
U.P.B. Sci. Bull., Series D, Vol. 74, Iss. 2, 2012                                                    ISSN 1454-2358 

MATHEMATICAL MODEL FOR THE STUDY OF THE 
LATERAL OSCILLATIONS OF THE RAILWAY VEHICLE  

Ioan SEBESAN1, Dan BAIASU2 

Articolul prezintă un model matematic pentru studiul serpuirii unui vagon de 
calatori.Modelul include mişcările de clătinare, ruliu şi serpuire ale principalelor 
elemente constitutive : osiile montate, boghiurile şi cutia. Sistemul de ecuaţii este 
scris aplicând metode energetice. Se consideră neliniarităţile induse de profilul 
neregulat al căii de rulare. Forţele de contact roata sina sunt exprimate utilizând 
coeficienţii de pseudoalunecare stabiliţi conform teoriei lineare a lui 
Kalker.Sistemul de ecuaţii este rezolvat prin metode numerice.Se determină 
răspunsul sistemului – vagon de călători pe o linie în aliniament şi palier, viteza 
critică şi influenţa caracteristicilor constructive ale vagonului asupra 
performanţelor acestuia.  

The article presents a mathematical model to study a passenger coach 
hunting motion comprising the lateral displacement, rolling and yawing oscillations 
for the main constitutive elements: axles, bogies and body. The equation system is 
written applying energetic methods. The non-linearities determined by the irregular 
profile of the tracks are considered. The wheel – rail contact forces are expressed 
using the creepage coefficients established according to Kalker's linear theory. The 
equations system is solved through numeric methods. The response of the system – 
passenger coach on tangent track, the critical speed and the influence of the 
constructive characteristics on its performances are determined.  

Keywords: passenger coach, hunting, mathematical model, critical speed, coach’ 
construction 

1. Introduction 

The lateral railway vehicle dynamics represent a study area of great 
interest in the actual context where more and more railway administrations 
implement the high speed trains, which prove to be efficient, economic and 
ecological transportation means.  

Trains circulating with speeds higher than 160 km/h generate vibrations in 
the vehicle body that induce significant operation problems: running instability, 
poor ride quality and track wear. From this point of view, an adequate design of 
the railway vehicles' suspensions holds an important role in maintaining the 
comfort and safety parameters of trains’ operation.  
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Kinematic theoretical studies of the rolling gear’s elements lateral and 
yawing motions [1], [2] have highlighted that the oscillation frequency increases 
proportionally to the circulation speed. The speed value where the amplitude of 
the oscillations grows and the vehicle movement becomes unstable is called 
critical speed. Starting off with this approach, various studies on the railway 
vehicle's lateral stability have showed the existence of two sources of instability 
for the railway vehicle:  
- the bogie instability, induced by the axles' movement instability ;  
- the instability of the body, which appears when, in the low frequency domain,        
the vehicle body has the tendency of moving along with the bogie.   

The dynamic behavior study of the railway vehicle has two directions:  
- the dynamic response of the system: simulation of dynamic behavior due to 
external stimuli, determination of the concentrated mass accelerations and speeds, 
and implicitly the forces that act upon the vehicle;  
- the dynamic stability: the study over the system's stability in various operation 
conditions.  

The mathematical modelling of the rail or of the railway vehicle is 
frequently used for study or in order to observe the rail's and railway vehicle's 
interaction with the tracks. The dynamic interaction between the vehicle and the 
tracks varies depending on the operation conditions, geography, the wheel and rail 
treads and the weather conditions.  

Obtaining a mathematical model for the study of the dynamic behavior in 
the case of the railway vehicle implies the latter being formed out of rigid bodies 
inter-connected through weightless suspension elements. A rigid body – be it 
vehicle or vehicle component – has 6 degrees of freedom corresponding to the 
movements along the three shifting directions (longitudinal, lateral and vertical) 
and the rotations around these axes (rolling, pitching and yawing). 

