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APPLICATION OF LAGRANGE EQUATIONS
FOR CALCULUS OF INTERNAL FORCES
IN A MECHANISM

Thien Van NGUYEN?, Roxana Alexandra PETRE?Z, lon STROE?

One of the great strengths of Lagrange procedure is to deal easily kinematic
problems with any coordinate system by using a set of generalized coordinates. In
addition, the dynamic analysis of motion of a system subjected to known external
forces also is more convenient by without considering constrained forces. Based on
the Lagrange equations, this paper presents a method to directly determine internal
forces in a rigid body of a mechanism.
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1. Introduction

A major difficulty in finding the solution of any problem in mechanics is
the selection of that coordinate system which will leave the equations of motion in
a form most amenable to further treatment.

For a large class of mechanical systems, the Lagrange equations provide a
unique and sufficiently simple method for formulating equations of motion that is
independent of the complexity of the actual system. The chief advantage of the
Lagrange equations is that their number is equal to the number of degrees-of-
freedom and is independent of the number of points and bodies in the system. For
example, a mechanism consists of many components and has just one or two
degrees of freedom. Consequently, the study of its motion requires the setting up
of only one or two Lagrange equations. In addition, under ideal conditions, all
unknown constraints are automatically excluded from the Lagrange equations. For
these reasons the Lagrange equations are widely used in the solution of many
problems in mechanics, in particular, problems dealt with the dynamic analysis.

As we know, determining of internal forces, constraint force analysis are
the important steps in dynamic analysis, which is the base of structure design of
mechanism. In fact, the calculus of internal forces for a static system of rigid
bodies is quite familiar in the field of material resistance. Firstly, the constrained
forces need to be computed. Based on that, the internal forces such as: axial force,
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shearing force and bending moment at specified points in the rigid body, are
determined with the help of classical method, namely the cutting plane method.
However, the calculus of constrained forces in a mechanism composing of
complicated structure and possessing a large number of degrees of freedom, is
extremely difficult. Consequently, the determining of internal forces will be faced
unavoidable difficulties.

In recent years, the problems related to dynamic analysis attracted the
attention of many researchers and some have got valuable results in this field:

Lu [2] uses the virtual work method to determine, in spatial parallel
structures, the generalized forces of actuators and relates them to the real forces
that they exert. Geike and Mc Phee [3] proposed a general approach which could
determine the inverse dynamics solutions for a planar 3-RRR parallel manipulator
and spatial 6-DOF parallel mechanism. Jiang, Li and Wang [10] using Newton
Euler method and D’ Alembert principle established the force analysis equations,
and also put forward the dynamic analysis model of a parallel mechanism based
on the deformation compatibility method. Zhi and Wang [11] improved and
applied the solution method of reciprocal screw system to solution procedure of
the constraint forces.

By using a set of generalized coordinates that are consistent with the
constraint relations, we can formulate the equations of motion and calculate the
internal forces in the multi-body system without considering constraint forces. If
an internal force has to be found, a supplementary mobility related to it is
considered in the system, and the corresponding internal force for new mobility is
found for null values of mobility as well as for its first and second derivatives.

The slider-crank mechanism is one of the most commonly used machine
subsystem in mechanical system design. It is employed as the principal element of
internal combustion engines, compressors, fly-ball governors, stamping machines,
and many other machines. Therefore, the slider-crank mechanism is considered as
a simple model for calculating internal forces in the connecting rod of the system
at an instant moment of time to illustrate for that method.

2. Lagrange Equations

2.1. Equations of motion of the system

We introduce a general notation for the relationship between h Cartesian
variables of position x; and their description in generalized coordinates (for some
systems, the number of generalized coordinates is lager than the number of

degrees of freedom and this is accounted for by introducing constraints on the
system). In the general case, each xi could be dependent upon every Q.

X; = %; (01, G2+ -+ Gn ) (1)
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When constraints are expressed by functions of coordinates, the motion of
the systems can be studied with Lagrange equations for holonomic systems with
dependent variables, whereas other conditions of constraint are expressed by
velocities, the motion is described with Lagrange equations for non-holonomic
systems.

For a non-holonomic system, the Lagrange equations corresponding to a
system of h generalized coordinates

d( PE ) ¢E b
—| — |-—=Qc + ) Aayx, (k=12,..,h (2)
dt(@k] 2 .gi e ( )
are completed with the constraints
h
Zaiqu +bi =0, (i:1,2,...,p), (3)
k=1

where E is the kinetic energy expressed with respect to an inertial reference frame,
conventionally considered as fixed, and
_ Wy

Q = 50 4)

are the generalized forces, while 6W, is the virtual work produced by the forces
acting upon the system, corresponding to the virtual displacement 5q .

