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APPLICATION OF LAGRANGE EQUATIONS 

FOR CALCULUS OF INTERNAL FORCES  

IN A MECHANISM 

Thien Van NGUYEN1, Roxana Alexandra PETRE2, Ion STROE3 

 One of the great strengths of Lagrange procedure is to deal easily kinematic 

problems with any coordinate system by using a set of generalized coordinates. In 

addition, the dynamic analysis of motion of a system subjected to known external 

forces also is more convenient by without considering constrained forces. Based on 

the Lagrange equations, this paper presents a method to directly determine internal 

forces in a rigid body of a mechanism.  

Keywords: Dynamics, internal force, slider-crank mechanism, constraints 

1. Introduction 

 A major difficulty in finding the solution of any problem in mechanics is 

the selection of that coordinate system which will leave the equations of motion in 

a form most amenable to further treatment.  

 For a large class of mechanical systems, the Lagrange equations provide a 

unique and sufficiently simple method for formulating equations of motion that is 

independent of the complexity of the actual system. The chief advantage of the 

Lagrange equations is that their number is equal to the number of degrees-of-

freedom and is independent of the number of points and bodies in the system. For 

example, a mechanism consists of many components and has just one or two 

degrees of freedom. Consequently, the study of its motion requires the setting up 

of only one or two Lagrange equations. In addition, under ideal conditions, all 

unknown constraints are automatically excluded from the Lagrange equations. For 

these reasons the Lagrange equations are widely used in the solution of many 

problems in mechanics, in particular, problems dealt with the dynamic analysis. 

 As we know, determining of internal forces, constraint force analysis are 

the important steps in dynamic analysis, which is the base of structure design of 

mechanism. In fact, the calculus of internal forces for a static system of rigid 

bodies is quite familiar in the field of material resistance. Firstly, the constrained 

forces need to be computed. Based on that, the internal forces such as: axial force, 
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shearing force and bending moment at specified points in the rigid body, are 

determined with the help of classical method, namely the cutting plane method. 

However, the calculus of constrained forces in a mechanism composing of 

complicated structure and possessing a large number of degrees of freedom, is 

extremely difficult. Consequently, the determining of internal forces will be faced 

unavoidable difficulties. 

 In recent years, the problems related to dynamic analysis attracted the 

attention of many researchers and some have got valuable results in this field:  

 Lu [2] uses the virtual work method to determine, in spatial parallel 

structures, the generalized forces of actuators and relates them to the real forces 

that they exert. Geike and Mc Phee [3] proposed a general approach which could 

determine the inverse dynamics solutions for a planar 3-RRR parallel manipulator 

and spatial 6-DOF parallel mechanism. Jiang, Li and Wang [10] using Newton 

Euler method and D’Alembert principle established the force analysis equations, 

and also put forward the dynamic analysis model of a parallel mechanism based 

on the deformation compatibility method. Zhi and Wang [11] improved and 

applied the solution method of reciprocal screw system to solution procedure of 

the constraint forces.  

 By using a set of generalized coordinates that are consistent with the 

constraint relations, we can formulate the equations of motion and calculate the 

internal forces in the multi-body system without considering constraint forces. If 

an internal force has to be found, a supplementary mobility related to it is 

considered in the system, and the corresponding internal force for new mobility is 

found for null values of mobility as well as for its first and second derivatives.   

 The slider-crank mechanism is one of the most commonly used machine 

subsystem in mechanical system design. It is employed as the principal element of 

internal combustion engines, compressors, fly-ball governors, stamping machines, 

and many other machines. Therefore, the slider-crank mechanism is considered as 

a simple model for calculating internal forces in the connecting rod of the system 

at an instant moment of time to illustrate for that method. 

 2. Lagrange Equations 

 2.1. Equations of motion of the system 

 We introduce a general notation for the relationship between h Cartesian 

variables of position xi and their description in generalized coordinates (for some 

systems, the number of generalized coordinates is lager than the number of 

degrees of freedom and this is accounted for by introducing constraints on the 

system). In the general case, each xi could be dependent upon every qk. 

  1 2, ... ...,i i k hx x q q q q  (1) 
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 When constraints are expressed by functions of coordinates, the motion of 

the systems can be studied with Lagrange equations for holonomic systems with 

dependent variables, whereas other conditions of constraint are expressed by 

velocities, the motion is described with Lagrange equations for non-holonomic 

systems. 

 For a non-holonomic system, the Lagrange equations corresponding to a 

system of h generalized coordinates  
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are completed with the constraints 
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where E is the kinetic energy expressed with respect to an inertial reference frame, 

conventionally considered as fixed, and 
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are the generalized forces, while kW  is the virtual work produced by the forces 

acting upon the system, corresponding to the virtual displacement kq .  

 By solving a system of (2), of h equation, and (3), of p equations, 

coordinates qk and Lagrange multipliers i  will be found. 

 From (2), the equations for the holonomic system can be obtained by 

replacing functions ika . In the case of a holonomic system, constraints are of the 

form: 

    1,..., , 0 , 1, 2,...,i hq q t i p    (5) 

 From the above formula, the following differential form is obtained: 
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 By comparing relations (6) and (3), it follows 
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 Then the equations (2) become: 
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 Let define the analytical function 
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then equations (8) can be written in the form: 
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 (10) 

 Starting from these h differential equations with using p relations of 

constraints, we determine just the generalized coordinates qk and the Lagrange 

multipliers. 

