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AN ANALYSIS OF BOGIE HUNTING INSTABILITY 
 
 
 

Traian MAZILU1 

Mişcarea de şerpuire este specifică vehiculelor feroviare şi instabilitatea ei 
limitează viteza maximă de circulaţie. Articolul se ocupă de mişcarea de şerpuire a 
unui boghiu care echipează vagoanele de călători. Pentru aceasta, s-a considerat 
un model complex pentru boghiu şi cale. Mişcarea de şerpuire este cuplată cu 
mişcarea verticală. Datorită contactului roată-şină, mişcarea de şerpuire este 
neliniară. Pentru studierea ciclurilor limită este aplicată teoria bi-contactului 
elastic roată-şină. Mişcarea de şerpuire a boghiului are două cicluri limită.  Primul 
ciclu limită este instabil, fără ca flancul exterior al profilului roţii să atingă flancul 
interior al şinei. Al doilea ciclu limită este stabil pentru că şinele limitează 
deplasarea transversală a osiilor.  Este studiată de asemenea mişcarea de şerpuire 
a boghiului pe o cale cu abateri de aliniament aleatoare. 

The hunting movement is specific for railway vehicles and their maximal 
speed is limited due to hunting instability. The paper deals with the hunting 
movement of passenger coach bogie. To this aim, a complex bogie/track model has 
been considered. The hunting and the vertical movements are coupled. The hunting 
movement is non-linear due to wheel/rail contact. To study the hunting limit cycles, 
the elastic wheel/rail bi-contact theory is applied. The bogie hunting exhibits two 
limit cycles. The first is unstable and no contact wheel flange/rail occurs. The 
second limit cycle is stable due to wheel flange/rail impact. The hunting movement 
on a track which has random alignment irregularities is studied as well.  

Keywords: bogie, hunting, stability, limit cycle, random defects 

1. Introduction 

The hunting movement is a consequence of the reversed conic shape of the 
rolling surfaces. For instance, if the axle is transversally displaced, the wheel 
rolling on a larger diameter will advance quicker than the other one, which always 
stays behind because the wheels are fixed in a rigid manner to the axle’s body 
(fig.1). The axle spins compared to the vertical axis and, eventually, will approach 
the track’s middle axis. In this moment, the axle spinning angle will be at its 
highest value and both wheels will roll on even diameters. Next, the axle will 
continue its movement, leaving the center position to the opposite side from the 
initial lateral displacement, forcing the wheel to roll on smaller and smaller 
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diameters and the other one on increasingly larger diameters. Both wheels will 
reach the same level at the precise moment when the axle center is situated at the 
maximum distance from the rail longitudinal axis. From now on, the movement 
will repeat itself in reverse. The axle center’s trajectory is a sinuous curve.  

 
This phenomenon of kinematical motion was described for the first time 

by Stephenson, and Klingel [1] determined the hunting wavelength according to 
his famous formulae 
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where r is the rolling radius, 2e – the distance between the wheel/rail contact 
points and γe – the effective conicity. 

This movement is passed over to the bogie and to the vehicle body through 
suspension elements. During the circulation, this hunting movement is also 
sustained by rail alignment irregularities; therefore, its intensity will be influenced 
by the size of these irregularities. In addition to that, the regime of this hunting 
movement depends on the running speed - at low speeds, this movement is stable 
and at high speeds, this movement becomes unstable. The value of speed when 
the movement behaviour becomes unstable is known as the so-called hunting 
critical speed. Above the critical speed, large values of forces acting between 
wheel and rail occur, and the resultant of these forces contribute to: the risk of 
derailment at higher speeds, damage to track, high level of vibration, with bad ride 
comfort or damage to freight, fatigue failure of the vehicle structure and wear of 
components.  

The hunting stability and critical speed were studied and linear models 
have been used in many papers. Wickens [2, 3], Joly [4, 5], Sebeşan [6] or Lee 
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and Cheng [7] investigated the influence of different parameters to create a basis 
for better bogie design.    

The hunting movement is an interesting example of non-linear vibration. 
The non linearity of the movement is governed by the laws of geometry and 
friction. Generally, the wheel/rail contact is represented by a point on the rolling 
surface (the so-called mono – contact), as it may be seen in fig. 2. If the axle 
consumes its lateral displacement, the flange of the attacking wheel will touch the 
interior flange of the rail. This particular situation is known as bi – contact and 
occurs when there are two actual contact points between the wheel and the rail. 
When the movement stability is lost, the oscillation is limited in amplitude by the 
wheel flanges and a limit cycle occurs. 

On the other hand, the friction force has a non – linear variation, which 
depends on the so-called creepage (the ratio between the wheel slip speed and the 
wheel rolling velocity) when the wheel approaches to the appropriate rail as one can 
see in fig. 3. 

