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The aim of this paper is to study a viscosity algorithm for finding a common
element of the set of fized points of a nonexpansive mapping and the set of solutions
to a new wvariational inequality problem of two inverse-strongly monotone operators in
2-uniformly smooth and uniformly convexr Banach spaces. Under some suitable assump-
tions imposed on the parameters, we obtain strong convergence theorems. The results
obtained in this paper may be an improvement of many recent ones in the literature.
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1. Introduction

Variational inequality theory plays an important role for solving many problems aris-
ing in several branches of pure and applied sciences, such as mathematical programming,
equilibrium problems and signal recovery problems. See [1-8,21-29] for more details and the
references contained therein.

In this paper, we study a generalized viscosity algorithm for finding a common element
of the set of fixed points of a nonexpansive mapping and the set of solutions to a new
variational inequality problem for two inverse-strongly monotone operators in 2-uniformly
smooth and uniformly convex Banach spaces. Strong convergence result of the sequence
generated by our algorithm is given under appropriate conditions imposed on the parameters.

2. Definitions and preliminaries

Throughout this paper, let E be a real Banach space and let C be a nonempty, closed
and convex subset of E. Let T': C'— C be a self-mapping. We always denote by F(T') the
set of fixed points of T, that is F(T) := {z € C: 2 = Tx}. Let J : E — 25" be the duality
mapping defined by

J@) = {z* € B (w,0%) = eI, lo”)l = 2]}, v € B,

If E is a real Hilbert space, it is easy to see that J = I, where I is the identity mapping
on E. In addition, when F is smooth, we know from [21] that J is single-valued, which we
shall denoted by j. Next we state some basic concepts and facts appeared in this paper.
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A mapping f : C — C is said to be a strict contraction, if there exists a constant
0 € (0,1) such that

1f (@) = fWl <6 flz—yl, V,yeC. (1)
A mapping T : C — C' is said to be nonexpansive if
[Tz =Tyl < [lz —yll,V z,y € C. (2)

A mapping A : C — FE is said to be accretive if there exists j(x —y) € J(z — y) such
that
<AI’*Ay,j($*y)>ZO,V‘T,y€C. (3)

A mapping A : C — F is said to be a-inverse strongly accretive if there exists
jlx —y) € J(x —y) and o > 0 such that

(Az — Ay, j(x —y)) = a| Az — Ay|* YV 2,y € C. (4)

Let pg : [0,00) — [0,00) be the modulus of smoothness of E defined by
1
pi(t)i=sup {5l ol + o = yl) = 1: 0 € S(E), Il < ¢}

pe(t)

Banach space F is said to be g-uniformly smooth, if there exists a fixed constant ¢ > 0 such
that pg(t) < ct?. Tt is well known that if E is g-uniformly smooth, then ¢ < 2 and F is
uniformly smooth.

A Banach space F is called to be strictly convex, if  and y are not colinear, then:
Iz + yll < llz|| + |ly||- Let dg(e) be the modulus of convexity of E defined by

A Banach space E is called to be uniformly smooth if — 0 as t — 0. Furthermore,

. 1
3(0) =t {1 5yl ol Iyl < 1, o = ] 2 e}

for all € € [0,2]. A Banach space E is said to be uniformly convex if §5(0) = 0, and dg(e) > 0
for all 0 < € < 2. It is known that LP is uniformly smooth and uniformly convex Banach
space, where p > 1. Precisely, L? is min {p, 2}-uniformly smooth and max {p, 2}-uniformly
convex for every p > 1.

Let C be a nonempty, closed and convex subset of a real Hilbert space H and let
A : C — H be a nonlinear mapping. The classical variational inequality is to find an z* € C
such that

(Az*,z —2*) >0, Ve e C. (5)
We use VI(A, C) to denote the set of solutions to (5).

