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AN ANALYSIS OF BOGIE HUNTING INSTABILITY

Traian MAZILU!

Miscarea de serpuire este specifica vehiculelor feroviare si instabilitatea ei
limiteaza viteza maxima de circulatie. Articolul se ocupd de migcarea de serpuire a
unui boghiu care echipeazd vagoanele de calatori. Pentru aceasta, s-a considerat
un model complex pentru boghiu §i cale. Miscarea de serpuire este cuplata cu
migcarea verticald. Datoritd contactului roatd-gind, miscarea de serpuire este
neliniard. Pentru studierea ciclurilor limita este aplicatd teoria bi-contactului
elastic roata-sind. Miscarea de serpuire a boghiului are doua cicluri limita. Primul
ciclu limita este instabil, fara ca flancul exterior al profilului rotii sa atinga flancul
interior al ginei. Al doilea ciclu limita este stabil pentru ca sinele limiteaza
deplasarea transversala a osiilor. Este studiatd de asemenea migcarea de serpuire
a boghiului pe o cale cu abateri de aliniament aleatoare.

The hunting movement is specific for railway vehicles and their maximal
speed is limited due to hunting instability. The paper deals with the hunting
movement of passenger coach bogie. To this aim, a complex bogie/track model has
been considered. The hunting and the vertical movements are coupled. The hunting
movement is non-linear due to wheel/rail contact. To study the hunting limit cycles,
the elastic wheel/rail bi-contact theory is applied. The bogie hunting exhibits two
limit cycles. The first is unstable and no contact wheel flange/rail occurs. The
second limit cycle is stable due to wheel flange/rail impact. The hunting movement
on a track which has random alignment irregularities is studied as well.
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1. Introduction

The hunting movement is a consequence of the reversed conic shape of the
rolling surfaces. For instance, if the axle is transversally displaced, the wheel
rolling on a larger diameter will advance quicker than the other one, which always
stays behind because the wheels are fixed in a rigid manner to the axle’s body
(fig.1). The axle spins compared to the vertical axis and, eventually, will approach
the track’s middle axis. In this moment, the axle spinning angle will be at its
highest value and both wheels will roll on even diameters. Next, the axle will
continue its movement, leaving the center position to the opposite side from the
initial lateral displacement, forcing the wheel to roll on smaller and smaller
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diameters and the other one on increasingly larger diameters. Both wheels will
reach the same level at the precise moment when the axle center is situated at the
maximum distance from the rail longitudinal axis. From now on, the movement
will repeat itself in reverse. The axle center’s trajectory is a sinuous curve.
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1. The axle trajectory.

This phenomenon of kinematical motion was described for the first time
by Stephenson, and Klingel [1] determined the hunting wavelength according to

his famous formulae
L=2m|", (1)
Ve

where 7 is the rolling radius, 2e — the distance between the wheel/rail contact
points and v, — the effective conicity.

This movement is passed over to the bogie and to the vehicle body through
suspension elements. During the circulation, this hunting movement is also
sustained by rail alignment irregularities; therefore, its intensity will be influenced
by the size of these irregularities. In addition to that, the regime of this hunting
movement depends on the running speed - at low speeds, this movement is stable
and at high speeds, this movement becomes unstable. The value of speed when
the movement behaviour becomes unstable is known as the so-called Aunting
critical speed. Above the critical speed, large values of forces acting between
wheel and rail occur, and the resultant of these forces contribute to: the risk of
derailment at higher speeds, damage to track, high level of vibration, with bad ride
comfort or damage to freight, fatigue failure of the vehicle structure and wear of
components.

The hunting stability and critical speed were studied and linear models
have been used in many papers. Wickens [2, 3], Joly [4, 5], Sebesan [6] or Lee
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and Cheng [7] investigated the influence of different parameters to create a basis
for better bogie design.

The hunting movement is an interesting example of non-linear vibration.
The non linearity of the movement is governed by the laws of geometry and
friction. Generally, the wheel/rail contact is represented by a point on the rolling
surface (the so-called mono — contact), as it may be seen in fig. 2. If the axle
consumes its lateral displacement, the flange of the attacking wheel will touch the
interior flange of the rail. This particular situation is known as bi — contact and
occurs when there are two actual contact points between the wheel and the rail.
When the movement stability is lost, the oscillation is limited in amplitude by the
wheel flanges and a limit cycle occurs.
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Fig 2. The wheel/rail contact. Fig 3. Wheel/rail friction coefficient.

