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FAST NUMERICAL SOLVING USING A SINGLE CELL OF A FIRST 

ORDER PARTIAL DIFFERENTIAL EQUATION WITH A NONLINEAR 

SOURCE TERM 

 

Maty BLUMENFELD1  

 
The numerical integration of Partial Differential Equations (PDE) is based 

on the idea - accepted unanimously - that this can be done by dividing the 

integration domain into a great number of elements. This approach can insure the 

obtaining of results having a good level of accuracy, which improves when the 

number of elements increases. This paper explores an opposite idea: solve a PDE 

with a satisfactory level of accuracy, using a SINGLE CELL equal to the whole 

quite large domain of integration. 

In the author’s book [1] dedicated to numerical integration of PDEs, the obtaining 

the solution is based on the use of complete polynomial functions with increasing 

degrees (3rd,5th,7th) called CONCORDANT FUNCTIONS (CF). The consequence of 

increasing the degree of CF is a reduction of the number of elements necessary to 

obtain a chosen level of accuracy. In this paper the author presents a method – 

based on [1] - which allows obtaining a numerical solution for PDEs including a 

NONLINEAR source term, using a SINGLE CELL (element). The method leads, 

when the solution is smooth, to results with a good precision obtained in a very 

short time. When the solution shows discontinuities, the procedure based on a 

“single-cell” is not always entirely successful. 
 

1. Introduction 

The numerical integration of Partial Differential Equations (PDE) is based 

on the idea - accepted unanimously - that this can be done by dividing the 

integration domain (supposed here rectangular) into a great number of elements. 

This approach can insure the obtaining of results having a good level of accuracy, 

which improves when the number of elements increases.  

The time necessary to find a solution with a reasonable accuracy is –

usually - not an impediment, especially for the linear PDEs. Instead, for the 

nonlinear PDEs this can be a hindrance, especially for the problems where 

duration for the solving constitutes a priority. 

 The author of this paper has published in 2015 a book [1] dedicated to this 

topic, which can be free downloaded from the site blumenfeld.ro. Taking 

advantage of this, in order to simplify the exposure, this article makes several 

references to the book [1]. Among other topics, in [1] has been developed a 

special approach meant to improve the accuracy: the obtaining of the numeric 

solution based on the use of complete polynomial functions with increasing 

degrees called CONCORDANT FUNCTIONS (CF). The integration of some two-

dimensional PDEs has been performed using a 3rd degree CF with 10 terms, a 5th 
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degree CF with 21 terms or a 7th degree CF with 36 terms. The consequence of 

increasing the degree of CF was a reduction of the number of elements necessary 

to obtain a chosen level of accuracy. Because – as it was shown in [1] - to increase 

the degree of CF is not a difficult problem, it may be raised the question: “is it not 

possible to find - for a given PDE - a CF that can lead to the result having a 

reasonable precision, using a single cell”? The present paper tries to find the 

answer to this question for a PDE with a NONLINEAR source term, whose 

nonlinearity is due to a term depending on the unknown function. Obviously, this 

approach is the opposite to that stated above in the first paragraph (“the idea - 

accepted unanimously - that the numeric integration has to be performed by 

dividing the domain into great number of elements”).  
 

2. A brief description of what the method can do 

 To incite interest of the reader, let us consider a straightforward first order 

PDE 
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including the constant coefficients M,N,P,Q,  a nonlinear source term  ),( yxF   

and a known polynomial W(x,y). Let consider the particular case 
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This PDE must be integrated on a quite large two-dimensional square domain 

[(B=2)×(H=2)], with the following boundary conditions 

-along x axis (y=0) :    xyxx 3.02)0,()( −===    

-along y axis (x=0) :    yyxy 4.02),0()( −===  

 The numerical integration was performed twice:  

1. With a mesh 40 × 40 = 1600 elements2, leading to a Target Value 

( ) 4.214812,2 === yxT
 and a graph given in Fig.1.1. 

  
Fig.1.1 Solution using 1600 elements                           Fig.1.2   Solution using 1 cell 

                                                           
2 Using the method developed in [1] 
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2.  Using a single cell and a Concordant Function obtained by binding a six degree 

CF and a seven degree CF. This procedure leads to ( ) 4.215032,2 === yxzT
 and 

a graph given in Fig.1.2. The “single-cell” has been divided - this time only for 

the graphic representation purpose - in (20 × 20) elements. 

 The two graphs are quite similar (obviously not identical). Nevertheless, 

the difference between two target values given above is very small. Supposing 

T as the reference value, the relative error of the single-cell computation is 

5104.83
4.21481

4.21481-4.21503 −==


−
=

T

TTz
errorelativeR  , therefore -0.00483 %. 

This example is a choice made by the author leading to good results, meant 

to draw the reader to this unusual approach. As it will result later on, for other 

cases the error is much greater. 

In fact, the important difference is between the times spent for obtaining 

the two solutions. Supposing that T0 is the time necessary to solve the non-

linearity of a cell, the total time used to obtain zT with the “single-cell” method is 

approximately (5...6)T0. Using the same method developed in [1] with 1600 

elements, the duration will be for this case around 1600T0. The relationship 

between the two durations, though largely approximate, is nevertheless 

conclusive. 

On the other hand - in some particular cases - finding the target values 

with the single-cell method raises special developments that are described below. 

In these cases the procedure is not always entirely successful. 