Moreover, Ceng et al. [4] introduced the following problem of finding (z*,y*) € C' xC
such that

(6)

which is called a general system of variational inequalities, where A, B : C — H are two
nonlinear mappings, A > 0 and p > 0 are two fixed constants. We can see easily that problem
(6) contains the classical variational inequality (5) as a special case. At the same time, they

MNMy* +2* —y*,z —2*) >0, Vo € C,
(uBx* +y* —az*,x —y*) >0, Vo € C,

introduced a modified Halpern iterative algorithm for finding a common element in the set
of solutions to problem (6) and the set of fixed points of a nonexpansive mapping. Strong
convergence theorems were obtained under some suitable conditions on the parameters.
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On the other hand, let C' be a nonempty, closed and convex subset of a real Banach
space E and A, B : C' — E be two operators. In Banach spaces, Yao et al. [7] studied the
following problem of finding (z*,y*) € C x C such that

(Ay" +a° " jla— %) >0, Vo € C, -
<B£L'* +y* - x*,](x - y*)> Z 03 Ve Ca

where A, B : C — E be two nonlinear operators. Precisely, Yao et al. [7] studied the
following iterative algorithm:

u, xg € C,
Yn = QC(xn - an)v (8)
Tnt1 = QpU + Brn®n + 'YnQC(yn - Ayn)7 n >0,

and obtained strong convergence results under some suitable conditions on the parameters.
In this paper, we introduce the new problem of finding (z*,y*) € C' x C such that

{ (x* = (I = AA)(az* + (1 — a)y*),j(x —x*)) >0, Vz € C, )
(y* = (I —pB)z*, jx —y")) 20, Vo € C,

which is called the system of more general variational inequalities in a real Banach space.
If \=p =1 and a = 0, the problem (9) becomes problem (8). If a = 0, then (9) becomes

{ (My* +2* —y*, j(z —a*)) >0, Vo € C,

(uBa* +y* —a*,j(z —y*)) > 0, Va € C. (10)

Therefore (9) contains (8) or (10) as a special case.

Let C' and D be nonempty subsets of a Banach space E such that C' is nonempty,
closed and convex and D C C. A mapping P : C — D is called to be sunny (see [9, 10]) if
P(z+t(z — P(z))) = P(x), Vo € C and t > 0, whenever z + t(z — P(z)) € C. A mapping
P : C — D is called a retraction if Px = x,V x € D. Moreover, P is said to be a sunny
nonexpansive retraction from C onto D if P is a retraction from C onto D, which is also
sunny and nonexpansive. A subset D of C is called a sunny nonexpansive retract of C' if
there exists a sunny nonexpansive retraction P from C onto D (see [11] for more details).

Proposition 2.1 ([9]). Let C be a closed and convexr subset of a smooth Banach space E.
Let D be a nonempty subset of C. Let P : C — D be a retraction and let J be the normalized
duality mapping on E. Then the following are equivalent:

(a) P is sunny and nonexpansive;

(b) | Pz — Py|* < (z — y, J(Pz — Py)), Yo,y € C;

(¢) (x — Px,J(y — Px)) <0, Ve e C,y € D.

Proposition 2.2 (Theorem 4.1,[12]). Let D be a closed and convex subset of a reflexive
Banach space E with a uniformly Gateauz differentiable norm. If C' is a nonexpansive
retract of D, then it is a sunny nonexpansive retract of D.

For proving our main results, we need the following lemmas.

Lemma 2.1 ([13]). Assume that {a,} is a sequence of nonnegative real numbers satisfying
the following relation:
pt1 < (1 - O‘n)an + anon +0p, n >0,
where
(i) {an} is a sequence in [0,1] and Y ;2| an = 00;
(i) limsup,, , . on < 0;
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(i) Y200, 6, < o0.

Then lim,, o a, = 0.

Lemma 2.2 ([14]). Let E be a real smooth and uniformly convex Banach space and let
r > 0. Then there exists a strictly increasing, continuous and convex function g : [0,2r] —
R such that g(0) = 0 and g(||z —y|) < ||z||* = 2 (z,5y) + |lyl|°, for all z,y € B, where
B, ={z€e E:|z| <r}.

Lemma 2.3 ([15],Lemma 2.1). Let C be a closed convex subset of a strictly convex Banach

space X. Let Ty and Ty be two nonexpansive mappings from C' into itself with F(T1) N
F(Ty) # 0. Define a mapping S by

Sz =Mz + (1 — N1,V e C,
where X is a constant in (0,1). Then S is nonexpansive and F(S) = F(Ty) N F(T3).

