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THE DAC STATISTIC: PROPERTIES AND USE IN 
DETECTION OF CLUSTERS 

Al. PETRIŞOR, J. W. DRANE, L. DRAGOMIRESCU∗ 

Deşi utilizarea sa este limitată, testul DAC, definit ca diferenţa dintre 
distribuţia empirică a cazurilor prezente într-un eşantion şi cea a tuturor 
observaţiilor, prezintă un potenţial ridicat pentru a deveni un instrument de 
detectare a aglomerărilor. Studiile noastre anterioare au fost axate pe sensibilitatea 
testului la localizarea originii şi orientarea axelor de coordonate şi pe posibilul rol 
de instrument pentru detectarea aglomerărilor. Rezultatele arată că testul DAC nu 
depinde de localizarea originii, dar este influenţat de orientarea axelor. Testul DAC 
nu poate fi un instrument de sine-stătător pentru detectarea aglomerărilor, dar 
poate fi folosit în acest scop în corelaţie cu alte metode. Metodele bazate pe 
tehnicile GIS au fost analizate ca potenţial candidat. Rezultatele au indicat faptul că 
hărţile de densitate depind de parametrii aleşi de utilizator, în timp ce diversele 
tehnici de kriging oferă rezultate mult mai uşor de repetat. Acest articol însumează 
rezultatele studiilor noastre anterioare, multe dintre acestea nefiind publicate, într-o 
încercare de a pune bazele unei metodologii care foloseşte testul DAC împreună cu 
alte tehnici spaţiale pentru detectarea aglomerărilor spaţiale. 

 
Even though its use has been limited, the DAC statistic, defined as the 

difference between the empirical distribution for the cases and that of the total 
sample, presents a great potential in detecting spatial clusters. Our previous work 
focused on examining its sensitivity to the location of origin and orientation of axes, 
and on its possible role as an instrument to detect clusters. Results indicate that the 
DAC statistic does not depend on the location of the origin, but is influenced by the 
orientation of axes. The DAC statistic cannot be used alone to detect clusters, but in 
conjunction with our methods. GIS-based methods were examined as a possible 
candidate. Results indicate that results obtained using density maps depend on 
choices of the users, and kriging approaches are preferable in terms of 
repeatability. This article summarizes our previous results, most of which had not 
been published before, and attempts to build up a methodology using the DAC 
statistic in conjunction with other spatial techniques to detect spatial clusters. 
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Introduction 

Space-time analyses represent important issues, due to their wide area of 
application. In public health, they are used to detect disease space and time 
clusters [1-5], to increase the efficiency of health department’s activity [3], or just 
to study the spatial pattern or distribution of a population dispersed over a 
continuous surface [6]. Different studies have indicated various approaches to 
space-time analyses over wide and expanding venues of applications. One 
approach was to work on disease risk from environmental hazard at three levels: 
analyses of distribution, analyses of sentinel events, and case cluster strategies [2]. 
The analysis of distribution refers to the DAC statistic; the analysis of sentinel 
events recognizes that some events are more important than others when used to 
draw attention, and case-cluster strategies permit the identification of disease 
clusters. The DAC statistic is defined as the difference between the empirical 
distribution for the cases and that of the total sample [2]. A simulation indicated 
that the location of the maximum DAC statistic is not unique, moreover there is a 
geometrical locus of it, and this varies as the orientation of the axes changes [7]. 
Other studies investigated the usefulness of the DAC statistic in suggesting spatial 
clusters. Sampling provided discrete data and the analysis could not point directly 
to potential clusters. SAS® yielded inconclusive results  [8], whereas the location 
of clusters depended on classification if using ArcView GIS© [2, 9]. 

Spatial prediction, referred as kriging [10, 11] may provide a way to 
generate smooth continuous surfaces and predict the behavior of the DAC statistic 
at each location within the investigated area, suggesting also location of potential 
clusters. Various kriging procedures were developed in SAS® [11, 12] and 
ArcGIS© [10] and used in conjunction with the DAC statistic to suggest potential 
low birthweight clusters in Spartanburg county, SC [13]. 