 

3. The Concordant Functions and the Target Residual 

Although the reader is supposed to download [1], it is useful to highlight 

two concepts that are mostly used below. 

a. The Concordant Function , noted CF, is a complete polynomial of a 

given degree. For instance a third degree CF is given by 
3
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 It was noted either as CF3 - according to the third degree - or CF310 - 

including the number of terms. The function CF3 can be written as the product 

between two matrices 

   3
)0()0( *3103 CzYXCFCF ===     (3.2) 

where              322322)0()0( 1 yxyyxxyxyxyxYX =                (3.3) 

   TCCCCCCCCCCCz 109876543213 =            (3.4) 

 Using this notation, the derivatives of    can be written as 

               CzYXCzxYXxCzYXx **//*/ )0()1()0()0()0()0( ===  (3.5) 

               CzYXCzyYXyCzYXy **//*/ )1()0()0()0()0()0( ===  (3.6) 
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where       02302010/ 2)0()0()0()1( yxyxyxxYXYX ==        (3.7) 

                22)0()0()1()0( 32020100/ yxyxyxyYXYX ==     (3.8) 

Besides CF3=CF310 here are also used: CF4=CF415 (four degree – 15 terms),  

CF5=CF521 (five degree – 21 terms),  CF6=CF628 ( six degree – 28 terms), 

CF7=CF735 (seven degree – 36 terms). 

 b. The Target Residual, noted also ResT . As George W. Collins II, wrote 

in his book [8]: “A numerical solution to a differential equation is of little use if 

there is no estimate of its accuracy. However, … the formal estimate of the 

truncation error is often more difficult than finding the solution”. 

The method developed in [1] avoids the “difficult” estimation of the error 

by controlling the accuracy of the computation using the RESIDUAL, which is 

the difference between a result obtained by computation and the theoretical 

result. In fact, the control is performed at the end of the computation taking the 

form of the Target Residual, which results by replacing the three Target 

unknowns in the PDE 

( ) ( )  ),( TTTT

TT

T yxWFQP
y

N
x

MesR +++











+












=      (3.9) 

If, incidentally, the Target unknowns are the exact solutions, the Target 

Residual is null. Otherwise, the value of the Residual is different from zero, being 

a sure indication of the global accuracy, namely of the error due to all three 

Target unknowns. 

 

4. The “two steps” procedure  

 The hypothesis on which is based the numerical integration developed in 

[1] is: „the solution z  is a CF having a certain degree”. Because this „certain 

degree” is not known at the start, the computation will begin with the numerical 

integration using all five CFs mentioned above, called „STEP 1”. This integration 

has the role to furnish an initial cluster of information, on which is based the main 

computation ( „STEP 2”). 

4.1. Step 1: Preliminary Computation with 5 different CFs 

 Suppose the PDE 
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that must be integrated on a large two-dimensional square domain [(B=2)×(H=2)], 

with the boundary conditions 

-along x axis (y=0) :     xyxx 3.02)0,()( −===        (4.2) 

-along y axis (x=0) :     yyxy 4.02),0()( −===        (4.3) 
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 The PDE includes a nonlinear source term ( )( ) 4.1
, yx  depending on the 

unknown function ( ) ( )yxzyx ,,  . Instead of dividing the domain in small 

elements, the integration will be performed using a single cell having the 

dimensions (2×2). The method described in [1] is based on the the use of a 

Concordant Function having a degree selected by the user. Here, the first step of 

the computation is based on five CFs with increasing degrees (3,4,5,6 and 7). The 

methodology described in [1] remains generally the same, with two minor 

modifications concerning the input boundary conditions data and the way to 

choose the equations for obtaining the Target unknows corresponding to the five 

CFs. Not to distract the reader from the main aspects of the calculation, these two 

issues will be dealt with in the Appendix B. 

 The five computations with the different CFs performed for (4.1) using 

one cell, lead to the results given in the rows 1...5 from the Table 1. They include 

three main parameters connected to the Target point T (noted using z ): the 

function 
Tz and the two first derivatives ( )

Txz  /  and ( )
Tyz  / . Besides them, in 

the last column is given the Target Residual, computed with rel. (3.9). 
                     Table 1 

 

 

Row 

        

    

       CF 

Target Function  

Tz  

Target  

Derivative  

( )
Txz  /  

Target 

Derivative  

( )
Tyz  /  

Target 

Residual 

ResT 
Value Error % 

1 CF3 or CF310 2.15841 -36.1 1.96623 -0.0592413 -25.30 
2 CF4 or CF415 2.59722 -23,1 2.03892 0.0456926 -16.22 
3 CF5 or CF521 2.98673 -11.6 2.01215 0.0705908 -8.180 
4 CF6 or CF628 3.08211 -8.75 1.98461 0.0677592 -6.228 
5 CF7 or CF735 3.79999 12.5 1.87473 0.0622218 9.164 

Values corresponding to the computation with 25×25=625 elements 

6 CF3 or CF310 3.37800 - 1.93617 0.0674984 0.01334 

The  similar  results  obtained  with  CF3  by  dividing  the same domain in 

 25×25 = 625 elements, are given in the last row of Table 1. The reference value 

of the Target Function thus resulted is 

3.37800
)625(
=

elementsT             (4.4) 

obtained with a Target Residual=0.01334; this can be considered as a satisfactory 

result. 