Usually, in the case of railway vehicles, the mathematical models account 
for the body case, the bogies and the wheelsets as rigid bodies. The equations 
system describing the movement of the mathematical model could thus have 42 
quadratic coupled equations. Solving such a system represents a sometimes 
inconclusive undertaking regarding the vehicle's behavior. According to [1], [3], 
[4] for small amplitude movements, there is a relatively small connection between 
the vehicle's oscillations on a vertical and transversal directions, this is why some 
of the models presented in literature don't take into account the vertical 
oscillations in the study of movement on lateral direction or the horizontal 
oscillations for the study of vehicle vertical displacement.  

Starting with the 60's, numerous authors have dedicated studies to the 
lateral oscillations phenomenon (the hunting motion): Wickens (1965), Law and 
Coperrider (1974), Garg and Dukkipatti (1984), Sebesan (1995), Ahmadian and 
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Yang (1998), He and McPhee (2002), Fan and Wu (2006),  Messouci (2009), 
Wang and Liao (2009), Zboinski and Dusza (2011) and others. 

The mathematical models used in the literature for the study of vehicles, 
differ depending on the number of degrees of freedom taken into account, the 
vehicle type, the linear or non-linear treatment of the wheel – rail contact 
phenomenon, of the forces appearing at the wheel – rail contact, as well as the 
irregularities of the tracks. The complexity of these models has evolved in 
proportion as the calculus technique has become more evolved allowing the 
finding of solutions for more and more complex sets of differential equations 
using up to 38 degrees of freedom and taking into consideration more and more 
non-linear aspects of the vehicle – rail interaction.  

In paper [5] the authors demonstrated that the critical speed obtained with 
the help of a model with 6 degrees of freedom is bigger than the one obtained with 
a system having 10 degrees of freedom; as a consequence it is shown that the 
precision of the vehicle design increases along with the number of degrees of 
freedom considered in the calculus. 

A large amount of the mechanical models built until now – [4], [5],[6], 
[11], [12] concerning especially the vibrations of the mounted axle, considering 
that these determine the vibration regime in the whole vehicle, are of interest 
because they allow the study of the non-linearities specific to the processes 
generated by the rolling of the mounted axle on the tracks or the assessment of the 
importance of various constructive parameters of the vehicle, but cannot represent 
the phenomena that take place at the level of the case – bogies connection. 
Moreover, few of the mechanical models presented in the literature are validated 
through dynamic tests [8], [9], [10], [13].  

This article presents a mathematical model of a passenger coach built to 
simulate the response from the oscillating system to the irregularities of the tracks 
and establishes the critical speed of the coach. Simulation of the vehicle's 
response for various values of its constructive parameters facilitates the study of 
optimization possibilities for the coach's performance.  

2. Mechanical model of the passenger coach 

The specific construction characteristics of the vehicle were considered in 
order to elaborate the mechanical model. The dynamic response of the coach on 
bogies to the tracks' irregularities on a horizontal plan depends strongly on the 
configuration of the tracks which represent inputs for the vehicle as an oscillating 
system, and also depends on its circulation speed. An accurate design of the axle 
suspension can reduce the high frequency vibrations generated by the tracks, by 
the reduced conicity of the rolling tread and by the wheel – rail contact forces. 
The central suspension must absorb the vibrations transmitted by the bogies to the 
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coach case in order to maintain the vehicle in an optimum position during 
circulation, so that it ensures the passengers comfort. Both suspensions also 
contain dissipative elements that attenuate the vibrations generated by the 
vehicle's movement.   

A reliable model of the vehicle must include both suspension levels, 
allowing the highlighting of the dynamic characteristics of the vehicle's movement 
and the study of the relative displacements appearing between the components of 
the model. The model must facilitate the calculation of the suspension in order to 
optimize the coach performance. The model can also be used to study the vehicle 
instability due to the tracks' irregularities and to the inherent auto-induced 
instability.  