By solving a system of (2), of h equation, and (3), of p equations,
coordinates gk and Lagrange multipliers 4; will be found.

From (2), the equations for the holonomic system can be obtained by
replacing functions a;, . In the case of a holonomic system, constraints are of the
form:

@i (G, ... 0, t)=0, (i=12,..,p) (5)
From the above formula, the following differential form is obtained:
h
Z_qu+b|:0l (|:112)"'yp) (6)
k=1%
By comparing relations (6) and (3), it follows
A
iy =— 7
ik 5Qk (7
Then the equations (2) become:
d( 6E ) @oE 0 <&
—| — |-—=Qx +— ) 4®;, (k=L12,.,h (8)
dt[%k} o o0k .é B )

Let define the analytical function
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p
Ugp = D 4D ©)
i=1
then equations (8) can be written in the form:
i(ﬁ—_E]—&—EzQ“W—@, (k=12,..,h) (10)
dt{ dd ) Ju 0

Starting from these h differential equations with using p relations of
constraints, we determine just the generalized coordinates gx and the Lagrange
multipliers.

2.2. Calculus of internal forces

For a mechanical system with h degrees of freedom represented by
independent generalized coordinates gk (k=1,2...,h), the Lagrange equations are
expressed as follows:

d [ oE )_ 0E _aU
dtidde ) dax  oak
An internal force Q,q, as the new generalized force, can be found if a

new fictitious mobility according to the internal force is considered. Then the
mechanical system is considered as the one with h+1 degrees of freedom. The
equation for the new mobility is

d [ oE ]_ 0E &
dt\ 6dns1) i1 hea

Considering again the mechanism, the internal force Ry, is easily
obtained from (12) in the following form

d( oE ok __oU
Ry 12{—( : j_ B } = 1)
+ dt{ 0011 ) OGhy1  Odhsa g:i;g

b1 =0

+Q, (k=1...h) (11)

+Qhy1- (12)

3. Applying Lagrange equations in calculus internal forces in a mechanism

As an example, the one degree of freedom system of slider-crank
mechanism is considered (Fig.1). The slider-crank mechanism consists of the
crank 1 characterized of the length OA= r, mass mi; the connecting rod 2
characterized by the length AB= I, mass m and the slider 3 characterized by mass
ms. The crank OA rotates by the active torque Mo.
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Fig. 1. Slider-crank mechanism

This mechanism has one degree of freedom. Therefore, by applying (10) it

is easy to find out the differential equation governing the motion

2 2
M| me +ma.r?.sin e S5 COZS 92 +
3 3 1“ —r“.sin“ @ 2

reo+
(my + 2m3).r.sin2 0.cosd

+(my +m3).sin2 0+
12-r2sin%g

3
(—3m2+m3].sin0.cose—(ﬁ+m3j. rsin_0
4 2 1 —r?.sin% 0
r.sin6.cos? @ my.r.1%.sin 6.cos> 0
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12-r2sin?9 12(1°-r“sin“0)

2|2

+(m2 +2m3).

+
m, rz.sine.cose.(cosze—sinz0)
+| —5=+m > 3 +
I“—rc.sin“ g
my r3.sin®0.cos? 0 m2.I2.sin6.c059
+ —=+m3 | - > > . o
2 (I2—r2.sin29)\/I2—r2.sin20 12(17 —r”.sin“ 0)
m +m, ).g.r.cosé
_y (mtmg).g

2
Supposing the supplementary displacement

r’6>  (14)

corresponding to the

constrained force Ng is “v” as shown in Fig.2. Thus, for determining the
constrained force at the point B at an instant moment of time, the generalized
coordinates of the slider-crank mechanism are represented by ¢y =6, g, =V.
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Fig. 2. Virtual supplemental displacement corresponding to the constrained force

The constrained force will be found by using Lagrange equation

d(oE) OE oU
Ng =Ry = | — |- ——— |v- 15
B h+1 {dt(avj Y avk;g (15)
V=0
The kinetic energy will be expressed as following:
N 1, T .
E=E{0)_|_} .JO.{Q)_l_}-i-E{rcz} .mz.{rcz}+
(16)

+%{0)2}T Jc2-{m2} +%{rc3}T mg.{fcaj

where {@,} ,being the angular velocity of the AB rod, is expressed by

T
: 12 —r2.sin? G)v + r2vé.sin 6.cos 0 ro.cos @
(o) =~ia} =0, 0, TR 0050 00| ()
(I2—r2.3|n2¢9)\/I2—r2.sm29 J12-r2.sin2 9
and {rco}, {rc3}, which are respectively position vectors of mass centers of the

two parts mz and slider ma.
The force function U has the expression

U=

+
2 4(1%-r?sin’g) 2
After taking the partial derivatives and derivatives with respect to time for

the terms related to the Lagrange equations, then applying (15), the constrained
force is obtained

. . 2 .
_mlgrésme_m2 (r.sme rve.sin@ +XJ—m3gv. (18)
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2
6(12—r2.sin% 9) 2 89-(19)

After obtaining the result of constrained force Ng, replacing the constraint
at the end B by the action of the force Ng, then the mechanism is considered as an
open chain.

