulation
of the dynamics of a swashplate servopump with mechanical feedback. The
servomechanism controlling the pump displacement is supplied by a low pressure
gear pump, and includes oversized pistons for rejecting the high frequency tilting
force. The response time is controlled by the diameter of a metering orifice sited on

the supply port. The theoretical performance of the servopump is found in good
agreement with the manufacturer specifications.
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1. Mechanical feedback servopumps structure

The mobile hydrostatic transmissions include hydro mechanical servos
with lever feedback and centermg springs sited in the cyhnders (fig.1).

a) b)
Fig.1.EATON Servopump: a)neutral swashplate position; b) with active sevomechanism [1]
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The security offered by these servos is one of the main quality needed by
the mobile equipmentsoperating in extreme environmental conditions. In the last
decade the mechanical feedback became a hybrid one: the input lever is controlled
by two position proportional solenoids, for the two flow direction. These devices
are replacing the manual direct input by a joystick.

The last type of the displacement control system is a pure electrohydraulic
servomechanism controlled by a "CAN Electronic Displacement Control"[1,2]
The centering springs are acting directly on the hydraulic cylinder controlling the
pump piston's stroke.

This paper is devoted to the modeling and simulation of the mechanical
servopump by the aid of AMESIM simulation language. Common components
from the dedicated libraries are used. The servos controlling the pump
displacement (fig.2) has in input lever 4 actuating one end of the error bar 5.
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Fig. 2. Mechanical feedback servopumpwith swashplate:
1-shaft mechanical sealing; 2-spherical bush; 3-piston; 4-input lever; 5-errorbar; 6-barrel; 7-spool;
8-fixed valve plate; 9-check valve; 10-pressure relief valve; 11-auxiliary pump; 12-hydraulic
cylinder spring centered;13-mobile valve plate; 14-hydrostatic shoes retainer;15-
hydrostaticshoes; 16-swashplate; 17-feedback lever.
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The other end of this bar is connected to the feedback lever 17. The
positioning error is fed to the spool valve with a ratio of 1/2, improving the
stabilityof the whole control system[1,2,3]. The spool underlap of about 1 mm
introduces a dead band of about +2,5at the level of input lever. The neutral
position of the swashplate is automatically obtained by releasing the input lever: a
centering spring is sending the spool in the neutral position from any stroke.

The stability and the response time of the servomechanism are controlled by
the aid of a sharp edge metering orifice. The orifice size is established according
the customer demand. The usual diameter is about 1mm, non dangerous from the
obliteration point of view [4]. The response time of the stroking system directly
depends on the orifice diameter: between 0.71 and 2.59 mm, the time needed by
pistons to accomplish the whole stroke stays in the range 0.29 and 7.48 s. The big
values correspond to big displacementpumps (250cm’/rev). According the
numerical simulations and the experimental identifications [4], this is the simplest
way of controlling the dynamic behavior of the hydraulic servomechanism.

2. Modeling the kinematics of the servomechanism

The mathematical model of the servomechanism contains a mechanical
sequence including all the moving components. This part can be generated using
the module PLMASSEMBLY from AMESIM (fig. 3, 4).

a) b) <)

Fig. 3. The servopump servomechanism mechanical components in different steady-state
situations(PLMASSEMBLY model from AMESIM):a) neutral position (no input); b) locked
spool and constant force developed by the lower cylinder; c¢) locked spool and constant force

developed by the upper cylinder.
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Fig. 4. Servomechanism simulation networkdeveloped in Planar Mechanical module
fromAMESIM

3. Modeling and simulation of the servomechanism dynamics

The mathematical model of the servomechanism set up in AMESIM
language may be considered as a general one, but it reflects with accuracy the
kinematic and the hydraulic structure of the studied system(fig.5). This model was
used for simulating three linear inputs applied to the input (control) lever from
zero to 5°, 10° and 15° (fig.6).The main variables evolution is presented in the
figures 7...12. The servomechanism is supplied by the auxiliary pump with
hydraulic fluid under low pressure (16 bar). Consequently, the pressure drop
across the metering orifice becomes very important during the transients,
increasing the control system response time. This one matches the requirements of
the mobile equipments with high inertia components. The servovalve opening
reaches 4.3 mm for a negative lap of about 1mm and round metering holes sited in
the valve body. The maximum speed of the stroking piston reaches small values
(15 mm/s). The time constant of the first order response can be adjusted between
0.8 and 2.2 s with damping orifices of 1.2...0.8 mm.
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Fig. 6. Swashplate angle variation during the transients
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Fig.7. Servovalve spool stroke variations during the transients
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Fig. 8. Low piston displacements during the transients
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Fig. 9. Hydraulic cylinder pistons displacements during the transients
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Fig. 10.The influence of the damping orifices diameter on the system response time for a step
input of 15° introduced by the control lever
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4. Simulation modelof theservopumpdynamics

The complete AMESIM model of thestudied axial piston servopump is
presented in the figure 11.
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Fig.11. AMESIM modelof aswashplate servopump with 9 pistonssupplying an orifice
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Twodifferent steps input applied on the input lever generates the flows
presented in the figure 12. The output flow passes through an orifice.The flow
irregularities(fig. 13) correspond to the pistons number (9) and to the shaft speed
(25s™.
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Fig. 12.Servo pump flow variations generated by two input signals
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Fig. 13. Pressure variation at the servopump output for a constant input
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6. Conclusions

The numerical simulations results obtained by AMESIM environment for

the global parameters of the servopump displacement control are in good
agreement with the manufacturer technical specifications. Other series of
numerical simulations performed by general purpose languages like SIMULINK
[1-3] or LabVIEW [8] are giving the same results. The servopump dynamic model
will be included in the hydraulic library of the new release of AMESIM language
[9-13]. The new mathematical model can be used in a wide category of
applications, including the hydropower units speed governors [4-7].
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