Lemma 2.4 ([16]). Let C be a nonempty closed convex subset of a real 2-uniformly smooth
Banach space E. Let the mapping A : C — E be a a-inverse-strongly accretive. Then the
following inequality holds:

(T = AA)z — (I = AA)y||* < [l& — y[|* — 2A(a — K>N) Az — Ay||*.
In particular, if 0 < X\ < 325, then I — AA is nonexpansive, where K is the 2-uniformly
smoothness constant of E (i.e., K is a positive constant (see [20]) satisfying:

lz +yl1* < l2|* + 2 (y, j(2)) + 2| Kyll*, z,y € E.

Lemma 2.5 ([17]). Let C be a nonempty, bounded and closed convez subset of a uniformly
convexr Banach space E and let T be nonexpansive mapping of C into itself. If {x,} is a
sequence of C such that x,, = = and x,, — Tx, — 0, then x is a fized point of T'.

Lemma 2.6 ([18]). Let {x,,} and {z,} be bounded sequences in a Banach space E and let
{Bn} be a sequence in [0,1] such that 0 < liminf, , B, < limsup, _, . Bn < 1. Suppose
Tp+1 = Bnn + (1 — Bn)zn, n >0 and

limsup(||znt1 — 2n|l = [[Tn1 — zal]) <0.
n— o0

Then lim,, , ||2n — zn| = 0.
Lemma 2.7 ([13]). Let E be a uniformly smooth Banach space, C be a closed convex subset
of E, T : C — C be a nonexpansive mapping with F(T) # 0 and let f € Ug. Then the
sequence {x;} define by

xy =tf(as) + (1 —t)Tay
converges strongly to a point in F(T). If we define a mapping Q : llc — F(T) by

Q(f) =limz, Vf€lle.
Then Q(f) solves the following variational inequality:
(I = NHA),3(Qf) —p) <0, Vfellg, pe F(T).

Lemma 2.8 ([19]). Let C be a nonempty closed convex subset of a real Banach space E
which has uniformly Gateauz differentiable norm, andT : C — C be a nonexpansive mapping
with a nonempty fized point set F(T). Assume that {z:} strongly converges to a fized point
z of T ast — 0, where {2z} is defined by Lemma 2.9. Suppose {x,} C C is bounded and
lim, o ||z, — Txn|| = 0. Then

limsup (f(z) — z, J(@nt1 — 2)) < 0.

n— oo
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Similar to the proof of Lemma 2.9 and Lemma 2.10 of [16], we can obtain the following
lemmas.

Lemma 2.9. Let C be a nonempty, closed and convex subset of a real 2-uniformly smooth
Banach space E. Assume that C' is a sunny nonexpansive retract of E. Let Po be the sunny
nonexpansive retraction from E onto C. Let the mapping A : C — E be a-inverse-strongly
accretive and let B : C — E be fB-inverse-strongly accretive. Let G : C — C be a mapping
defined by

G(x)=Pc(I—MA)[al + (1 — a)Pc(I — uB)]z, Vz € C.

Ifo < X < % and 0 < p < %, then G : C — C is nonexpansive, where K is the
2-uniformly smoothness constant of E.

Lemma 2.10. Let C be a nonempty, closed and convex subset of a real 2-uniformly smooth
Banach space E. Assume that C' is a sunny nonexpansive retract of . Let Po be the sunny
nonexpansive retraction from E onto C. Let A, B : C — E be two nonlinear mappings. For
given *,y* € C, (x*,y*) is a solution of problem (9) if and only if v* = Po(I — MA)(az™ +
(1—a)y*), where y* = Po(x* — uBx*), that is x* = Ga*, where G is defined by Lemma 2.9.