The coach case center of mass is located at the hcc height from the 
separation plane between the box and the bogie's frame – the transversal plane 
that equally divides the bogie's central suspension's coil spring. This plane is 
located at a distance hcb from the bogie's mass center.  
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Fig. 1 Mechanical model for passenger coach’s hunting (lateral view) 
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Fig. 2 Mechanical model for passenger coach’s hunting (upper view) 
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It is assumed that all the elastic and damping elements have linear 
characteristics: the elastic force is directly proportional with the coil spring 
deformation and the damping force is directly proportional with the dampers' 
deformation speed. In order to deduce the mechanical model movement equations, 
a preliminary establishment of the reference systems and coordinates describing 
the movement of the concentrated mass inside the model was necessary. The 
mechanical model contains the following elements: 
- the coach case; 
- the bogies bj , j=1,2; 
- the wheelsets oi , i=1...4; 
- Oc, Obj, Oi – the centers of mass for the mechanical model elements; 
- xc, yc, zc, ψc, φc, θc – the displacements, respectively rotations, of the coach 

case during movement;  
-  xbj, ybj, zbj, ψbj, φbj, θbj – the displacements, respectively rotations, of the 

bogies; 
-  xoi, yoi, zoi, ψoi, φoi, θoi – the displacements, respectively rotations, of the 

mounted axles; 
- hc – distance between Oc and Obj ; 
- hb – distance between Obj and Oi . 
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Fig. 3 Mechanical model for passenger coach’s hunting (transversal view) 

  
Considering the coach as a system of rigid bodies interconnected through 

suspension elements, under conditions of geometrical, elastic and inertial 
symmetry, with identical wheel and rail patterns, the equilibrium position of the 
coach coincides with its median position in relation to the tracks. The yawing 
motions of the coach around its equilibrium position were considered to be of 
relatively small amplitudes, without moving in all the available space in the 
vehicle slot guide. In this case, the rolling surfaces' contact angles are small, the 
radii of curvature for the rolling treads remain unchanged and the expression for 
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the centering gravitational force can be linearized. Conicity has been considered 
as having an equal constant value with the rolling surfaces' effective conicity. The 
small contact angles create the premises for neglecting the contact forces' vertical 
components in relation with the wheel loads which can be considered equal to the 
normal contact forces.  

Adopting the hypothesis of the small oscillations implies the existence of 
transversal accelerations in the small amplitude vehicle which signifies that the 
load transfers between the wheels of the same axle can be neglected. At the same 
time, the axle's vertical accelerations at small frequencies characteristic to yawing 
can be neglected, the axle load can be considered as being constant so that the 
wheel load is also considered as being constant.  

The mechanical model's geometrical and elastic symmetry facilitates the 
decoupling of the lateral movements from the vertical ones.  

In order to study the 4 axles vehicle's lateral oscillations, considering that 
we are using the simplifying hypotheses previously presented, the mechanical 
model considers the following degrees of freedom: yc, ψc, φc, ybj, ψbj, φbj,yi, ψi,  
where  j=1,2 represent the bogies and i=1 – 4 the wheelsets.   

Hence, a system results, with 17 degrees of freedom corresponding to the 
concentrated mass movements that make up the mechanical model.  
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Fig. 4 Forces and moment acting on the wheelset 

According to Kalker's theory [7], both the creep tangential forces xT and 

yT  and the creep moment zM  that acts in the contact point wheel – rail can be 
written as:  
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where the spin creepage is given by the expressions:  
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            eyse γωω sin=   - corresponding to wheel 1 
            iysi γωω sin=    - corresponding to wheel 2                                                       (2) 

where rvy /=ω  represents the angular speed transversal component in the wheel 
– rail contact point. According to [1], approximate values are indicated for the 

creepage coefficients:
33

400...300
QQyx ==≈ χχχ    (for Q expressed in tons), which 

depend on the ratio of the contact ellipse axes.  
         For the spin coefficient sχ , the literature recommends a value of 0.83 

because it is almost independent in respect to the ratio of the contact ellipse axes.   
The zχ  coefficient for a circular contact surface is 30.0043z Qχ =  and 

for a contact surface whose axis length in the running direction is twice, 
respectively 0.5 times the length of the other axis is 30.0014z Qχ =  and, 

respectively, 30.0134z Qχ = . 
 The zχ  coefficient has a reduced influence over the yawing motion and 

can be neglected.  
 The creepages in the contact points of the two axle wheels have the 

expressions:                                                
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In the contact points, the forces and the moments will have expressions 
given by the following relations:  
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The centering force : ycQC g=−= )( 21 γγ                                              (5) 
A fixed reference system is considered – Oξηζ originating in the mounted 

axles' plan, on the tracks axis, at a distance s from the center of gravity Oc of the 
coach,(fig. 3). 