On the other hand, the friction force has a non — linear variation, which
depends on the so-called creepage (the ratio between the wheel slip speed and the
wheel rolling velocity) when the wheel approaches to the appropriate rail as one can
see in fig. 3.

Non — linear models were used by De Pater [8] and van Bommel [9]. They
applied harmonic balance method or method of Krylov and Bogoljubov to study
the limit cycle due to flange/rail contact introduced as percussion. Huilgol [10],
True and Kaas-Petersen, [11], and True, [12] investigated the Hopf bifurcation,
taking into account the nonlinear wheel/rail contact force as well.

To predict the wheel/rail contact force during the hunting movement,
Pascal [13] and Shabana et al. [14] developed their own methods. The critical
point remains the wheel/rail bi-contact. An original approach of this issue has
been introduced by Mazilu [15, 16]. Starting from this method, the limit cycles for
bogie hunting are analyzed in this paper.

2. Mechanical model

The mechanical model of a two-axle bogie/track is presented in fig.4. The
movement is considered to be reported to the fixed referential w&n. The bogie
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moves along the ®f axis at a constant velocity, V. The suspended mass of the
bogie is considered to be a rigid with 5 degrees of freedom: two translations —
lateral displacement y and vertical displacement (bounce) z; three rotations — roll
¢, gallop 6 and yaw . The mass centre of the bogie is situated at axle level.
Usually, modern passenger coaches fulfil this requirement.

The axles are rigid bodies with four degrees of freedom: two translations —
recoil x; and lateral displacement y; — and two rotations — the revolution 6; and
yaw ; with i=1+2. The vertical displacement z; and roll ¢; movements of the axle
are not independent. The corresponding movement equations are though written,
in order to be used in the calculus for reaction forces on the rolling surfaces. The
gyroscopic effect of the axle is considered as well.

m’fx’fyjz l4Q—g(m +2mn)
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Fig 4. The mechanical model for bogie hunting,

Under each axle, the track is considered as a rigid body system with three
pieces, two rails and one sleeper, elastically connected together and to the ground.
In parallel to the elastic elements, damping elements were considered as well. The
periodic variation of the rail lateral stiffness caused by the periodic sleeper
support is negligible. The rails have lateral independent movements y,; (axle i,
wheel j). The sleeper standing right under the ‘i axle moves transversally with y;;.
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The sleeper and the rails are moving together in the vertical z; movement
and in the roll ¢;; movement.

All elastic and damping elements have linear characteristics.

The equations of motion result through the application of the Lagrange
equations method. The following were obtained:

1. The equations of motion of the bogie:

mj}-‘rcy(zy_yl_y2)+ky(2y_yl_y2):()’ (1)
mi+c. (22-2,-z,)+k.(2z-z,-2,)=0, )
L+c,20-¢, - ¢,)+k,20-0,—¢,)=0, (3)
Iyé+ce(26+zl;sz+ke(29+zl;Zz]zo, (4)

Iz\.p+c\yx(2\il_\ill _W2)+k\yx(2w_\vl _W2)+

+Cwy(2\ij_ylasz'i_k\uy(z\V—ylasz:Ov (5)

where m stands for the suspended bogie mass, I, 1, and L for the moments of
inertia, k., k, and k. for the elastic constants, ¢, ¢, and c. for the damping
constants, 2a for the bogie wheelbase, 2b for the transversal suspension base and
co= b, ko= Ieb?, cyu= b, k= kib?, ¢yy= ¢,@°, kyy= kya®, co= c.a” and ko= k.a’;

2. The equations of motion of the axle ‘7’

myX, +c (X, =x)+k (x, -x)=X, + X,,, (6)

myd, +e [y, =+ (D aple vk [y, -y (Dayl=v, +v,. ()
me, +c. |z, —2—(~1yab]+ k.[z, -z - (-1)a0]= 0, + 0, 20,  (8)
1,0=-r(X, +X,), 9)