3. Main results

Theorem 3.1. Let C be a nonempty, closed and convex subset of a 2-uniformly smooth and
uniformly convexr Banach space E. Let Po be the sunny nonexpansive retraction from E to
C. Let the mappings A, B : C — E be a-inverse-strongly accretive and [-inverse-strongly
accretive, respectively. Let T : C — C be a nonexpansive mapping with F(T) N F(G) # 0,
where G : C'— C is a mapping defined by Lemma 2.9. Let f : C — C be a strict contraction
with coefficient § € [0,1). Pick any 21 € C. Let {x,,} be a sequence generated by

Zn = PC(:En - Nan)a
yn = Po(I — MA)(az, + (1 — a)zy), (11)
Tn41 = anf(xn) + 6nxn + ’YnTyna

where 0 < a <1, 0 < A< & and 0 < p < %, where K is the 2-uniformly smooth
constant appeared in [20]. Suppose that {a,}, {Bn} and {v.} are three real sequences in
[0,1] satisfying the following conditions:

(i) ap + Bn + v = 1;

(i1) imy, o0 0y = 0, D07 | @ty = 00;

(#i) 0 < liminf 3, <limsupf, <1 .
Then {xz,} converges strongly to g € F(T)NF(G), which is also the solution of the variational
inequality:

(flg) —q,ilp—q)) <0, Vp € F(T)NF(G).

Proof. Firstly, we can show that {z,} is bounded and lim,, o ||Znt1 — Zn|| = 0 by using
similar methods used in [7]. We omit the details.

Next, we show that lim, . ||2n — T2n|| = 0 and lim,, o ||z, — yn|| = 0. By Lemma
2.10, we have

* (12 * *\ |2
l2n —y*II” = [[Pc(zn — pBzy) — Po(z™ — pBa™)|
<||zn — 2" — w(Bxy, — Bx*)”Z
< lwn — 2*|* = 2u(8 — K*p) || Bxn, — Ba*|*. (12)
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and
g — 2|
= |Po(I — M) (azy + (1 — a)z) — Po(I — AA)(az* + (1 — a)y®)|?
< [[(azy + (1 — a)zn) — (az™ + (1 — a)y”)
— MA(azn + (1 = a)z,) — A(az™ + (1 — a)y™))|?
< la(@n — %) + (1 = a)(zn — y*)II°
—2Ma — K2)\)||A(azx, + (1 — a)z,) — A(az™ + (1 — a)y™)||?
<alz, — P+ (1 —a) [z — v
—2Ma - K2)\) |A(az, + (1 — a)z,) — A(az™ + (1 — a)y*)”2 .
Substituting (12) into (13), we get
Iy — 2" ||* < llon — 2*|* = 2u(1 — a)(8 — K?p) | Bz, — Ba*||”

— 2\ (a — K2)) |A(azy + (1 — a)zn) — A(az™ + (1 — a)y*|*.

It follows from (11) that
#ni1 = 2*|* = llom (f(2n) = 2) + Balzn — 27) + Y (T — 2°)||?
< ap (@) = & * + Bu @ — 2*|* + 3 | Ty — 27|
< anMi+ By [|zn — 2% + Y llyn — %)%,

‘ 2

where
My = sup{|| f(zn) — z*||*}.
n>1

Combining (14) and (15), we have

Zn+1 — x*”Q

< My + By 20 — &2 + ulllan — o2 = 20(1 - a)(8 — K2u) | Bx, — Ba*|?

—2X\a — K2)) [|A(az, + (1 — a)2,) — A(az™ + (1 — a)y*||’]

= ap,Mi + (1= an) &, — 2 |* = 29np(1 — a)(8 — Kp) || Be, — Ba*|®
— 2y Mo — K2)) |Aazy + (1 — a)z,) — A(az™ + (1 — a)y*|?

< an My + |l — 2% = 2yp(l - a)(8 — K*p) | Bxy — Ba™|?
— 29 (a — K2)) |A(azy + (1 — a)zn) — A(az* + (1 — a)y*|?

which implies
%112
Pups(L = a)(8 — K?u) | By — B
+ 29 M (o — K2\ || A(az, + (1 —a)z,) — A(az™ + (1 — a)y*||2
< lwn — 1'*”2 — [|Znt1 — x*HQ + ap My
<zn = Tpsa || (lon — 2% + |21 — 27|) + an M.