Non – linear models were used by De Pater [8] and van Bommel [9]. They 
applied harmonic balance method or method of Krylov and Bogoljubov to study 
the limit cycle due to flange/rail contact introduced as percussion. Huilgol [10], 
True and Kaas-Petersen, [11], and True, [12] investigated the Hopf bifurcation, 
taking into account the nonlinear wheel/rail contact force as well.  

To predict the wheel/rail contact force during the hunting movement, 
Pascal [13] and Shabana et al. [14] developed their own methods. The critical 
point remains the wheel/rail bi-contact. An original approach of this issue has 
been introduced by Mazilu [15, 16]. Starting from this method, the limit cycles for 
bogie hunting are analyzed in this paper.    

 
2. Mechanical model 
 
The mechanical model of a two-axle bogie/track is presented in fig.4. The 

movement is considered to be reported to the fixed referential ωξηζ. The bogie 
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moves along the ωξ axis at a constant velocity, V. The suspended mass of the 
bogie is considered to be a rigid with 5 degrees of freedom: two translations – 
lateral displacement y and vertical displacement (bounce) z; three rotations – roll 
ϕ, gallop θ and yaw ψ. The mass centre of the bogie is situated at axle level. 
Usually, modern passenger coaches fulfil this requirement.  

The axles are rigid bodies with four degrees of freedom: two translations – 
recoil xi and lateral displacement yi – and two rotations – the revolution θi and 
yaw ψi with i=1÷2. The vertical displacement zi and roll ϕi movements of the axle 
are not independent. The corresponding movement equations are though written, 
in order to be used in the calculus for reaction forces on the rolling surfaces. The 
gyroscopic effect of the axle is considered as well. 

 
Under each axle, the track is considered as a rigid body system with three 

pieces, two rails and one sleeper, elastically connected together and to the ground. 
In parallel to the elastic elements, damping elements were considered as well. The 
periodic variation of the rail lateral stiffness caused by the periodic sleeper 
support is negligible. The rails have lateral independent movements yrij (axle i, 
wheel j). The sleeper standing right under the ‘i‘ axle moves transversally with ysi.  
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The sleeper and the rails are moving together in the vertical zsi movement 
and in the roll ϕsi movement. 

All elastic and damping elements have linear characteristics. 
The equations of motion result through the application of the Lagrange 

equations method. The following were obtained: 
1. The equations of motion of the bogie: 
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where m stands for the suspended bogie mass, Ix, Iy and Iz for the moments of 
inertia, kx, ky and kz for the elastic constants, cx, cy and cz for the damping 
constants, 2a for the bogie wheelbase, 2b for the transversal suspension base and 
cϕ= czb2, kϕ= kzb2, cψx= cxb2, kψx= kxb2, cψy= cya2, kψy= kya2, cθ= cza2 and kθ= kza2;  

2. The equations of motion of the axle ‘i’  
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where m0 stands for the mass of the axle, I0 and I0e for the moments of inertia and 
Xij, Yij, Qij for the projections of the resultant of the wheel/rail contact force;  

3. The equations of motion of the track  
- the equation of motion of the rail under wheel j of axle i  
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- the equations of motion of the sleeper under axle i  
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where mr stands for the mass of the rail, ms for the mass of the sleeper, Is for the 
moment inertia of the sleeper, kr, ksy and ksz for the elastic constants, cr, csy, and csz 
for the damping constants and 2Q for the static load of the axle. 

The wheel/rail contact forces are presented in fig.5 (mono – contact): the 
normal force Nij and the friction force Tij with its components Txij and Tyzij. The 
components of the resultants of the contact forces are 
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where γij stands for the contact angle, δfij for the elastic deformation of the wheel 
in case of flange contact (subscript f) and σ(.) is the Heaviside function.  

 For the friction forces, the non – linear Chartet’s modified formula [17] 
was used [6, 15, 18]  
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where νx and νyz  stand for the components of the creepage known as ν, κ is the 
creepage coefficient determined in accordance to Kalker’s theory [19] and μ is the 
coefficient of adherence. The creepage is determined mainly by the kinematics of 
the axle.   

The system of equations may be solved numerically using the Runge – 
Kutta method. If both wheels of the same axle are in a mono – contact position, 
the normal forces are calculated from the algebraic system formed by the axle 
lifting and roll movement equations. These equations were obtained by 
substituting the accelerations of the dependent movements (zi and ϕi) with the 
accelerations of the independent coordinates. The corresponding formulae result 
from kinematical analysis of the axle.  

If one wheel is in a bi – contact position, the reaction force on the flange is 
an additional unknown value. The problem may be solved iterative, using the 
formula for the flange elastic deformations (Hertz). The elastic deformation of the 
flange is correlated with the axle and rail positions, which are known for each 
integration step. The elastic deformation of the flange is calculated according to 
the wheel/rail elastic bi – contact theory [15]. 