In order to determine the relative displacements of the mechanical model's 
elements, one has to compare their coordinates in relation to the fixed reference 
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system. The relative displacements of the case in relation to the bogies can be 
determined at the level of the central suspension and the bogies' relative 
displacements in relation to the mounted axles can be determined at the level of 
axle suspension. It is also necessary to establish the coordinates for the points 
located in the center of the suspension in relation to each of the adjacent element 
in the mechanical model.  

The central suspension's strokes on the three axes are:  
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The axle's suspension strokes on the three axes are:   
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3. The mathematical model  

Lagrange's equation method may be applied as follows, in order to 
establish the movement equations:  
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where, kq - generalized coordinate, kq - generalized speed, E – kinetic energy, V – 
potential energy, D – energy dissipation function, Qk – generalized force 
corresponding to the generalized coordinate kq . 

The oscillating system's kinetic energy, potential energy and the energy 
dissipation function have the expressions: 
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According to the contact forces (4), the generalized forces corresponding 
to the generalized coordinates yi si ψi, have the following expressions: 
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where, χ - the creepage coefficient, v – the coach's circulation speed, Q – wheel 
load, γ - effective conicity of the tread, r0 – the wheel tread radius, sχ - spin 
creepage coefficient, cg – gravitational stiffness, iη  - track deviations on 
transversal direction. 

The mathematical model considers the aspects of the non-linearities 
introduced by the irregularities of the tracks. According to [1], [4], the expression 
of the alignment deviations is possible in a sinusoidal form: 

- ]/)(2cos[02,1 Lalvt ±+= πηη  for the trailing bogie axles;  
(11)- ]/)(2cos[04,3 Lalvt ±−= πηη  for the driven bogie axles. 

Applying Lagrange's equations we obtain the movement equations for the 
coach case, bogies and axles (12): 
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4. The response of the system  

The general form of the movement equations for the system with more 
degrees of freedom (12) is: 

[ ]{ } [ ]{ } [ ]{ } { })(tFqKqCqM =++                                                              (13) 
where, [M] – mass matrix, [C] – damping matrix, [K] – stiffness matrix, {q̈ }  - 
acceleration vector, {q̇ }  - speed vector, {q }  - displacements vector,{ })(tF  -  force 
vector. 

Thus, for the system with 17 degrees of freedom, the displacements vector 
is: { } [ ]44332211222111 ψψψψϕψϕψϕψ yyyyyyyq bbbbbbccc= . 

The mass matrix is a square matrix of order 17, with mass on diagonal and 
moments of inertia of the concentrated mass composing the mechanical model 
associated to the coach previously presented. The [C] and [K] matrices are square 
matrices of order 17 made up of the damping coefficients and the stiffnesses of 
the mechanical system. Because it is not possible to establish analytical 
expressions in relation to the system's response or the critical speed, both the 
study of movement stability and the determination of the hunting oscillations 
amplitudes are made using a numerical integration method of the movement 
equations, the Runge – Kutta method of 4th order, for which the MATLAB 
program package has specific procedures.  

Table 1 
Construction data of the passenger coach 

Body case mass mc= 30760 kg 
Bogie mass mb= 2300 kg
Wheelset mass mo= 1410 kg
Body case moments of inertia Icx=53596 kgm2  Icz=1661732 kgm2 
Bogie moments of inertia Ibx=2240 kgm2  Ibz=   2965 kgm2 
Axles moments of inertia Ioy=980 kgm2  Ioz=100 kgm2 
Central suspension stiffness kcx=133 kN/m kcy=133 kN/m 

kcz=473 kN/m
Axle suspension stiffness kox=  256 kN/m koy=  885 kN/m

koz=  904 kN/m 
Central suspension damping ρcx= 0 kN/m/s ρcy= 25 kN/m/s 

ρcz= 18 kN/m/s 
Damping of the axle suspension ρoz=3,67 kN/m/s 
Wheel tread radius r0=0,460 m 
The track’s gauge 2e=1,435 m 
The bogie's wheelbase 2a =2,560 m 
The distance between bogies 2l = 17,2 m 
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The distance between the central suspension's 
springs 