1,0, +c¢(¢)i _¢)+k¢((pi _(p)_IOe(V/r)\ili zr(Kl +Yi2)+e(Qil _Qiz)a (10)
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1, +cwx(\ifi _\if)+kwx(\|/i _W)+[0e(V/r)<Di :'e(Xil _XiZ)’ (11)

where my stands for the mass of the axle, /y and /y. for the moments of inertia and
Xi, Yy, Qy for the projections of the resultant of the wheel/rail contact force;
3. The equations of motion of the track
- the equation of motion of the rail under wheel j of axle i

mr.j}rij + cr(j}rij - )'/si) + kr(yrij - ysi) = _Y:j + (_1)1th’Y5 (12)
- the equations of motion of the sleeper under axle i

msj}si + C.syy.si + Cr (2yw - yril - j}ri2)+ ksyysi + kr (2ysi - yril - yri2 ) = 0’ (13)

(m, +2m, )z, +c 2, +k,z,=20-0, — 0., (14)

sz < si sz si

([s + 2’/nre2 k[.)si + Cszef(bxi + kszef(Psi = _e(Qil - Qi2 )’ (15)

where m, stands for the mass of the rail, m, for the mass of the sleeper, /; for the
moment inertia of the sleeper, &, k, and k. for the elastic constants, c,, cy,, and c.
for the damping constants and 2Q for the static load of the axle.

Fig 5. The wheel/rail contact forces.

The wheel/rail contact forces are presented in fig.5 (mono — contact): the
normal force Nj and the friction force 7 with its components 7%; and 7,.;. The
components of the resultants of the contact forces are

Xy =Ty +0(8 5 )Ty, (15)

Yij = 1]\/vtj Sin(’Yij i (psi )+ Tyzij COS(Y/’j i (Psi)+

16
+ G(Sﬁj )[J_r Ny Sin(Yf to, )+ Ty COS(Yf o, )l (1o

Q,=N, cos(y FELOp )i T.; sin(y ;L0 )+

17
+ G(Sﬁj )[Nbl.j cos(yf T, )i Ty sin(yf To, )l 17
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where y; stands for the contact angle, o4 for the elastic deformation of the wheel
in case of flange contact (subscript f) and o(.) is the Heaviside function.

For the friction forces, the non — linear Chartet’s modified formula [17]
was used [6, 15, 18]

N kv N
L AL (18)

1+ (iev/p)’ " 1+ (iev/p)’

where v, and v,. stand for the components of the creepage known as v, k is the
creepage coefficient determined in accordance to Kalker’s theory [19] and p is the
coefficient of adherence. The creepage is determined mainly by the kinematics of
the axle.

The system of equations may be solved numerically using the Runge —
Kutta method. If both wheels of the same axle are in a mono — contact position,
the normal forces are calculated from the algebraic system formed by the axle
lifting and roll movement equations. These equations were obtained by
substituting the accelerations of the dependent movements (z; and ¢;) with the
accelerations of the independent coordinates. The corresponding formulae result
from kinematical analysis of the axle.

If one wheel is in a bi — contact position, the reaction force on the flange is
an additional unknown value. The problem may be solved iterative, using the
formula for the flange elastic deformations (Hertz). The elastic deformation of the
flange is correlated with the axle and rail positions, which are known for each
integration step. The elastic deformation of the flange is calculated according to
the wheel/rail elastic bi — contact theory [15].

3. Numerical application

Next, the hunting movement of the Y32 bogie is analyzed. The bogie
main parameters are: m = 3680 kg, I, = 3680 kgm’, I, = 1200 kgm?, . = 3800
kgm?, k, = 40 MN/m, k, = 6 MN/m, k. = 1.25 MN/m, ¢, = 27 kN/(m/s), ¢, = 10.5
KN/(m/s), ¢. = 8.4 kN/(m/s), mo= 1310 kg, Io= 740 kgm?, Ip.= 210 kgm®, 2e¢ =1.5
m,2a=2.56m,2b=2m,r=0.445m, 20 = 110 kN.

The track parameters are: m, = 60 kg, m, = 240 kg, I, = 135 kgm®, k. =70
MN/m, ks, = 70 MN/m, k. = 65 MN/m, ¢, = 100 kN/(m/s), ¢, = 300 kN/(m/s),
¢s.= 140 kN/(m/s). The CFR S 78 wheel profile and UIC 60 rail are considered.