Since 0 <A < 35,0 < u < %7 lim,, oo ap, = 0, condition (iii), it follows that

li_>m |Bx,, — Bz*|| =0, lim ||A(az, + (1 —a)z,) — A(az™ 4+ (1 —a)y™|| = 0.
n o0 n— oo

(14)

(16)

(17)
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Let 1 = sup,>o {llzn — ¥*I|,[[zn — 2*||}. From Proposition 2.1 and Lemma 2.2, we
have

Bl

= |Pc(zn — pBzxyn) — Po(a® — pBa™)|?

<(zy — pBz, — (z* — pBz"),j(zn — y"))

= (zn — 2", (20 — ¥")) + u(Bz" — By, j(2n — y"))

1 * (12 * (12 * *
Ul = 271"+ llzn = y*II” = g1(llen = 20 = (2" =y7)I)

IN

where g1 : [0,00) — [0, 00) is a continuous, strictly increasing and convex function such that
91(0) = 0. Consequently, we have
[Ea
< lzn — 2*)1* = g1 (l2n — 20 — (2" = y*)|) + 21 (B2 — B, j(zn — "))
<lwp —a*|* = g1 ([lwn — 20 — (@ = y*)) + 20 [|Bxy — Ba*|| |20 —y*]. (18)
Let

ra = sup {[len — ||, lyn — 27|}, 73 = sup {llzn —¢" |, lyn — 2"}
n>0 n>0
Again by Proposition 2.1 and Lemma 2.2, we obtain

lym — 2|
= [|[Po(I = AA)(azy + (1 = a)zn) — Po(I = M) (az* + (1 — a)y*)|?
< <a(mn —z*)+ (1 —a)(zn —y*) + M(az™ + (1 — a)y™)
— M(azy + (1 = a)zn), j(yn — 7))
=a{zy — 2", j(yn —27)) + (1 —a) (zn —y",j(yn — 27))
+ A {A(az* + (1 —a)y*) — Alaz, + (1 — a)zn), j(yn — ™))
< S(len =1 + llyn = 21> = g2l = yal)

1—a 2 2
+ 5 (lzn =9I+ llyn — 271" = g5(llzn = yn + (2" = y7)]))

+ MlA(az* + (1= a)y") — Alazn + (1 — a)za) | g — 2|
where g, g3 : [0,00) — [0,00) is a continuous, strictly increasing and convex function such
that g2(0) = 0 and g3(0) = 0. It follows that
lyn — z*|?
%112 %112
< allzn — 2"+ 1 —a)lzn =y |I” — aga(lln — yall)
— (1 =a)gs(lzn —yn + (=" = y7)I)
+2M[[A(az” + (1 = a)y") — Aazn + (1 = a)zn)|| lyn — 27|
* (12 * (12
Salzn —2*"+ (1 —a)llzn —y* " = (1 = a)gs(llzn —yn + (" —y7)I))
+ 22 [[A(az™ + (1 = a)y") — Alazn + (1 — a)zp)|| lyn — ™| - (19)
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Substituting (18) into (19), we obtain

[
< allen =2+ (1= a)lllzn — 2*|* = g1(len = 20 — (@* = y")])
+2p || Bzy, — Ba™|| |20 — y" ] = (1 = a)gs(lzn — yn + (=" = 7))
+ 21 [Aaz™ + (1 = a)y”) — Alazn + (1 = a)zn)| lyn — 27|
= o = 2*|* = (1 = a)gr(on — 20 — (2" = y")]))
—(L=a)gs(lzn —yn + (2" = y")D) + 2p(1 — @) || Bz, — Ba™| [|zn — y”||
+2)\ |[A(az™ 4+ (1 — a)y™) — A(azn + (1 — a)zn) || |yn — =¥]| - (20)
Substituting (20) into (15), we get