2dc= 2 m 

The distance between the axle's suspension 
springs 

2do= 2 m 

The distance case center – central suspension       hcc=1,24m 
The distance axles suspension - bogie center hob=0,01 m 
The distance central suspension - bogie center hcb= 0,06 m 
Load on wheel Q=51250 N 
The creepage coefficient χ=190 
The spin creepage coefficient χs=0,83 
The effective wheel conicity γ=0,14 
The maximum testing speed vmax= 50 m/s 

The data presented above helped in accomplishing a working numerical 
simulation using the MATLAB program. In the simulation it was considered that 
the coach is launched on a tangent track and runs with a constant speed. In the 
movement equations' general expressions the coach was considered as an 
oscillating system activated by the tracks' irregularities. The elements' response 
was thus established – concentrated masses that make up the coach's mechanical 
model, translated in the generalized displacements' diagrams in relation to time at 
the maximum speed at which the coach is checked in the test polygon – 180 km/h, 
presented in fig. 5-12. The diagram study indicates that the tracks' perturbations 
effect is not felt at the coach case level, as opposed to the bogie and axles where it 
persists during the coach's circulation. The coach's main suspension acts 
correspondingly and meets the comfort demands inside the coach.   

  
Fig.5 Case lateral displacement Fig.6 Coach’s case yaw Fig.7 Coach’s case roll 

 
Fig. 8 Bogie’s lateral 

displacement 
Fig.9 Bogie’s yaw Fig. 10 Bogie’s roll 
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Fig.11 Wheelset’s lateral displacement Fig.12 Wheelset’s yaw 

5. The vehicle’s critical speed 

The critical speed is the speed where the vehicle becomes unstable due to 
the fact that, on the wheel – rail contact, the creepage becomes pure slip [1]. The 
vehicle's maximum circulation speed must be lower than the critical speed. 
According to [6], vehicles with great speeds are operated mainly on straight tracks 
therefore the stability of the vehicle should be studied on tangent tracks. 

The equations system describing the vehicle's movement is considered as a 
continuous dynamic system in time. The internal stability of this type of system 
solely depends on the distribution of the eigenvalues of the characteristic matrix in 
the complex plan.  

The coach's critical speed is determined using the construction 
characteristics of the coach model seen above and the movement equations given 
by (12). We proceed then in calculating the eigenvalues of the characteristic 
matrix of the order I system resulted through the variable change: 

{ } { }
{ }⎭

⎬
⎫

⎩
⎨
⎧

=
q
qy                                                                                             (13) 

that has the form: 
{ } [ ]{ } { })(* tFyEy +=                                                                              (14) 

with 

[E]=
[ ] [ ]

[ ] [ ] [ ] [ ]⎥⎦
⎤

⎢
⎣

⎡
−− −− CMKM

I
11

0
                              (15) 

The dynamic system is asymptotically stable if and only if all the 
eigenvalues of the matrix E have a negative real part.  

Determination of the eigenvalues of the matrix E was accomplished in 
MATLAB using the “eig” routine and increasingly varying the coach's circulation 
speed. As long as the real part of all the eigenvalues obtained is negative – the 
coach's movement is stable. If detecting a speed value for which at least one 
determined eigenvalue has the real part positive the speed's variation step is 
refined up to the necessary precision. 
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Fig.13 Axle lateral displacement , 

v<230 km/h 
Fig.14Axle lateral displacement , 

v=230 km/h 

Fig.15 Axle lateral displacement , v>230 km/h 
In what regards the coach used in the simulation, the critical speed was 

determined at a value of 63,7 m/s (~ 230 km/h). In a loaded state, the coach's 
critical speed will increase as a result of the stabilizing centering effect.  

The coach's response is presented in the fig. 13–15 – the lateral 
displacement of the first axle – at inferior, equal and superior speeds to the critical 
value.  

6. The construction characteristics' influence on the vehicle's stability 

The mathematical model determined in the previous chapter can be used 
for improving the design of railway vehicles. Thus, applying the eigenvalues 
method, the influence of several construction characteristics of the vehicle over 
the critical speed can be studied. 

The papers [4], [5], [9] contain studies of vehicle’s stability with respect to 
the construction parameters of the wheelsets and suspensions. Paper [9] explicitly 
assumes the critical speed of the vehicle as unique optimization criteria. Paper [6] 
features the conclusions of similar studies and formulates recommendations for 
the suspension construction. 