Before solving the movement equations numerically, the critical hunting
speed was calculated (linear model). The linear equation system has the
following matrix structure:

{a}=Ala} (19)
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in which {q} is the column for state parameters and A is the system matrix. The
eigenvalues of the matrix A were calculated compared to the speed. The real part
of these values is negative at low speeds, which means that the bogie is stable.
When this part becomes positive, the bogie becomes unstable and the (linear)
critical speed may be determined. In this particular case, the critical speed is V; =
69.6 m/s for an effective conicity of 0.124.
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Fig 6. Stability diagram.

Frequency (Hz)

iy

[

Figure 6 presents the stability diagram for the bogie hunting. When the
speed increases, the frequency increases as well. For the critical speed, a
frequency of 5 Hz results. The previous value is much higher than the
eigenfrequencies of car body (lateral displacement and yaw). This fact explains
why the car body influence can be reduced to the dead load. The hunting
wavelength has the range of 12.5-14.3 m. The values of the damping factor are
presented as well. The damping decreases if the bogie speed increases, especially
above the speed of 40 m/s.
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Fig 7. The lateral displacement of the first axle

(o= 1.9mm, h=18m, ¥ =66.22 m/s).

In the case of numerical simulation (non — linear model), the bogie is
supposed to pass over a local sinusoidal alignment defect with a length equal to
the wavelength. Fig. 7 shows the lateral displacement of the first axle for
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V' = 66.22 m/s, defect amplitude: # = 1.9 mm and defect wavelength A = 18 m.
The movement is damped and the hunting of the bogie is stable.
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Fig 8. The lateral displacement of the first axle (unstable limit cycle,
w=2mm,A=18m, F=6622 m's).

Fig. 8 presents the lateral displacement of the first axle for V' = 66.22 m/s,
defect amplitude: 2 mm (more precisely, 1.9985 mm) and defect wavelength of
18 m. The movement has a constant amplitude of 6.63 mm and a frequency of
4.34 Hz. The trajectories in plane of the phase are closed curves - limit cycle. The
axles do not touch the interior flange of the rail.
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Fig 9 The lateral displacement of the first axle(stable lirmit cycle
w=21mm,A=18m, F =662 m/s).

If the defect amplitude increases to 2.1 mm, the movement amplitude
increases along in time (see fig. 9). As a conclusion, the previous limit cycle
(without touching the interior flange of the rail) is unstable.

On the other hand, the amplitude of the hunting movement increases until
the wheels reach contact with the interior rail flange. The movement becomes
again periodic and the phase trajectories are closed curves — another limit cycle
was reached. The amplitude of this limit cycle is 8.2 mm for the first axle, and the
frequency is 4.82 Hz.
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When the wheel flange hits the rail, wheel/rail bi-contact occurs and the
rolling surface is unloaded and the flange becomes loaded, increasing the risk of
derailment. Fig. 10 displays this interesting aspect for the leading axle.
Practically, the wheel/rail bi-contact occurs during a period of 27 ms. The normal
force on wheel flange has a maximum value of 38.7 kN. Meanwhile, the normal
force on the rolling surface decreases for short time from 64.3 kN to 41.0 kN.
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Fig 10. The normal force: a) on the rolling surface; b) on the wheel flange.
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Fig. 11. The gmding forces on the first axle,

When the wheels reach contact with the interior rail flange, the guiding
force (Y) increases as well. In dynamic of railway vehicles, the guiding force is of
great importance. The ratio between the guiding force and the wheel load
represents the derailment criterion. Further, the sum of guiding forces on the axle
can contribute to the scraping of the track. Fig. 11 shows the time evolution of the
guiding forces on the first axle. The maximum value is 46.3 kN, which means
84% of the dead load.

The whole rolling apparatus and the rails are also receiving tremendous
shocks (fig. 12). The value lateral acceleration of the rail is very high under
leading axle during stable limit cycle. The acceleration peak of 181 m/s” results
from the numerical simulation.
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The vibration behaviour of the two axles is intense as well. When the
leading axle attacks a rail, the acceleration peak of 25 m/s” is calculated. For the
trailing axle, the lateral acceleration level is lower, and as an instance, the peak
has only 18 m/s”.