*112
|41 — 27|
< B llzn = &*|* + 3 e — 27 |° = (1 = @)ymgr (|20 — 20 — (2" = y*)])
— (1 =a)mgs(llzn —yn + (=" —y7)I)
+2pu(1 = a)yn | Bon — Ba™ | [|zn — 7|
+ 22 |A(az™ + (1 — a)y”) — Alazn + (1 — a)zn)|| [lyn — 2" + an M
= (1= an) [z = "2 = (1 = @V g (ln = 20 = (" = "))
= (1= a)mgs(llzn —yn + (@ = y")|) + 261 — a)vn | Brn, — Bx™[| |20 — ¢
+ 209 [ A(aa” + (1 = a)y") — Alazn + (1 = @)z)|| [y — 2| + an i
%12 * *
< llan —2*" = (1= a)ygr(lzn — 20 — (2" = y7)|])
— (L= a)mgs(llzn —yn + (" —y")l) + 20(1 — @)y | Bon — Bz™|| ||zn — y||
+ 20y [[Alaz” + (1 — a)y”) — Alazn + (1 = a)za) || [lyn — 27| + an My,
which implies that
(1 = @) ngs (7 = 20 = @ = y)I) = (1 = @V3ngs (50 — o + (@ = 5"}
* (12 * (12 *
< lwn =27 = lzngr — 277 + 26(1 — a)yn | Bzn — Ba™| [lzn — y7 ||
+ 22 |A(az™ + (1 — a)y”) — A(azn + (1 — a)zn)|| [lyn — 2" + an M
<o — zngall (lon — 2" + 2040 — 27))
+2u(1 — a)yn | Ben — Ba™ | [|zn — 7|
+ 2\, [[A(az™ + (1 — a)y™) — Alazn + (1 — a)zn)|| [yn — 2*|| + anMy. (21)
Since limy, o0 a, =0, 0 < @ < 1, condition (iii) and (17), we get
i gl — 20— ("~ y*)]) = 0, Tim ga(llz0 — v + ("~ 9")]) =
By virtue of the properties of g; and g3, we obtain
T e — 20— (2° —y)| =0, T ||z — o + (" — )| = 0. (22)

This implies that

lzn = ynll < ll2n — 20 — (@ =y )| + 120 — yn + (2" —y") |l
— 0 as n — oc. (23)
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On the other hand, we observe
[Znt1 = Zull = lan(f(Tn) = 20) + V0 (Tyn — )|l
= Yn HTyn - an — Qp ||f(‘rn) - xn” s

which implies

1
ITyn = zall < —=lon |1f(@n) = @nll + on 1 = @nlll (24)

n

Since limy,_,o o, = 0, condition (iii) and (16), we obtain
Jim || Ty, — | = 0. (25)
From (23) and (25), we have
[@n = Tan| < [|on = Tynll + [Tyn — Tan||
< l#n = Tynll + llyn — @nll
— 0 as n — oo. (26)

Define a mapping U : C — C as Uz = pTx + (1 — p)Gz, where G is defined by
Lemma 2.9 and p € (0,1) is a constant. It follows from Lemma 2.3 that U is nonexpansive
and F(U) = F(T)N F(G). We define x; = tf(x¢) + (1 — t)Uxy, it follows from Lemma 2.7
that {z;} converges strongly to ¢ € F(U) = F(T) N F(G). From (23) and (26), we have

|z — Uzl = [|p(zn — Tzn) + (1 = p)(zn — Gyl
= llp(zn = Ten) + (1 = p)(zn — ya) |
<pllen —Tanl + (1= p) |20 = yall

— 0 as n — oo. (27)
By Lemma 2.8, we have
limsup (f(q) — ¢, j(zn+1 — q)) < 0. (28)
n—roo

Finally, we prove that x,, — g as n — oo. Indeed, we have

|2Zns1 — qll?

= (an(f(@n) = @) + Bn(n — @) + (TYn — @), 5 (Tnt1 — @)

= ap (f(2n) = f(@), J(@nt1 — @) + Bn (Tn — ¢, §(Tns1 — q))
+ Y0 (TYn — @ j(@nt1 — @) + an (f(@) — ¢ j(Tns1 — @)

< and[|zn = gl |znt1 — gl + Bn 2w — all [zns1 — all + ¥n lyn — all lzn+1 — 4l
+an (f(q) — ¢,j (21 — q))

< anb |zn — gl |zns1 — all + Bn lzn — gl |zns1 — gll + 70 120 — all |zn+1 — 4l
+an (f(q) — ¢, 5 (Tns1 — q))

=[1—an(1=0)][lzn — qll |znt1 — all + an (f(9) — ¢, (@41 — @)

1—o,(1-46 ; —

< %[Hxn — q”2 + ||$n+1 - Q||2] Qp <f(q) q’-](aj" 1 q)>
1l—a,(1-9 1 f i —

< % Hxn—qH2+ B ||!En+1 Q||2 an( ((J) QJ('I” 1 q)>’

which implies

2(f(q) — ¢, (xnt1 — q))
1-9 '

||xn+1 - QHQ < [1 - an(l - 5)] Hxn - QHQ + an(l - 6) (29)



184 Gang Cai, Prasit Cholamjiak, Yekini Shehu

Apply Lemma 2.1 to (29), we have x,, — ¢ as n — oco. This completes the proof. O

The following results can be easily deduced from Theorem 3.1. We omit the details.