The values of 
Tz obtained using the five CFs, given in the third column of 

the Table 3.1, are represented in the Fig.3.1. Their values – connected by straight 

lines - are measured in the ordinate of the graph, while the abscissas noted 

3,4,5,6,7 are supposed to identify the five CFs. On the same graph is represented 

the reference value (4.4). As it results from Fig.3.1, the line between CF6 and CF7 

intersects the value (4.4), therefore a satisfactory value of T  can be found in this 

interval. But “where ?”, is not yet clear. An answer to this question may be 

obtained using the Target Residual. 
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Fig.3.1 Target value (different CFs)              Fig.3.2 Target Residual (different CFs) 

 

 The values of the Target Residual given in the last column of Table 3.1 – 

obtained straightforwardly while performing the five CFs computations - are 

represented in Fig.3.2, following a similar procedure as that used for Fig.3.1. 

These values are rather distant and show that the results of the five calculations 

are quite inaccurate. It may be, nevertheless, observed that in the interval between 

CF6 and CF7, a line connecting their two values intersects Target Residual=0. 

The fact that in the same interval where is expected a good value for 
T , the 

target residual changes the sign (from Res6= -6.228 for CF6 to  Res7= 9.164 for 

CF7) is not accidental. This fact indicates the possibility to obtain - with a single 

cell - a credible value of the Target function for a PDE with a nonlinear term. But 

the path is still uncertain and not yet usable. However, it opens a way towards the 

Step 2, which is the second procedure meant to solve the problem. 

 

4.2. Step 2: Improving the solution by binding two different CFs  

Let consider in Fig.3.3 two CFs, between which the Target Residual 

changes the sign. The two Target Residuals will be noted3 as RL (index L for Left) 

and RR (index R for Right). Though the interval between two CFs has no physical 

meaning, two CFs will be represented using a fictitious abscissa noted, that is 

considered as variable between 0=L  and  1=R  

  10            (4.5) 

Between these extreme two values, we assume that the Target Residual 

varies continuously, following an unknown path, therefore somewhere within the 

range 10   the path goes through ResT=0. Because there is no information 

concerning the supposed trail, we accept the rough hypothesis that the residual 

varies linearly with , according to  

( )−+= LRL esResResResR )(       (4.6) 

                                                           
3 As in Fig.3.2, between CF6 (ResT = - 6.228   ) and CF7 (ResT = 9.164  ) 
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Fig.3.3 Fictitious linear variation between two Res 

 

The Target Residual becomes null for            
RL

L

esResR

esR

−
=0         (4.7) 

 Using the values given in Table 3.1 it results 

0 = -6.228 / (-6.228-9.164) = 0.4046    (4.8) 

The Target Residual is given by (3.9),   being replaced by z. In the same 

time the target values are replaced using (2.2), (2.5), (2.6), while for the nonlinear 

source term ( )( )
TF  is used rel. (5.3.2), page 63 from [1] 
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 Accepting that L corresponds here to CF6 and R to CF7, it results the 

following Residuals that can be computed after the Step 1 is done 
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      Accepting that all the parameters involved vary also linearly, it results – based 

on relations similar to (4.6) - the following target values that correspond to 0  

( ) ( ) 00 −+= LRLT zzzz     (4.12) 
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Replacing in these relations the values given in the rows (4) an (5) of 

Table 3.1 it results 

0z =3.08211+ (4.79999-3.08211) × 0.4046=3.372564248          (4.12,a) 

( ) 0.4046)1.98461-1.87473(1.98461/ 0 += x =1.94016                  (4.13,a) 

( ) 70.065518760.4046)067759.0062221.0(0677592.0/ 0 =−+= y    (4.14,a) 

 If these values are compared to those obtained with 25×25=625 elements 

(see Table 3.1), it results the errors:  

( ) =− TTz /0 (4.372598-3.378)/3.378 = -1.6×10-3  namely 0.16 % 

( ) ( )( ) ( )
TT xxxz −  //// 0 =(1.93617-1.94016)/1.94016=-2×10-3 namely 0.2 % 

( ) ( )( ) ( )
TT yyyz −  //// 0 =(0.06749-0.065518)/0.065518=3×10-3  namely 0.3% 

These errors are surprising, taking into account the ratio between the 

numbers of elements used in each computation. According to (3.9), the Target 

Residual that corresponds to 0 is 

ResT=2×1.94016 + 2×0.0655187 + 8×3.37256424+ 6×(4.372564248)1.4 +WT ≈ 0.1 

The actual Target Residual is not zero, as it was supposed above. This 

means that the linearity hypothesis (4.6) is not strictly confirmed, but, 

nevertheless, the value of the Target Residual is satisfactory and the value of zT is 

surprisingly good. 

Remark. In fact choosing L and R as neighbor CFs is not compulsory. If L 

and R are chosen better, this could probable improve the result by reducing the 

errors. This is a detail that was not developed by the author, in order not to divert 

the reader's attention from the main subject of the article. 