Finally, the bogie vibration has a dangerous level for the vehicle structure.
The lateral acceleration at the middle of the bogie has on effective value of 7.1
m/s”. The same acceleration has its maximum value of 11.5 m/s’.
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Fig 12 Lateral accelerations.
If the amplitude of the defect is 4.6 mm, the wheel is completely unloaded
and, as a consequence, the derailment occurs. For this reason, the limit cycle is
local stable.
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Figure 13 presents the Hopf diagram, the amplitude of limit cycle, either
stable or unstable, versus the speed. The bogie hunting has two equilibrium
solutions that depend on the value of the speed. For a bogie speed below V,; =
61.5 m/s a solution without oscillation is the only existing equilibrium solution.
For any initial excitation, the motion will be damped out. Certainly, this sentence
remains true if no derailment occurs due to the extremely initial excitation. The
speed V,; is the non-linear critical speed.

In the speed range V,; < V < V), there are two stable solutions and one
unstable solution. The stable solutions are the equilibrium position and the limit
cycle caused by the wheel/rail bi-contact. The unstable solution is the limit cycle
without touching the interior rail flange. The existence of this unstable limit cycle
shows that the hunting instability may occur even at speeds below the critical
hunting speed ¥; (linear model). The vehicle top speed must be small enough in
order to avoid instability debut on accepted geometrical irregularities.
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Fig 13 Hopf bifurcation.
In the speed range V; < V < V;= 77 m/s there is one stable solution, the

limit cycle due to the bi-contact. For a bogie speed above V, the rolling surface is
completely unloaded when the wheel smashes the rail and the derailment occurs.
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Fig 14. The alignment defects.
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The hunting on a track which has random alignment irregularities is
studied. The studied sector has a length of 600 m and alignment defects of
wavelengths from 10 to 82 m (fig. 14). The rail geometry is obtained through
integration from the spectral density of the alignment defects. This spectral
density has the following shape

A

S, (Q)=——

(20)

where Q stands for the wave number, 4 and B are constants that minimize the
error between the theoretical and the real (measured) spectre. The phases of the
spectral components were randomly chosen between — 7 and m. The efficient
value for alignment defects is 1.38 mm. The track has local defects with
amplitudes of about 4 mm. The quality level of this track is QN2 [20].
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Figure 16 shows the lateral displacement of the first axle when running at
V=40 m/s. By comparing the two graphs shown in figures 14 and 15 it is easy to
observe that the axle follows the alignment defects of the rail. The flange contact
does not occur this time. The bogie’s hunting is stable.

Figure 16 presents the displacement of the first axle when running at 67
m/s. The situation changes dramatically. After a very short time, the axle enters a
limit cycles regime, at random amplitudes. The wheels are touching the interior
rail flange and the normal force on the rolling surface decreases very much (fig.
17). For the bogie speed of 68 m/s, derailment occurs.
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Fig 18. Bensivity of simulated results to small changes in bogie speed.

The lateral displacement of the first axle.

When the bogie speed is closed to the non-linear critical speed, the system
is sensitive to speed due to the influence of unstable limit cycle. For instance, a
minor change of the bogie speed significantly changes the running behaviour as
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one can see in fig. 18. Pascal [21] met such phenomenon in his experimental
works. This sensitivity makes difficult the validation of theoretical researches.
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Fig 19. The efficient acceleration of the axle.

The bogie’s efficient acceleration increases weakly in the speed range
lower than 55 m/s. But beyond this value, the efficient acceleration increases very
much (fig. 18), and the bogie movement becomes unstable. When the bogie speed
equals the non-linear critical speed, the acceleration has a local maximum due to
the influence of unstable limit cycle. Practically, the unstable limit cycle meets
the stable limit cycle and the effect is the higher dynamic behaviour.

4. Conclusions

The hunting movement of the railway vehicles is caused mainly by the conic
wheel profiles and limits the top speed due to its instability. In this paper, the hunting
of the Y 32 bogie was analyzed using an original method for calculation of the
wheel/rail contact forces for both mono-contact and bi-contact cases.

The hunting has two limit cycles: an unstable mono-contact limit cycle
and a locally stable bi-contact limit cycle. This last limit cycle is characterized by
high accelerations and shocks.

The Hopf bifurcation diagram shows that the critical speed (linear) is
located between the non-linear critical speed and the derailment speed.

The local alignment defects may lead to transitory unstable bogie hunting.
Thus, the top speed has to be limited in order to avoid unstable vehicle hunting
which starts to manifest before the non-linear critical speed.

The numerical simulation revealed the same hunting characteristics as in
experimental tests.
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