Corollary 3.1. Let C be a nonempty, closed and convex subset of a 2-uniformly smooth
and uniformly convex Banach space E. Let Po be the sunny nonexpansive retraction from E
to C. Let the mappings A, B : C — E be a-inverse-strongly accretive and [-inverse-strongly
accretive, respectively. Let T : C — C be a nonexpansive mapping with F(T) N F(G) # 0,
where G : C'— C' is a mapping defined by Lemma 2.9 when a = 0. Let f : C'— C be a strict
contraction with coefficient § € [0,1). Pick any 1 € C. Let {x,} be a sequence generated
by

zn = Po(x, — puBxy,),

Yn = Po(zn — Mzy), (30)

Tpt1 = n f(20) + BnTn + YT Yn,

where 0 < A < 225 and 0 < p < %, where K is the 2-uniformly smooth constant appeared
in [20]. Suppose that {an}, {Bn} and {v,} are three real sequences in [0,1] satisfying the
following conditions:

(1) on + Bn + 7 =1;

(i) limy, o0 0y = 0,307 1 v, = 00;

(111) 0 < liminf 8,, <limsup 3, <1 .
Then {xn} converges strongly to g € F(T)NF(G), which is also the solution of the variational
inequality:

(flg) —q,ilp—q)) <0, Vp € F(T)N F(G).

Corollary 3.2. Let C be a nonempty, closed and convex subset of a 2-uniformly smooth
and uniformly convex Banach space E. Let Po be the sunny nonexpansive retraction from E
to C. Let the mappings A, B : C — E be a-inverse-strongly accretive and [-inverse-strongly
accretive, respectively. Let T : C' — C be a nonexpansive mapping with F(T) N F(G) # 0,
where G : C'— C' is a mapping defined by Lemma 2.9 when a = % Let f: C'— C be a strict
contraction with coefficient 6 € [0,1). Pick any 1 € C. Let {x,} be a sequence generated
by

zn = Po(x, — uBxy,),

Uy = %(xn + 2zn),

Yn = Po(un — AMuy,)

Tpt1 = O f(Tn) + BnTn + YT Yn,

(31)

where 0 < A < 225 and 0 < p < %, where K is the 2-uniformly smooth constant appeared
in [20]. Suppose that {a,}, {Bn} and {yn} are three real sequences in [0,1] satisfying the
following conditions:

(i) Qn + B + Y = 1;

(i1) iy, o0 0y = 0, D07 | @ty = 00;

(i4i) 0 < liminf 8, <limsup 3, <1 .
Then {x,} converges strongly to q € F(T)NF(G), which is also the solution of the variational
inequality:

(fle) —q,4(p—q)) <0, ¥p € F(T)NF(G).

Corollary 3.3. Let C be a nonempty, closed and convex subset of a Hilbert space H. Let
the mappings A, B : C' — E be a-inverse-strongly accretive and -inverse-strongly accretive,
respectively. Let T : C — C be a nonexpansive mapping with F(T) N F(G) # 0, where
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G : C — C is a mapping defined by Lemma 2.9. Let f: C — C be a strict contraction with
coefficient § € [0,1). Pick any x1 € C. Let {x,,} be a sequence generated by

zn = Po(xyn — pBxy),
yn = Po(I = AA)(azy + (1 —a)zy), (32)
Tni41 = O‘nf(xn) + Bnzn + VT Yn,
where 0 <a <1, 0 <\ <2a and 0 < pr < 28. Suppose that {a}, {8} and {y,} are three
real sequences in [0, 1] satisfying the following conditions:
(Z) an+ Bn+vm =1;
(i) limy, o0 0y = 0,307 | vy, = 00;
(i4i) 0 < liminf 3, < limsup 5, <1 .
Then {x,} converges strongly to g € F(T)NF(Q), which is also the solution of the variational
inequality:
(fla) —q,p—q) <0, ¥p € F(T)NF(G).