*** 

Actually, the procedure used above for the Step 2 can be greatly 

simplified. After calculating 0 from relation (4.7), we observe that all the 

computations that follow can be based on a new Concordant Function, which may 

be obtained by binding the two [Cz] (L and R) corresponding to the interval 

considered (see (3.2)). The binding can also be made linearly, according to a 

relation similar to (4.6), where  is replaced by 0  

          0

/
−+= LRL

RL

binded CzCzCzCz            (4.15) 

Using [Cz]binded all the target parameters can be computed straightforwardly 

according to (3.2), (3.5), (3.6) 

    RL

bindedTT CzYXz
/)0()0(= , ( )     RL

bindedTT CzYXx
/)0()1(/ = , ( )     RL

bindedTT CzYXy
/)1()0(/ =  

 More than that, an overall drawing of the variation of the function z(x,y) 

may by obtained dividing the domain in a convenient number of nodes. This 

allows now to compare this “single-cell” solution (Fig 3.4) with (Fig 3.5) where is 

drawn the “many-elements” solution (if the last graph is available). 
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Fig.3.4 Solution with a single cell            Fig.3.5 Solution with 25×25 elements 

 

Using   RL

bindedCz
/

 it becomes also possible to have a global look of the 

variation of the residual, which can be obtained with the same meshing. In the 

Fig.3.6 it is given a graph of the residual, viewed from the Target. As it results in 

the area near the Target (x>1.5, y>1.5) the variation is close to a plane 

corresponding to Res(x,y) ≈ 0. This is to be expected, because the main ecuations 

for obtaining the unknowns were connected to the Target. Far from the Target, the 

variation of the residual it's getting further from zero.  

 

Fig.3.6 Residual (View from Target)          Fig.3.7. Target Residual (different CFs) 

 

Example 1. The PDE                        
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    (4.16) 

must be integrated on a large two-dimensional square domain [(B=1.6)×(H=1.6)], 

with the boundary conditions 

-along x axis (y=0) :    2334)0,()( xxyxx −+===        (4.17) 

-along y axis (x=0) :    2224),0()( yyyxy −+===               (4.18) 

Solution. Step 1. After the five compulsory integrations with 1 cell, the resulted 

Target Residuals values are represented in the Fig.3.7. If the five values of the 
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Residuals are linked with straight lines, it results that  Res=0 cuts 4 times these 

lines, therefore the Step 2 procedure has to be applied to all four intervals. 
                                                                                                                                                                           Table 2 

 

CF 

 

η0 

Values for (B=1.6;H=1.6) obtained with 1 element  by binding two CFs  

Target 

Function 
Tz  

Target 

Deriv. ( )
Tx/z   

Target 

Deriv. ( )
Ty/z   

Target 
Residual 

  4/3
binded

Cz  
0.625 1.56208 -1.72877 -1.96522 0.876 

  5/4
binded

Cz  
0.603 1.69062 -2.12030 -2.47606 -0.284 

  6/5
binded

Cz  
0.767 1.66641 -1.94212 -2.44678 0.00899 

  7/6
binded

Cz  
0.255 1.77423 -2.04693 -2.621678 -0.00506 

Values corresponding to the computation with 20×10=200 elements 

CF3   1.76680 -2.13544 -2.51652 -0.00968 

 

Step 2.If the procedure developed for the Step 2 is applied, one obtains the results 

given in Table 2. From the 4 solutions found as possible analyzing Fig 3.7, it may 

be retained the solution that corresponds to the minimum absolute value of the 

Target Residual, which is 0.00506 obtained from the row of   7/6
binded

Cz . In the same 

row is given the Target value which is zT=1.77423. If this value is compared to 

T =1.76655, it results that the error of this fast computation is 

Error zT= (1.77423-1.76665)/1.76665= 4.29×10-3  which means 0.429 %.  

An overview of the whole solution results by representing the graph 

obtained using the   7/6
binded

Cz  (Fig. 3.8) and the graph corresponding to the 200 

elements mesh (Fig.3.9). The coefficients of   7/6

bindedCz  can be found in Appendix 

A, therefore the reader can easily verify himself the similarity of the two graphs. 

 

Fig.3.8 Solution with a single cell              Fig.3.9 Solution with 25×25 elements 

 

Example 2. The PDE                      

54322345432234

322322

26423432

24223432)1(ln2532

yxyyxyxyxxyxyyxyxx

yxyyxxyxyxyx
yx

−−−−−−−−−−−

−−−−−−−−−−+++



+





 (4.19) 
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has to be integrated on a two-dimensional rectangular domain [(B=1)×(H=1.2)], 

with the boundary conditions 

-along x axis (y=0) :    2332)0,()( xxyxx −+===      (4.20) 

-along y axis (x=0) :    2442),0()( yyyxy +−===              (4.21) 

Solution. Step 1.  After the five initial integrations with 1 cell, one obtains the 

values given in Table 3, from which it results that the neighbor CFs change the 

sign twice, between CF3 / CF4 and CF5 / CF6. 

Step 2. The procedure developed for the Step 2 is applied, nevertheless, to all 4 

intervals leading to the results given in Table 3. From them are retained those that 

correspond to the minimum value of the Target Residual, namely   6/5
binded

Cz . In the 

last row of the same table are also given the results obtained using 24×16=384 

elements. If the Target values are compared it results that the error of this fast 

computation is 

Error zT= (8.30651-8.33245)/ 8.33245= -3.11×10-3  which means 0.311 %.  

Remark. It was established above that two tests are enough, namely 

699.00 = and 508.00 = . Using the procedure for Step 2 also for the other two 

cases allow observing that, although 0  does not respect the limits (4.5), the 

values resulting from the binding procedure are pretty good. Actually, here 

  5/4

bindedCz  gives the best results for zT, though it does not respect (4.5).  This fact 

was observed also in other cases; therefore all four tests were usually used. 