 
3. Numerical application 
 
Next, the hunting movement of the Y32 bogie is analyzed. The bogie 

main parameters are: m = 3680 kg, Ix = 3680 kgm2, Iy = 1200 kgm2, Iz = 3800 
kgm2, kx = 40 MN/m, ky = 6 MN/m, kz = 1.25 MN/m, cx = 27 kN/(m/s), cy = 10.5 
kN/(m/s), cz = 8.4 kN/(m/s), m0= 1310 kg,  I0 = 740 kgm2, I0e = 210 kgm2, 2e =1.5 
m, 2a = 2.56 m, 2b = 2 m, r = 0.445 m, 2Q = 110 kN.  

The track parameters are: mr = 60 kg, ms = 240 kg, Is = 135 kgm2, kr =70 
MN/m, ksy = 70 MN/m, ksz = 65 MN/m, cr = 100 kN/(m/s), csy = 300 kN/(m/s), 
csz= 140 kN/(m/s). The CFR S 78 wheel profile and UIC 60 rail are considered.  

Before solving the movement equations numerically, the critical hunting  
speed was calculated (linear model). The linear equation system has the  
following matrix structure: 

                                              { } { }qAq =�                                                  (19) 
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in which {q} is the column for state parameters and A is the system matrix. The 
eigenvalues of the matrix A were calculated compared to the speed. The real part 
of these values is negative at low speeds, which means that the bogie is stable. 
When this part becomes positive, the bogie becomes unstable and the (linear) 
critical speed may be determined. In this particular case, the critical speed is Vl = 
69.6 m/s for an effective conicity of 0.124.  

 Figure 6 presents the stability diagram for the bogie hunting. When the 
speed increases, the frequency increases as well. For the critical speed, a 
frequency of 5 Hz results. The previous value is much higher than the 
eigenfrequencies of car body (lateral displacement and yaw). This fact explains 
why the car body influence can be reduced to the dead load. The hunting 
wavelength has the range of 12.5-14.3 m. The values of the damping factor are 
presented as well. The damping decreases if the bogie speed increases, especially 
above the speed of 40 m/s. 

In the case of numerical simulation (non – linear model), the bogie is 
supposed to pass over a local sinusoidal alignment defect with a length equal to 
the wavelength.  Fig. 7 shows the lateral displacement of the first axle for                  
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V = 66.22 m/s, defect amplitude: u = 1.9 mm and defect wavelength λ = 18 m. 
The movement is damped and the hunting of the bogie is stable.   

 
Fig. 8 presents the lateral displacement of the first axle for V = 66.22 m/s, 

defect amplitude: 2 mm (more precisely, 1.9985 mm) and defect wavelength of 
18 m. The movement has a constant amplitude of 6.63 mm and a frequency of 
4.34 Hz. The trajectories in plane of the phase are closed curves - limit cycle. The 
axles do not touch the interior flange of the rail.  

If the defect amplitude increases to 2.1 mm, the movement amplitude 
increases along in time (see fig. 9). As a conclusion, the previous limit cycle 
(without touching the interior flange of the rail) is unstable.  

On the other hand, the amplitude of the hunting movement increases until 
the wheels reach contact with the interior rail flange. The movement becomes 
again periodic and the phase trajectories are closed curves – another limit cycle 
was reached. The amplitude of this limit cycle is 8.2 mm for the first axle, and the 
frequency is 4.82 Hz.  



72                                                           Traian Mazilu  

When the wheel flange hits the rail, wheel/rail bi-contact occurs and the 
rolling surface is unloaded and the flange becomes loaded, increasing the risk of 
derailment. Fig. 10 displays this interesting aspect for the leading axle. 
Practically, the wheel/rail bi-contact occurs during a period of 27 ms. The normal 
force on wheel flange has a maximum value of 38.7 kN. Meanwhile, the normal 
force on the rolling surface decreases for short time from 64.3 kN to 41.0 kN.  

 
When the wheels reach contact with the interior rail flange, the guiding 

force (Y) increases as well. In dynamic of railway vehicles, the guiding force is of 
great importance. The ratio between the guiding force and the wheel load 
represents the derailment criterion. Further, the sum of guiding forces on the axle 
can contribute to the scraping of the track. Fig. 11 shows the time evolution of the 
guiding forces on the first axle. The maximum value is 46.3 kN, which means 
84% of the dead load.  