4. Applications

Now we give an application to variational inequality problem for strict pseudocon-
tractive mappings.

A mapping T : C' — C is said to be A-strict pseudocontractive if there exists a fixed
constant A € (0,1) such that

(Tw = Ty, j(@ - ) < o —ylI* = AT = T)x — (I - T)y|*, (33)

for some j(z —y) € J(z —y) and for every =,y € C. It is easy to see that (33) is equivalent
to the following inequality:

(I =Tz = (I =Ty, j(z—y) = M =Tz~ (I - Tyl (34)

for some j(x —y) € J(z — y) and for every x,y € C. Therefore I — T is A-inverse-strongly
accretive.
We can obtain the following results easily by Theorem 3.1.

Theorem 4.1. Let C' be a nonempty, closed and convex subset of a 2-uniformly smooth
and uniformly convex Banach space E. Let the mappings A, B : C — C be «-strict pseudo-
contractive and [B-strict pseudocontractive, respectively. Let T : C' — C' be a nonezrpansive
mapping with F(T) N F(G) # (0, where G : C — C' is a mapping defined by Lemma 2.9. Let
f:C — C be a strict contraction with coefficient 6 € [0,1). Pick any x1 € C. Let {x,} be
a sequence generated by

2 = (1= p)zn + pBan,

Up = aZp + (1 — a)zy,

Yn = (1 = Nuy, + ANAuy,

Tpt1 = anf(xn) + BnTn + T Yn,

(35)

where 0 < a <1, 0 < A< & and 0 < p < %, where K is the 2-uniformly smooth
constant appeared in [20]. Suppose that {a,}, {Bn} and {y,} are three real sequences in
[0,1] satisfying the following conditions:

(i) ap + Bn + v = 1;

(i) limy, o0 0y = 0, > 07 | @ty = 00;

(111) 0 < liminf 8,, <limsup 3, <1 .
Then {x} converges strongly to g € F(T)NF(G), which is also the solution of the variational
inequality:

(fl) —a,jlp—q)) <0, Vp € F(T)N F(G).
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Theorem 4.2. Let C' be a nonempty, closed and convex subset of a 2-uniformly smooth
and uniformly convex Banach space E. Let the mappings A, B : C — C be a-strict pseudo-
contractive and B-strict pseudocontractive, respectively. Let T : C' — C' be a nonerpansive
mapping with F(T)NF(G) # 0, where G : C — C' is a mapping defined by Lemma 2.9 when
a=0. Let f: C — C be a strict contraction with coefficient 6 € [0,1). Pick any z1 € C.
Let {x,} be a sequence generated by

zn = (1 = p)xy + pBay,
Yn = (1= Nz + Az, (36)
Tn+l = anf(xn) + ﬁnmn + 'YnTyna

where 0 < A < 25 and 0 < p < %, where K is the 2-uniformly smooth constant appeared
in [20]. Suppose that {an}, {Bn} and {vn} are three real sequences in [0,1] satisfying the
following conditions:

(i) an + Bn + v = 1;

(ii) iy, o0 0y = 0, D07 | @ty = 00;

(#i) 0 < liminf 3,, <limsupf, <1 .
Then {z,} converges strongly to g € F(T)NF(G), which is also the solution of the variational
inequality:

(fle) —q,§(p—q)) <0, Yp € F(T)N F(G).
5. Conclusions

Variational inequality theory has many applications in pure and applied sciences.
There are some numerical methods for solving variational inequality problems and related
optimization problems in recent years. By using a modified extragradient method, we study
a generalized viscosity algorithm for finding a common element for the set of fixed points of
one nonexpansive mapping and the set of solutions of new variational inequality problems
for two inverse-strongly monotone operators in 2-uniformly smooth and uniformly convex
Banach spaces. Strong convergence theorems are obtained under some suitable conditions
on the parameters.
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