 
                                                                                                                                                                            Table 3 

 

CF 

 

η0 

Values for (B=0.8;H=1.6) obtained with 1 element  by binding two CFs  

Target 

Function 
Tz  

Target 

Deriv. ( )
Tx/z   

Target 

Deriv. ( )
Ty/z   

Target 

Residual 

  4/3
binded

Cz  
0.699 8.16188 10.5220 17.0487 2.89×10-2 

  5/4
binded

Cz  
1.147 8.32708 11.1676 16.3206 2.49×10-3 

  6/5
binded

Cz  
0.508 8.30651 11.1718 16.3545 2.13×10-4 

  7/6
binded

Cz  
-6.982 8.74934 10.4174 16.0878 1.20×10-3 

Values corresponding to the computation with 24×16=384 elements 

CF3  * 8.33245 11.2485 16.2685 0.0312 

 

Remark. It was established above that two tests are enough, namely 

699.00 = and 508.00 = . Using the procedure for Step 2 also for the other two 

cases allow observing that, although 0  does not respect the limits (4.5), the 

values resulting from the binding procedure are pretty good. Actually, here 

  5/4

bindedCz  gives the best results for zT, though it does not respect (4.5).  This fact 

was observed also in other cases; therefore all four tests were usually used. 
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Fig.3.10 Solution with a single cell           Fig.3.11 Solution with 24×16 elements 

 

An overview of the whole solution results by comparing the graph 

obtained using the   6.5
binded

Cz  (Fig. 3.10) and the graph corresponding to the 384 

elements mesh (Fig.3.11). The coefficients of   6/5
binded

Cz  can be found in Appendix A, 

therefore the reader can easily verify himself the similarity of the two graphs. In 

Fig.3.12 is represented the general variation of the residual. From it follows that 

away from the target the variation is influenced by the initial conditions, while 

near the target it approaches the plane corresponding to Res (x, y) ≈ 0.  

 
Fig.3.12 Residual (View from Target) 

 

 

5. Perturbations and their consequences  

 

5.1 Unexpected appearance of a perturbation 

  The quite similar drawings from Figs. 1.1 and 1.2 is an impulse to try to increase 

the integration range. If the integration range increases to B = H = 10, the “two-

steps” final results obtained using one cell are given in first 4 rows of Table 4. 
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                                                                                                                                                                          Table 4 

 

CF 

 

η0 

Values for (B=10;H=10) obtained with 1 element  by binding two CFs  

Target 

Function 
Tz  

Target 

Deriv. ( )
Tx/z   

Target 

Deriv. ( )
Ty/z   

Target 
Residual 

  4/3
binded

Cz  
1.066 9.62529 0.68019 -0.11285 0.00743 

  5/4
binded

Cz  0.714 9.62529 0.68026 -0.12738 -0.00613 

  6/5
binded

Cz  
0.233 9.62433 0.68059 -0.12799 -0.254 

  7/6
binded

Cz  
-0.160 9.64339 0.67455 -0.11797 4.98 

Values corresponding to the computation with 80×80=6400 elements 

CF3  * 9.62524 0.68026 -0.11273 -0.00613 

 

Taking into account the absolute value of the Target residual, the results 

corresponding to   5/4

bindedCz , are considered the best.  The variation of the function 

z(x,y) with a single cell is given in Fig.5.1. Because the dimensions of the domain 

are so great, it is necessary to verify the results with the ordinary procedure, 

namely to use a mesh. The results obtained with 80×80=6400 elements are also 

given in the last row of Table 4. Comparing these values to those corresponding to 

  5/4

bindedCz  it results a surprisingly matching. The error of the Target value is4 

Error zT=(9.62529-9.62524)/ 9.62524=5.19×10-6   namely 5.19×10-4  %. 

 

Fig.5.1 Solution with a single cell      Fig.5.2 Solution with 80×80 elements 

 

 The graph of z(x,y) obtained with 6400 elements represented in Fig.5.2 

constitutes an unpleasant surprise: except the Target values, which – as it was 

seen above - coincide, there are great differences between this graph and that 

given in Fig.5.1. The most important is the perturbation (discontinuity) that 

appears in the North-West quasi-triangular area of Fig.5.2 (x<5,y>2.5), which is 

totally ignored in Fig.5.1. 

                                                           
4 The very good results obtained for B=H =10 (and also beyond this value) can be explained by the 

fact that the nonlinear term   enters Step 1 in the range of the degrees testing (3,4,5,6,7) used for 

the Concordant function . 
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3.2 Finding the existence of a perturbation 

 A large part of Chapter 3 from [1] was dedicated to the “perturbations” in 

the graph of the function, of its derivatives or of the residuals, produced by “the 

boundary conditions imposed by the user on a (possible) “calm and gentle” 

solution”. The perturbations can be produced also by other causes, such as 

unexpected discontinuities of the function or its derivatives. As a result of the 

presence of the perturbations, an increase of the target errors was observed. These 

errors were eliminated in [1] by removing the perturbations from the target area, 

which can be achieved by modifying the ratio between the numbers of 

elements used along the x-axis, respectively y. 

It is obvious that this procedure - which requires many elements - can not 

be used if the calculation is done with a single cell. Instead, becomes compulsory 

to inform the user about this circumstance and of its consequences. 