The present study attempts to summarize our previous findings, most of 
which had not been published, and build up a methodology using the DAC 
statistic in conjunction with other spatial techniques to detect spatial clusters. 
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2. The DAC statistic 

 The DAC statistic was introduced for the first time in the statistical 
literature through a study by Drane, Creangă, Aldrich, and Hudson [14]. The 
purpose of introducing the DAC statistic was to provide an instrument to detect 
spatial clusters, or, more generally, areas with health problems. The computation 
of the DAC statistic is based on the empirical cumulative distribution function. 
 The empirical cumulative distribution function is: 

Fn(x1, x2) = m(x1, x2) / n  (1) 
where m(x1, x2) is the number of points of the sample of size n such that x1i ≤ x1 

and x2j ≤ x2. As (x1, x2) covers the entire sample from (0, 0) to (max x1, max x2), 

m(x1, x2) spans the interval [0, n]. 
 The DAC statistic is, for all permissible values of (x1, x2), 

DAC(x1, x2) = Fm(x1, x2) − Fn(x1, x2)  (2) 
Fm is the empirical cumulative distribution function of all cases, and Fn is the 
empirical cumulative distribution function of the total population [14]. If within 
the sample of size n there are m cases and n-m non-cases, Fn-m may be substituted 
for Fn. 
 The maximum absolute value of the DAC statistic represents the 
Kolmogorov-Smirnov statistic for two samples [15]. 

3. Birth data 1998-1990, Spartanburg County, SC 

The data came from a demonstration project sponsored by the Robert 
Woods Johnson Foundation. The object of the effort was to demonstrate the 
usefulness of geographically coded health events. The one legal paper, which had 
a great promise of nearly a 100% response rate, was the birth certificate. It was 
chosen. For the period 1989-1992 nearly all of the live births in Spartanburg 
County SC were geocoded. The longitude and latitude of the mother’s home was 
affixed to the birth certificate data of the baby. For this particular biostatistical 
methodological investigation the only data used were the longitude, latitude and 
the baby’s birth weight. 
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In 1990 the population of Spartanburg County was 226,800. There were 
3,762 live births in Spartanburg County in 1990, out of which 302 were low birth 
weights [16]. The results of a previous study [14] are presented below. Low 
birthweights were defined as those less than or equal to 2500 grams. Even if the 
two distributions presented in Figs. 1 and 2 appear similar to the naked eye, their 
differences, however small, are displayed in Fig. 3. The graphs displayed in the 
following were produced using a Turbo-Pascal® application. 
 

 

Fig. 1. Empirical distribution of live births, 
N=6434 

Fig. 3. Empirical distribution of the DAC 
statistic 

 

Fig. 2. Empirical distribution of low birth 
weights, N=591 

Fig. 4. Values of the DAC statistic for the 
Spartanburg data 
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 Fig 4 displays the empirical distribution of the DAC statistic plotted using 
SAS®. The graph does not reveal any particular aspects that could be connected to 
a base map suggesting potential clusters. 
 
 The data set consisted of 6434 lines of observations, corresponding to 
6434 live births. Out of these, 591 were cases. Cases were low birthweight babies. 
Low birthweights were defined as those less than or equal to 2500 grams. Each 
line contains, in order, the following variables: a line (1-6434), the actual latitude 
and longitude, and the infant’s birth weight [9]. 

4. Sensitivity to random locations of origin 

 The translation of origin is equivalent to adding constants to the 
coordinates of each data point. That is, 

T(x1, x2) = T(x1+α, x2+β)      (3) 
for all (x1, x2), where -∞ < α, β < ∞. 
 Therefore, m(x1, x2) is the number of points of the sample of size n such 
that x1i ≤ x1 and x2j ≤ x2, and becomes m1(x1, x2), the number of points of the 

sample of size n such that x1i+α ≤ x1+α and x2j+β≤ x2+β, which is equivalent to 

x1i ≤ x1 and x2j ≤ x2. Therefore, 
m1(x1, x2) = m(x1, x2)      (4) 

and 
Fn(x1, x2) = m(x1, x2) / n = Fn(x1+α, x2+β)  (5) 

and, similarly, 
Fm(x1, x2) = Fm(x1+α, x2+β)    (6) 

Therefore: 
DAC(x1, x2) = Fm(x1, x2) − Fn(x1, x2) = DAC(x1+α, x2+β)  (7) 

 In summary, the change of the location of origin does not affect the order 
relationship between any possible set of data pairs. Only the measures of location, 
which change with a constant amount, are affected. As the cumulative distribution 
function is a step function and depends only on the order relationship between any 
possible set of data pairs, its shape is not influence by the change of the location 
of origin [7]. 