Image 16 presents the passenger coach’s critical speed variation for 
conicity values equivalent to 0.12 , 0.13 and 0.14.  

It is noticeable that the critical speed decreases along with the tracks’ 
equivalent coning growth. Among the most frequent causes of the equivalent 
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coning growth we can mention wear due to the wheels’ rolling pattern 
exploitation or the tracks’ radius of curvature growth.  

60
62
64
66
68
70
72

0.12 0.13 0.14

Effective conicity

C
rit

ic
al

 s
pe

ed
[m

/s
]

Fig.16 The influence of the effective conicity on the stability 
The axles’ suspension construction holds a particular importance over the 

vehicle stability on a horizontal plan. In general, a growth in the axles’ suspension 
stiffness leads to a significant stability growth. Thus, if a longitudinal rigidity 
growth is accomplished, from 250 to 300 kN/m, the vehicle’s critical speed can be 
augmented with up to 18 km/h.  
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Fig.17 The influence of the 

longitudinal stiffness of the axle suspension 
Fig.18 The influence of the transversal   

stiffness of the axle suspension 

In the case of the studied vehicle it was noticed that a maximum critical 
speed of 64 m/s can be accomplished under the conditions of an axle suspension 
with a transversal stiffness around 885 kN/m, according to fig. 18. 
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Fig.19 The influence of the transversal stiffness 
of the central suspension 

   Using more and more rigid suspensions also brings an intensification of 
the wear of the bogies subassemblies.  
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Fig.20 The influence of the transversal damping 

Image 19 suggests that central suspension stiffness growth on a vertical 
direction reduces the coach's critical speed. Thus, a vertical stiffness growth of 
60% in the central suspension produces a critical speed decrease of 15 km/h. 

If the coach's central suspension transversal damping value grows from 20 
kN/m/s to 30 kN/m/s, the critical speed increases with more than 20 km/h. If the 
damping has very high values the dampers become very rigid and have the 
tendency of behaving like bogie – case coupling elements, transmitting 
oscillations from the rolling apparatus to the coach case, reducing thus both 
dynamic performance and vehicle comfort.  

7. Conclusions 

The article presents a mathematical model with 17 degrees of freedom for 
a passenger coach reaching a maximum speed of 160 km/h.  

The model considers the coach's lateral oscillations, respectively the lateral 
displacement, yawing and rolling motions of the concentrated mass building up 
the associated mechanical model: the coach case, the bogies and the mounted 
axles. The mathematical model proposed in this paper applies the equations 
featured in [1] for the bogies and wheelsets lateral movements and extend them to 
a passenger coach. A mathematical model to study the lateral dynamics of an 
entire vehicle solved with an original computer program is an original approach at 
national level. 
The present study is conducted for the creep domain with linear friction 
coefficient characteristic. Previous studies proved that in the stability studies, the 
critical speed evaluated through linear methods it is higher than the non-linear 
critical speed, a fact that should be considered in the design activity. The non-
linear systems offer a better accuracy in the evaluation of the dynamic behavior of 
the railway vehicle almost simulating the real phenomenon. The linear approach 
of the vehicle’s stability is useful in the design phase because it allows the 
investigation of the influence of the construction parameters on the critical speed. 
In that way it is possible to identify the optimal value domains of those 
parameters.  
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The equations system describing the vehicle's movement on a lateral 
direction was treated through numerical methods in order to determine its 
components' response to the coach's movement on an irregular track .  

The critical speed of the coach used to exemplify the mathematical model 
was determined and applications of the study of the influence of construction 
parameters of the coach over its performances were presented. 

It was shown that vehicle performance optimization is possible, allowing 
the increase of the critical speed with 20 km/h exclusively through an adequate 
suspension design. However, this undertaking must be the result of an 
optimization and adequacy process of the suspension's construction parameters in 
relation with the domain in which the railway vehicle is used and according to the 
specific operating conditions. Under this extent the presented mathematical model 
can represent an useful instrument in the calculation, design and optimization of 
the dynamic performances of railway vehicles.  

The presented mathematical model offers developing opportunities 
considering the non-linearities of the wheel – rail contact and the situations when 
the vehicle runs in a curve.  
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