The aim of this paragraph is to find a fast methodology to detect the 

existence of a perturbation. In the above example the perturbation was observed 

only after solving the PDE with 6400 elements (Fig.5.2), because the perturbation 

was totally ignored by the "single-cell method" (Fig.5.1). This omission can be 

easily explained analyzing the information that is furnished to the “single cell” 

procedure and the conditions imposed by the system of equations: 

1. The information furnished as input represent the boundary conditions, 

namely the values of the function - imposed by the user - along the axes x and y 

that remain unmodified till the end of the computation. The perturbation near the 

axis y appears in Fig.5.2 (when y>2.5) as a sudden discontinuity of the function, 

without any other outside intervention. 

 2. The system of equations imposes a lot of conditions (See Appendix B), 

but they are all connected to the target point. Consequently, the target results fit 

with those obtained using a large number of elements, but the “binded CF” can 

not ensure a rigorous representation of the z (x, y) path in the areas away from the 

target. 

          The method analyzed here tries to find a single binded CF to describe a 

complicated phenomenon that develops on a quite large domain. In some cases 

the graphic  agreement between “single-cell ” and “many-elements” solutions may 

be possible as it happened in the examples examined until now5; in other cases, 

when some perturbations appear far from the Target, one may obtain reliable 

results only on a limited part of the domain or not at all. 

 

 

 

 

                                                           
5 See Figs.3.4 and 3.5 or Figs.3.8 and 3.9 
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                                                                                                                                                                          Table 5 

 

CF 

 

η0 

Values for (B=4.30;H=4.30) obtained with 1 element  by binding two CFs  

Target 

Function 
Tz  

Target 

Deriv. ( )
Tx/z   

Target 

Deriv. ( )
Ty/z   

Target 
Residual 

Maximum 
Residual 

Test 

  4/3
binded

Cz  
1.937 6.03032 0.78865 -0.08751 0.373 114.56 

  5/4
binded

Cz  
0.346 6.02277 0.79931 -0.07716 -0.385 119.82 

  6/5
binded

Cz  
0.7418 6.02401 0.79867 -0.07723 -0.254 111.58 

  7/6
binded

Cz  
-0.243 6.03015 0.79472 -0.07680 0.388 111.13 

 
                                                                                                                                                                              Table 6 

 

CF 

 

η0 

Values for (B=4.29;H=4.29) obtained with 1 element  by binding two CFs  

Target 

Function 
Tz  

Target 

Deriv. ( )
Tx/z   

Target 

Deriv. ( )
Ty/z   

Target 

Residual 

Maximum 

Residual 
Test 

  4/3
binded

Cz  
1.564 0.38645 0.33947 100.88 -0.121 6.3×105 

  5/4
binded

Cz  
-3×10-20 8.22×10-4 -6.67916 107.41 3×10-13 1.4×105 

  6/5
binded

Cz  
1 1.47×105 -2×108 2×108 3×1015 2×1053 

  7/6
binded

Cz  
4×10-29 2.39×105 -2×108 2×108 3×1016 3×1053 

 

There are many possibilities to choose a "check parameter" that indicate 

the existence of a perturbation. The author has chosen one that is easy to use but is 

not always very effective: the maximum (absolute) value of the Residual across 

the entire integration domain. For start, based on fig.5.3 a test is made for a 

domain limited to B=H=4.30. The results do not indicate any perturbation and 

seem to be credible (see Table 5, last column). Instead, when the target is a little 

changed to B = H = 4.29, the results become suddenly incoherent and, obviously, 

can not be taken into account (Table 6). Even without looking at the other values 

that are also alarming, the Maximum Residual test, which increases more than 

1,000 times, seems appropriate to lead to the decision to quit the computation and 

inform the user accordingly. 

 

Example 3. The PDE                             

05.42.18.36.47.38.22cos9.9324 22 =−−−−−−−+



+




yxyxyx

yx
    (5.1) 

must be integrated on a two-dimensional square domain [(B=1)×(H=1)], with the 

boundary conditions 

-along x axis (y=0) :    2332)0,()( xxyxx −+===                (5.2) 

-along y axis (x=0) :    2442),0()( yyyxy −+===                (5.3) 
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 The second step of the computation leads to the results given in Table 7. 

The Concordant Function   5/4

bindedCz  is given in Appendix A. Based on it, the 

variation of z(x,y) is represented in Fig.5.1. The conclusion based on all the 

results obtained is: “the computation is valid”. 
                                                                                                                                                                     Table 7 

 

CF 

 

η0 

Values for (B=1;H=1) obtained with 1 element  by binding two CFs  

Target 

Function 
Tz  

Target 

Deriv. ( )
Tx/z   

Target 

Deriv. ( )
Ty/z   

Target 

Residual 

  4/3
binded

Cz  
-0.117 4.20267 0.69466 -0.00336 -0.0338 

  5/4
binded

Cz  
0.746 4.17016 0.57847 0.64248 0.1365 

  6/5
binded

Cz  
-1.354 4.21902 0.41850 0.53138 0.2529 

  7/6
binded

Cz  
1.568 4.38891 0.02702 0.12674 0.1267 

Values corresponding to the computation with 10×20=200 elements 

CF3  * 4.17381 0.52380 0.63825 -0.0158 

 

 In order to have a confirmation, the verification of the results obtained 

with of 10×20=200 elements, leads to the values given in the last row of Table 7. 