The whole rolling apparatus and the rails are also receiving tremendous 
shocks (fig. 12). The value lateral acceleration of the rail is very high under 
leading axle during stable limit cycle. The acceleration peak of 181 m/s2 results 
from the numerical simulation.     
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The vibration behaviour of the two axles is intense as well. When the 
leading axle attacks a rail, the acceleration peak of 25 m/s2 is calculated. For the 
trailing axle, the lateral acceleration level is lower, and as an instance, the peak 
has only 18 m/s2.  

Finally, the bogie vibration has a dangerous level for the vehicle structure. 
The lateral acceleration at the middle of the bogie has on effective value of 7.1 
m/s2. The same acceleration has its maximum value of 11.5 m/s2.  

If the amplitude of the defect is 4.6 mm, the wheel is completely unloaded 
and, as a consequence, the derailment occurs. For this reason, the limit cycle is 
local stable. 
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Figure 13 presents the Hopf diagram, the amplitude of limit cycle, either 
stable or unstable, versus the speed. The bogie hunting has two equilibrium 
solutions that depend on the value of the speed. For a bogie speed below Vnl = 
61.5 m/s a solution without oscillation is the only existing equilibrium solution. 
For any initial excitation, the motion will be damped out. Certainly, this sentence 
remains true if no derailment occurs due to the extremely initial excitation. The 
speed Vnl is the non-linear critical speed. 

In the speed range Vnl < V < Vl, there are two stable solutions and one 
unstable solution. The stable solutions are the equilibrium position and the limit 
cycle caused by the wheel/rail bi-contact. The unstable solution is the limit cycle 
without touching the interior rail flange. The existence of this unstable limit cycle 
shows that the hunting instability may occur even at speeds below the critical 
hunting speed Vl (linear model). The vehicle top speed must be small enough in 
order to avoid instability debut on accepted geometrical irregularities.  

In the speed range Vl < V < Vd = 77 m/s there is one stable solution, the 
limit cycle due to the bi-contact. For a bogie speed above Vd, the rolling surface is 
completely unloaded when the wheel smashes the rail and the derailment occurs.  
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The hunting on a track which has random alignment irregularities is 
studied. The studied sector has a length of 600 m and alignment defects of 
wavelengths from 10 to 82 m (fig. 14). The rail geometry is obtained through 
integration from the spectral density of the alignment defects. This spectral 
density has the following shape 
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where Ω stands for the wave number, A and B are constants that minimize the 
error between the theoretical and the real (measured) spectre. The phases of the 
spectral components were randomly chosen between – π and π. The efficient 
value for alignment defects is 1.38 mm. The track has local defects with 
amplitudes of about 4 mm. The quality level of this track is QN2 [20].   
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Figure 16 shows the lateral displacement of the first axle when running at 
V = 40 m/s. By comparing the two graphs shown in figures 14 and 15 it is easy to 
observe that the axle follows the alignment defects of the rail. The flange contact 
does not occur this time. The bogie’s hunting is stable.  

Figure 16 presents the displacement of the first axle when running at 67 
m/s. The situation changes dramatically. After a very short time, the axle enters a 
limit cycles regime, at random amplitudes. The wheels are touching the interior 
rail flange and the normal force on the rolling surface decreases very much (fig. 
17). For the bogie speed of 68 m/s, derailment occurs.  

 
When the bogie speed is closed to the non-linear critical speed, the system 

is sensitive to speed due to the influence of unstable limit cycle. For instance, a 
minor change of the bogie speed significantly changes the running behaviour as 
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one can see in fig. 18. Pascal [21] met such phenomenon in his experimental 
works. This sensitivity makes difficult the validation of theoretical researches.  

 
The bogie’s efficient acceleration increases weakly in the speed range 

lower than 55 m/s. But beyond this value, the efficient acceleration increases very 
much (fig. 18), and the bogie movement becomes unstable. When the bogie speed 
equals the non-linear critical speed, the acceleration has a local maximum due to 
the influence of unstable limit cycle. Practically, the unstable limit cycle meets 
the stable limit cycle and the effect is the higher dynamic behaviour. 

 
4. Conclusions 

 
The hunting movement of the railway vehicles is caused mainly by the conic 

wheel profiles and limits the top speed due to its instability. In this paper, the hunting 
of the Y 32 bogie was analyzed using an original method for calculation of the 
wheel/rail contact forces for both mono-contact and bi-contact cases.  

The hunting has two limit cycles: an unstable mono-contact limit cycle 
and a locally stable bi-contact limit cycle. This last limit cycle is characterized by 
high accelerations and shocks.  

The Hopf bifurcation diagram shows that the critical speed (linear) is 
located between the non-linear critical speed and the derailment speed.    

The local alignment defects may lead to transitory unstable bogie hunting. 
Thus, the top speed has to be limited in order to avoid unstable vehicle hunting 
which starts to manifest before the non-linear critical speed.  

The numerical simulation revealed the same hunting characteristics as in 
experimental tests. 
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