5. Sensitivity to random orientations of axes 

 For these simulations, a special program, called "DAC.EXE", was created 
in Microsoft Q-Basic®. In order to increase the efficiency of this program (in 
terms of memory usage and speed), it was converted to an executable program 
using Quick Basic®. The program reads the initial data in comma-delimited 
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format and produces an output file in the same format, containing as many lines as 
the number of samples indicates. Each line contains, in order: 
- Maximum DAC statistic for respective sample (MaxDAC); 
- The X value at which MaxDAC occurred; 
- The Y value at which MaxDAC occurred; 
- Maximum DAC statistic for rotated sample (Max DACr); 
- The X value at which Max DAC occurred (in terms of original coordinates); 
- The Y value at which Max DAC occurred (in terms of original coordinates) [7]. 
 Due to the Quick Basic® processor, the maximum sizes allowed by the 
program ranged from either 20 samples of size 400 or 40 samples of size 200. 
This problem was overcome through a completely random device based on the 
computer clock. In successive steps, the program was able to draw 1,000 samples 
of size 400. The samples were rotated with random angles and the results are 
displayed below in Figs. 5 and 6. 
 

 

 

Fig. 5. Location of the maximum DAC statistic 
for 400 random samples 

Fig. 7. Location of the maximum DAC statistic 
for the original data 

 

 

 
Fig. 6. Location of the maximum DAC statistic 
for 400 random samples rotated with random 

angles 

Fig. 8. Location of the maximum DAC statistic 
for the rotated data 

 
 In the next step, the DAC statistic was computed for all 6434 observations. 
Data were rotated arbitrarily and the DAC statistic was recomputed for the rotated 
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data. The results are displayed in Figs. 7 and 8 using a Turbo-Pascal® plotting 
application. 
 
 It may be noticed even with a naked eye that the maximum DAC statistic 
occurs at approximately the same location before and after rotating the samples 
arbitrarily. This may support the reliability of the maximum DAC statistic in 
terms of detecting spatial clusters. 

6. The survivorship function and its connection with the DAC statistic 

Recall that the cumulative distribution is: 
F(x, y) = P(X ≤ x and Y ≤ y)  (8) 

whereas the survivorship function is: 
S(x, y) = P(X > x and Y > y)  (9) 

Its compliment is: 
P(X≤x or Y≤y)=P(X≤x)+P(Y≤y)-P(X≤x and Y≤y)=F(x)+F(y)-F(x, y) (10) 

S(x, y) is on an intersection of {X > x} and {Y > y} with strict inequalities 
while F(x, y) is on {X ≤ x} and {Y ≤ y} with non-strict inequalities. 

Since: 
F(x, ∞) = F(x) and F(∞, y) = F(y) (11) 

S(x, y)+[F(x)-F(x, y)]+[F(y)-F(x, y)]+F(x, y)=1 (12) 
and 

S(x, y) = 1 - F(x) - F(y) + F(x, y) (13) 

7. DAC and the theory of epidemiology 

It is common practice in epidemiology to form the logarithm of the odds-
ratio (OR) for an incremental (Δx) change in a variable thusly: 
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because equation (13) gives rise to 
log(OR) = β1δx      (15) 

if and only if P(y=1|x) is the logistic dose response function. That is, if and 
only if: 

P(y=1|x) = (1+e-β0-β1x)-1     (16) 
which is easily generalized to a multiplicity of Xs. 
 

This practice fails, and equation (15) does not follow for all other dose 
response functions. One needs only to rearrange equation (14) to obtain: 

log(OR)=log[odds(x+Δx)]-log[odds(x)]   (17) 
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where 
odds(x) = P(x)/[1-P(x)]     (18) 

Thus: 
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This is named instantaneous log-odds ratio or ILOR [17]. Eq. (19) applies 
for all P(y=1|x) on a continuum finite or the positive reals. 
 

Is it P(Y=1|X=x) or P(Y=1|X≤x)? Every person examined and giving up 
data on themselves may (Y=1) or may not (Y=0) have a specific disease. In almost 
all cases the disease developed or occurred over a range of values of X no greater 
than the one measured at the physical exam. We therefore prefer P(Y=1|X≤x). 
 

That being the case, let F0(x) be the cumulative distribution of the controls 
(or non-cases) on X, and accordingly F1(x) is the same for cases. Let θ, 0 < θ < 1, 
be the prevalence of the disease in the population. Then 

F(x) = θ F1(x) + (1-θ) F0(x)     (20) 
and 
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The fundamental theorem of epidemiology is simply: 
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The odds of a disease, given X ≤ x, is: 
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If we take advantage of the fact that S(x), the survivorship function, can be 
used because, in one dimension S(x)=1-F(x). 

1-S(x)=θ[1-S1(x)]+(1-θ)[1-S0(x)]    (25) 
S(x)=θS1(x)+(1-θ)S0(x)     (26) 

and 
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where λ(x) is the hazard function found in reliability theory and life tables. 
 