The error of the Target value that corresponds is 

Error zT=(5.17016-4.17381)/4.17381= -8.74×10-4 namely -0.0874  %. 

This value confirms the validity of the results. 

  

Fig.5.3 Solution with a single cell      Fig.5.4 Solution with 10×20 elements 

 

However, the comparison between the graphs of z (x, y) obtained with a 

single cell (Fig.5.3) and with 200 elements (Fig.5.4) indicates the existence of a 

perturbation. This perturbation is not signaled - as is now expected according the 

previous thorough analysis - by the “single-cell” method. But the perturbation is 

not close to the target, so it does not influence the results obtained above or the 

conclusion about the validity of the calculation.  
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                                                                                                                                                                               Table 8 

 

CF 

 

η0 

Values for (B=1;H=0.5703) obtained with 1 element  by binding two CFs 

Target 

Function 
Tz  

Target 

Deriv. ( )
Tx/z   

Target 

Deriv. ( )
Ty/z   

Maximum 
Residual 

(Test) 

  4/3
binded

Cz  
-2.041 4.06318 -0.11772 0.36924 29.67 

  5/4
binded

Cz  
-2.399 3.97391 0.38731 0.45446 29.67 

  6/5
binded

Cz  
-3.704 4.05911 0.27957 0.05332 29.67 

  7/6
binded

Cz  
344.8 5.49205 4.19714 -20.9683 3980.4 

Values corresponding to the computation with 10×20=200 elements 

CF3  * 1.23889 -1.99379 6.13487 * 

                   

                                                                                                                                                                                  Table 9 

 
CF 

Values for (B=1;H=0.5702) obtained with 1 element  by binding two CFs 

Target 

Function 
Tz  

Target 

Deriv. ( )
Txz  /  

Target 

Deriv. ( )
Ty/z   

Maximum 
Residual 

(Test) 

  4/3
binded

Cz  
6.93750 -6.1×1012 1.2×1013 1.6×1014 

  5/4
binded

Cz  
3.5×1014 -2×1014 2.8×1015 1.8×1027 

  6/5
binded

Cz  
-5.1×1025 9.2×1025 -5.4×1026 2.7×1038 

  7/6
binded

Cz  
7.5×1049 -2.9×1058 5.9×1058 2.2×1061 

What happens if the target is changed in the proximity of the perturbation, 

namely if the target point becomes (B=1, H=0.5703) ? The values for this test 

given in Table 8 are quite normal. The proximity of the perturbation "feels" in the 

target values, the error of the function z(B=1,H=0.5703) being more than 200%. If 

tried - based on the experience of paragraph 3.2 – a calculation for a very close 

target point (B=1, H=0.5702) the result is similar:  discontinuities of results that 

clearly indicate the occurrence of a perturbation (see Table 9). Some numerical 

experiments made by the author have confirmed this behavior. 

 

6. Conclusions on the procedure based on a single cell 

The numerical tests made using a “single-cell” - part of which were 

disclosed above - represent a basis for a first draft of a procedure to implement the 

method. Let begin with the positive aspects connected to the use of the method: 

1. A simple first order non-linear PDE can be numerically integrated over 

a large domain using only one cell, without resorting to tens or hundreds of 

elements. 

2. The main result is the Target value zT of the unknown function, which 

may be obtained with acceptable or even good precision6, in a very short time. 

                                                           
6 The precision may be improved by binding a second time the already binded Concordant 

Functions. 
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3. The procedure is based on the use of a binded Concordant Function, 

which may be considered – if the function z(x,y) has a smooth variation, without 

perturbations – as a quasi-analytic solution, valid on all the (quite–large) 

integration domain. 

The negative aspects are connected with the possible existence of a 

perturbation or discontinuity of the function:  

1. If a perturbation occurs quite far from the Target its presence does not 

affect the value of the Target function, which can be validated by the actual 

Residual value; but the quasi-analytic solution is no longer valid on the whole 

domain, so must be abandoned. 

2. When a perturbation occurs near to the Target, all the computation 

based on a single-cell must be abandoned, and the computation continued with 

another method. 

Taking into account these considerations, it is proposed below a draft for a 

program monitoring the computation. The computation starts always using the 

“single-cell” method. After finising the “two-steps” procedure the program has to 

look for a potential perturbation and to decide between some possible variants: 

a. If no perturbation is detected, and the target residual is accepted by the 

user, the computation may be considered succesful on all aspects; besides the 

Target value, also the quasi-analytical solution is available and may be used. 

b. If a perturbation placed far from the Target is detected, only the Target 

value zT can be used, obviously if the Target residual is accepted by the user. 

c. If a perturbation placed near the Target is detected or the value of the 

Target residual is rejected by the user, the procedure based on a “single-cell” has 

to be abandoned and the computation must continue with another method. In this 

case the only inconvenience is a very short delay, due to initial use of the 

"single cell" method. 