 2.2. Calculus of internal forces 

 For a mechanical system with h degrees of freedom represented by 

independent generalized coordinates qk (k=1,2…,h), the Lagrange equations are 

expressed as follows: 
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 (11) 

 An internal force 1hQ  , as the new generalized force, can be found if a 

new fictitious mobility according to the internal force is considered. Then the 

mechanical system is considered as the one with h+1 degrees of freedom.  The 

equation for the new mobility is 

 1
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 (12) 

 Considering again the mechanism, the internal force 1h  is easily 

obtained from (12) in the following form 
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 (13) 

     3. Applying Lagrange equations in calculus internal forces in a mechanism 

 As an example, the one degree of freedom system of slider-crank 

mechanism is considered (Fig.1). The slider-crank mechanism consists of the 

crank 1 characterized of the length OA= r, mass m1; the connecting rod 2 

characterized by the length AB= l, mass m2 and the slider 3 characterized by mass 

m3. The crank OA rotates by the active torque Mo. 
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Fig. 1. Slider-crank mechanism 

 

 This mechanism has one degree of freedom. Therefore, by applying (10) it 

is easy to find out the differential equation governing the motion 
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 (14)  

 Supposing the supplementary displacement corresponding to the 

constrained force NB is “v” as shown in Fig.2. Thus, for determining the 

constrained force at the point B at an instant moment of time, the generalized 

coordinates of the slider-crank mechanism are represented by 1 2; .q q v   
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Fig. 2. Virtual supplemental displacement corresponding to the constrained force 

 

 The constrained force will be found by using Lagrange equation 
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 The kinetic energy will be expressed as following:  
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where  2  ,being the angular velocity of the AB rod, is expressed by 
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and    2 3,C Cr r , which are respectively position vectors of mass centers of the 

two parts m2 and slider m3. 

 The force function U has the expression 
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 After taking the partial derivatives and derivatives with respect to time for 

the terms related to the Lagrange equations, then applying (15), the constrained 

force is obtained 
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 After obtaining the result of constrained force NB, replacing the constraint 

at the end B by the action of the force NB, then the mechanism is considered as an 

open chain.  

 For determining the N axial force in the connecting AB, supposing the 

supplementary displacement corresponding to the axial force is “u” as shown in 

Fig.3. Thus, the generalized coordinates of the slider-crank mechanism are 

represented by 1 2; .q q u   
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Fig. 3. Virtual supplemental displacement corresponding to the axial force 

 Likewise, supposing the supplementary displacement corresponding to the 

shearing force F is “s” as shown in Fig.4. Thus, the generalized coordinates of the 

slider-crank mechanism are represented by 1 2; .q q s   
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Fig. 4. Virtual supplemental displacement corresponding to the shearing force 

 

 And supposing the supplementary displacement corresponding to the 

bending moment M is “ ” as shown in Fig.5. Thus, the generalized coordinates 

of the slider-crank mechanism are represented by 1 2; .q q    
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Fig. 5- Virtual supplemental displacement corresponding to the bending moment 

 The axial force, shearing force and bending moment will be found by 

using the Lagrange equation 
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 After taking the partial derivatives and derivatives with respect to time for 

the terms related to the Lagrange equations for each case, then applying (20), the 

axial force N is obtained 
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  (21) 

 Similarly, final results can be obtained for the shearing force F and 

bending moment M.  

 In the inverse dynamics, we suppose that the history of rotational motion 

of the crank is given by the following function: 

 
2

2

o
ot t


    , (22) 
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where 
225 ( / ), ( / )

100
o orad s rad s


     . And the variation of the angle   

with respect to time is shown in the Fig. 6. 

 For the simulation purpose let’s consider the slider-crank mechanism with 

the following characteristics: m1=0.1(kg), r=0.1 (m), m2=0.1 (kg), l=0.2 (m), 

m3=0.1 (kg)  

 Using MATLAB software, a program was developed to solve the inverse 

dynamics of the slider-crank mechanism. The variations of the active torque, 

constrained force versus time are shown respectively in Fig.7 and Fig.8, the 

variation of the internal forces with respect to ratio /l are shown in Fig.9, Fig.11, 

Fig.13 and the variations of the internal forces at three specified positions versus 

time are shown in Fig.10, Fig.12, Fig.14. 

 
Fig. 6. The rotational angle . 

 
Fig. 7. The active torque of the crank M. 

 
Fig. 8. The constrained force at the end B 



Application of Lagrange equations for calculus of internal forces in a mechanism          25 

 

 

Fig. 9. The axial force with respect to “l ” at the 

instant time t=0.03(s). 

 

Fig. 10. The axial forces at the three specified 

positions versus time. 

 
Fig. 11. The shearing force with respect to “l ” at 

the instant time t=0.03(s). 

 
Fig. 12. The shearing forces at the three specified 

positions versus time. 

 
Fig. 13. The bending moment with respect to “l” at 

the instant time t=0.03(s). 

 
Fig. 14. The bending moments at the three specified 

positions versus time. 
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5. Conclusions 

With the Lagrange equations, the position, velocity and acceleration of 

each element of the mechanism in real-time revolution can be released from the 

differential equations of motion in the kinetic analysis. In addition, the active 

torque consistent with the given motional law has been determined by taking into 

account the masses and forces of inertia introduced by the links of the mechanism 

in the model dynamics. Besides, after calculating the constrained force and then 

replacing for the constraint corresponding to it, we can consider a closed chain as 

an open chain being used very popular in the robotic arm. The most important fact 

is that the present paper introduced a convenient method for determining directly 

internal forces in an arbitrary rigid body in a multibody system. The results are 

shown above as a demonstration for this approach since the correspondence with 

values between the internal forces.  
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