To finish this section, consider two or more variables X. If one uses the 
multivariable survivorship function of, then 

 ( ) ( )
( ) r
x
x

xILOR
S
S ⋅∇=

0

1log       (29) 

where ∇ is the del-operator 
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

++
∂
∂

+
∂
∂ mji

xxx m

...
21

, and r  is the directional 

unit vector (i cos ϕ1+...+m cos ϕm). 
 

The initial objective of creating the empirical spatial distributions or 
survivorships was to use smoothing splines in order to use equation (29) and 
calculate isofects, lines of constant hazard or threat to the population overlaying 
the region of investigation on a map. 

8. DAC and GIS-based density maps 

To answer the question remained whether the DAC statistic is a reliable 
instrument to detect spatial clusters, a new application was created to use the DAC 
statistic with the Spartanburg data to detect clusters of low birthweight [7, 8]. The 
program read the initial data in comma-delimited format from an input file, 
prompted for the weight limit for normal births, and produced an output file in the 
same format, containing as many lines as the number of observations indicated. 
Each line contained, in order, the location (latitude and longitude) and the value of 
the DAC statistic, as well as the values of the cumulative distributions for the 
cases and for the entire sample. The results were used to create the map displayed 
in Fig. 9 using ArcView GIS©. This figure presents a chloropleth map of the 
positive values of the DAC statistic in Spartanburg County, SC. The shading 
intensity is directly proportional to the density of positive values in the area. Cities 
are displayed as black dots. It may be easily noticed that the peaks of the DAC 
statistic concentrate around the cities. Positive values occur in the northeast part 
of Spartanburg and around Cowpens, Chesnee, Landrum, Campobello, and 
Inman. The highest values can be found around Spartanburg. 

 
 Fig 10 is a three-dimensional representation of the positive values of the 
DAC statistic in Spartanburg County, SC, in relationship to the position of the 
cities. The height of each peak and the shading intensity is directly proportional to 
the density of positive values in the area. Main cities are displayed as black full 
dots. The area of the county appears as a semitransparent gray shape. 
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 It is expectable to find more DAC values around the large cities, and even 
more expectable for the peaks of the DAC statistic, to occur around these places. 
Our results show that maximum values tend to occur mostly in the Northwestern 
part of the county. This may be an indication of clustering. Furthermore, the peaks 
detected around cities, especially the larger ones, Spartanburg and Greer, may 
indicate problems in these areas. Epidemiological studies conducted in these areas 
might explain the causes of these clusters. 
 

 
Fig. 9. Map of the positive DAC statistic values in Spartanburg County, SC in relationship with 

the position of the main cities.

Fig. 10. Three-dimensional representation of the positive DAC statistic values in Spartanburg 
County, SC in relationship to the position of the main cities.  
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9. DAC and kriging 

This study used three approaches to kriging available in ArcGIS©. Ordinary 
kriging uses semivariogram or covariance models relying on spatial relationships 
among the data, assuming intrinsic stationarity and that the true mean of the data 
(i.e. mean DAC value) is constant but unknown [10]. Fig. 11 displays the 
semivariogram corresponding to using ordinary kriging for the DAC data. It may 
be argued that the assumption of a constant mean does not hold in this case. 
 

 
Fig. 11. Ordinary kriging: semivariogram Fig. 13. Simple kriging: semivariogram 

 
Fig. 12. Ordinary kriging: prediction map Fig. 14. Simple kriging: prediction map 

 
 Fitting this model provides the map displayed in Fig. 12. Grey shades 
indicate negative values of the DAC statistic. Of interest for our study are black 
shades suggesting clusters of positive values indicating low birthweights. 
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 Simple kriging, as defined in ArcGIS©, uses semivariogram or covariance 
models relying on spatial relationships among the data, assuming intrinsic 
stationarity and that the true mean of the data (i.e. mean DAC value) is constant 
and known  [10]. Fig 13 displays the semivariogram corresponding to using 
simple kriging for the DAC data, which apparently fits the data satisfactorily. 
 
 Fitting this model provides the map displayed in Fig 14. Grey shades 
indicate negative values of the DAC statistic. Of interest for our study are black 
shades suggesting clusters of positive values indicating low birthweights. 
 
 Universal kriging, also available in ArcGIS©, uses semivariogram or 
covariance models relying on spatial relationships among the data, assuming that 
the true mean of the data (i.e. mean DAC value) is some deterministic function  
[10]. Fig. 15 displays the semivariogram corresponding to using universal kriging 
for the DAC data. It may be argued that the semivariogram does not fit the model. 
 