For determining the N axial force in the connecting AB, supposing the
supplementary displacement corresponding to the axial force is “u” as shown in
Fig.3. Thus, the generalized coordinates of the slider-crank mechanism are
represented by g =6; g, =u.

Fig. 3. Virtual supplemental displacement corresponding to the axial force

Likewise, supposing the supplementary displacement corresponding to the
shearing force F is “s” as shown in Fig.4. Thus, the generalized coordinates of the
slider-crank mechanism are represented by g =4, g, =s.
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Fig. 4. Virtual supplemental displacement corresponding to the shearing force

And supposing the supplementary displacement corresponding to the
bending moment M is “¢” as shown in Fig.5. Thus, the generalized coordinates

of the slider-crank mechanism are represented by g =6; g, = .

Fig. 5- Virtual supplemental displacement corresponding to the bending moment

The axial force, shearing force and bending moment will be found by
using the Lagrange equation

[d(aEJ oE U 5th+1(|\75)]
Rpy1= -

—| = - - , (20)
dt aqh+1 ac1h+1 th+1 §qh+l

qh+1:0
F!h+1=0
b1 =0

After taking the partial derivatives and derivatives with respect to time for
the terms related to the Lagrange equations for each case, then applying (20), the
axial force N is obtained
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Similarly, final results can be obtained for the shearing force F and
bending moment M.

In the inverse dynamics, we suppose that the history of rotational motion
of the crank is given by the following function:

e=Qot+%°t2, (22)
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where Q, =25n (rad/s), ¢, :ﬁ (rad /52). And the variation of the angle 6

with respect to time is shown in the Fig. 6.

For the simulation purpose let’s consider the slider-crank mechanism with
the following characteristics: m1=0.1(kg), r=0.1 (m), m>=0.1 (kg), 1=0.2 (m),
m3=0.1 (kg)

Using MATLAB software, a program was developed to solve the inverse
dynamics of the slider-crank mechanism. The variations of the active torque,
constrained force versus time are shown respectively in Fig.7 and Fig.8, the
variation of the internal forces with respect to ratio &I are shown in Fig.9, Fig.11,
Fig.13 and the variations of the internal forces at three specified positions versus
time are shown in Fig.10, Fig.12, Fig.14.

Graph of the rotational angle with respect to time t (s)
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Fig. 6. The rotational angle 6.

Graph of the active torque with respect to time t (s)
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Graph of the constrained force with respect to time t (s)
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Fig. 7. The active torque of the crank M. Fig. 8. The constrained force at the end B
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Fig.

Graph of the axial force with respect to &L
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9. The axial force with respect to “&/1 ” at the
instant time t=0.03(s).
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Fig. 11. The shearing force with respect to “&/1 ” at
the instant time t=0.03(s).

Graph of the bending moment with respect to &L
0.16 . r - . r : v r

Bending morment M (Nm)

Graph of the axial force with respect to time t (s)
100 T T T T T T

£=0.03 (m)

: : =01 m)
\m/\ — 017 ()

£ Y| L ..... i

S0

Auxial Force N (N)

400 kot S —— .......... ARSI R— :

B i, ey ...................

-200

1) 0 I[31 D.IUZ 0 iJS 0.64 0 IUS D.iUE 0 ID'I 0.08
t(s)
Fig. 10. The axial forces at the three specified
positions versus time.
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Fig. 12. The shearing forces at the three specified
positions versus time.
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Fig. 13. The bending moment with respect to “&/1” at

the instant time t=0.03(5).

Fig. 14. The bending moments at the three specified

positions versus time.
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5. Conclusions

With the Lagrange equations, the position, velocity and acceleration of
each element of the mechanism in real-time revolution can be released from the
differential equations of motion in the kinetic analysis. In addition, the active
torque consistent with the given motional law has been determined by taking into
account the masses and forces of inertia introduced by the links of the mechanism
in the model dynamics. Besides, after calculating the constrained force and then
replacing for the constraint corresponding to it, we can consider a closed chain as
an open chain being used very popular in the robotic arm. The most important fact
is that the present paper introduced a convenient method for determining directly
internal forces in an arbitrary rigid body in a multibody system. The results are
shown above as a demonstration for this approach since the correspondence with
values between the internal forces.
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