Appendix A. Verification of the quasi-analitic solution based on 

 binded Concordant Functions 

 The reader may solve the any PDE mentioned below using a convenient 

method, with many elements, which can give a graph z(x,y) of the solution. Then 

he can compare with the corresponding solution using the relation 

   CzYXyxz *),( )0()0(=  
[Cz]↓ PDE (4.1) PDE (4.16) PDE (4.19) PDE (5.1) 

- 2 4 2 2 

X 0.3 3 3 3 

Y -0.4 2 -4 4 

x2 0 4 -2 -3 

xy -5.311299993772749 6.849264811348015 -7.512708174515619 -5.396256898077837 

y2 0 -2 4 -4 

x3 0 0 0 0 

x2y 5.958301368667835 -7.711717436565404 19.2822934496235 6.754373906579559 

xy2 4.234934649939510 -19.51288306117300 -0.6098420135279419 5.790102630444205 

y3 0 0 0 0 
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x4 0 0 0 0 

x3y -2.874989612660367 8.295844566807396 -12.18390765788577 2.258376389964472 

x2y2 -2.773949504978351 8.288054534600711 -4.769315094015080 -12.75907144209255 

xy3 -1.792543706767099 17.92080328731461 -2.090475145001517 4.230362666938873 

y4 0 0 0 0 

x5 0 0 0 0 

x4y 0.8780545998646947 -1.757283860876247 3.244524145572669 -1.129690887907409 

x3y2 0.6079563801315699 -3.551537608065100 4.484752633311077 2.786845209903647 

x2y3 0.9649828617150603 -8.290407354894782 0.8214107313336749 0.7116417402416660 

xy4 0.3223773992956812 -4.335750045919715 1.827116095134027 -1.076521854388049 

y5 0 0 0 0 

x6 0 0 0 * 

x5y -0.1520675938622337 -0.3639551578387353 0.1854259380161165 * 

x4y2 -0.0577995787822082 0.9497147338675938 -1.568590656239227 * 

x3y3 -0.1650506239501214 -0.9625061382603679 0.9499649695895012 * 

x2y4 -0.1206652944106619 2.665528346891400 -0.9458399622741006 * 

xy5 -0.0273120825036137 -0.9625061382603679 0.1043893077311010 * 

y6 0 0 0 * 

x7 0 0 * * 

x6y 0.0112799144284583 0.0717381065909952 * * 

x5y2 0.0008.502921848936 0.0602553262973988 * * 

x4y3 0.0118014569079755 -0.1111270203496452 * * 

x3y4 0.008.7327015760803 -0.2948655774706394 * * 

x2y5 0.0062211695348708 -0.0656443948048216 * * 

xy6 0.0005.913920026163 0.134282666933508 * * 

y7 0 0 * * 

 

Appendix B. Conditions imposed for obtaining a Concordant Function  

with a given D degree 

B.1 The number of imposed limit conditions 

The number of limit conditions (boundary and initial) that can be imposed 

to obtain the coefficients of a Concordant Function depends on its degree noted D. 

These conditions may be expressed as two polynomials noted )0,( = yx along x 

axis and ),0( yx =  along y. Supposing D=3 and using (2.1), the limit conditions 

can be connected to the CF according to 
3

7

2

421)0,(3)0,( xCxCxCCyxCFyx +++====    (B.1) 
3

10

2

631),0(3),0( yCyCyCCyxCFyx +++====    (B.2) 

 It results that only 7 conditions can be imposed for a CF of third degree. 

For a CF of degree D the number of conditions that can be imposed is  

NLim = 2D+1      (B.3)  

 In contrast to [1], here only the function values (not also the derivatives) of 

  and   will be used as limit conditions. 

 

B.2 The conditions necessary to obtain a CF of D degree 

The total number of conditions for determining unequivocally all the 

coefficients of a CF is given by [1] 

2/)2()1( ++= DDND
       (B.4) 

If D=3 then N3=(3+1)× (3+2)/2=10, if D=4 then N4=(4+1)×(4+2)/2=15 and so on. 



258                                                      Maty Blumenfeld 

 For obtaining all the ND unknown coefficients, it is compulsory to use ND 

equations that include the NLim(A.3) conditions. Therefore there are still necessary 

– besides the boundary conditions - the following number of equations 

EcD=ND - NLim= (D+1)×(D+2)/2 – (2D+1) = D×(D-1)/2  (B.5) 

To obtain a CF of a chosen D degree are therefore necessary: for 

CF3→Ec3=3×2/2=3 equations; for CF4→Ec4=6 eq.; CF5→Ec5=10 eq.; 

CF6→Ec6=15 eq.; CF7→Ec7=21 eq. 

In [1] these equations were selected according to Chapters 8 and 9. Here 

the choice is a little changed. From these equations it is maintained the integral of 

PDE, to which are added the derivatives of PDE. Consequently, the number of 

equations still necessary is:  

-for CF3 → 2 first order derivatives ( ) ( )( )dyPDEdxPDE /;/  , Total3=2; 

-for CF4 → 2 previous derivatives + 3 new second order derivatives 

                        ( ) ( ) ( )( )22222 /;/;/ dyPDEdydyPDEdxPDE  , Total4=5; 

-for CF5 → 5 previous derivatives + 4 new second order derivatives,   Total5=9; 

-similarly,for CF6→ Total6=9+5 (new)=14 ;  for CF7 → Total7=14+6 (new)=20. 

 If to these “Totals” is added the 1 equation (representing the integral of 

PDE) it result the numbers of equations Ec3; Ec4; Ec5 and so on. This is the basis 

for establishing the necessary number of equations valid also for any degree of CF 

greater than D=7 (maximum CF degree used here). 

 The only special problem is represented by the partial derivatives of the 

nonlinear source term  ),( yxF   included in (1.1). The basis for calculating 

these derivatives was started in [1], relations (9.2.4)... (9.2.7). 
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