 
Fig. 15. Universal kriging: semivariogram Fig. 16. Universal kriging: prediction map 

 
 Fitting this model provides the map displayed in Fig 16. Grey shades 
indicate negative values of the DAC statistic. Of interest for our study are black 
shades suggesting clusters of positive values indicating low birthweights. 
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 There were two attempts to kriging with SAS®. The first one was designed 
to perform an ordinary kriging. The first problem was to generate a prediction 
grid. Given the size of the original data set (6434 observations), generating a fine 
resolution prediction grid resulted into exceeding the allocated memory for a 
proper running of the program. Therefore, no results were obtained before 
limiting the prediction grid to a low-resolution one. 
 
 At this stage, SAS® provided a unique estimate with the same standard 
error for all the locations within the predicted grid. It could be argued that this 
value represents an estimate of the true mean of the data [10, 11]. 
 The next step involved an attempt to universal kriging. Again, the 
allocated memory for a proper running of the program was exceeded and no 
results were obtained. 
 In summary, all the attempts to kriging with SAS® provided inconclusive 
results for the Spartanburg data. 

10. Discussion 

10.1. Sensitivity of the DAC statistic to the location of origin and 
orientation of axes 

 The results indicated that the DAC statistic does not depend on the 
location of the origin. However, the dependence on the orientation of axes has an 
analytical expression that may not be easily detected. In this example, the 
maximum DAC statistic appears to be a reliable instrument in detecting spatial 
clusters independently of the orientation of axes. 
 In real life example, the maximum DAC statistic does not have necessarily 
an analytical expression, therefore it is almost impossible to find its geometrical 
locus. The question remains whether it will still remain a reliable instrument in 
detecting spatial or temporal clusters. 

10.2. Epidemiological considerations suggested by GIS-based density 
maps 

 It is expectable to find more DAC values around the large cities, and even 
more expectable for the peaks of the DAC statistic, to occur around these places. 
Our results show that maximum values tend to occur mostly in the Northwestern 
part of the county. This may be an indication of clustering. Furthermore, the peaks 
detected around cities, especially the larger ones, Spartanburg and Greer, may 
indicate problems in these areas. Epidemiological studies conducted in these areas 
might explain the causes of these clusters. 
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10.3. Epidemiological considerations suggested by kriging 

 Despite of the kriging method used in ArcGIS©, all the results indicated 
that the predicted clusters of low birthweights occurred close to Spartanburg, 
Chesnee, and possibly Inman and Greer. In this example, the DAC statistic 
appears to be a useful instrument in suggesting spatial clusters if used in 
conjunction with spatial prediction methods. Nevertheless, the DAC statistic 
should be used with caution, but its usefulness as a set of spatial descriptive 
statistic is not diminished in the least. 

10.4. Software limitations 

After unsuccessful attempts to compute the DAC statistic using SAS®, a 
Quick Basic® application had been developed. The application was used mainly 
for simulation purposes. Its usage was limited by the size of the Quick Basic® 
processor. This limited sampling to a formula where the product between the 
number of samples to be selected and the sample size could not exceed 8000, 
therefore the program is not suitable for large data sets. An Excel spreadsheet was 
developed lately to compute the DAC statistic. The number of observations limits 
its usage, and the results for the entire data set differ from those obtained using the 
Quick Basic® application for some locations, even though results obtained using 
smaller data sets for testing purposes are the same. 
 In this study, even if easier to control from a statistical viewpoint, kriging 
with SAS® was limited by the size of the data set resulting into exceeding the 
allocated memory for a proper running of the program. Therefore, given these 
limitations, the results provided by SAS® analyses are inconclusive. At the same 
time, limitations to kriging with ArcGIS© refer to the ability to control the 
modeling process statistically. 
 

Conclusions 

Results indicated that the DAC statistic is inflexible to the location of 
origin, but depends on the orientation of axes. In this regard, it should be used 
with caution when the coordinate system is subject to changes. Despite of this 
property, the DAC statistic could play a substantial role in detecting spatial 
clusters, especially when it is used in conjunction with other spatial prediction 
techniques, such as kriging. Generalizing, GIS techniques are also a good 
instrument in conjunction with the DAC statistic, but choice of parameters (when 
generating density maps or selecting the kriging approach) influence the results. 
Finally, it is important to emphasize that the DAC statistic is able to detect 
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clusters, but explanations on the occurrence of clusters are expected from other 
fields, such as epidemiology.  
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