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 RESAMPLING FOR SPACE-TIME RANDOM FIELDS  

Dana SYLVAN1, Constantin TÂRCOLEA2, Adrian Stere PARIS3 

Motivated by the "big data" movement, this communication addresses 
data -intensive bootstrap algorithms for space-time random fields. Over the 
past decade it has been widely acknowledged that modeling and prediction 
for space-time data (geostatistical or point patterns) can be a challenging 
multi-disciplinary task with many open problems. New data science research 
aimed at finding efficient statistical tools for the exploration, visualization 
and inference is timely and useful in numerous applied disciplines. In this 
paper we introduce a space-time moving block-bootstrap method for data 
observed on a regular grid, also addressing potential extensions to 
irregularly spaced data. The main ideas shared here may be also used for 
non-homogeneous Poisson processes where the intensity function varies with 
time and space. The proposed data -intensive algorithms have applications in 
many disciplines as to atmospheric and earth sciences, education, 
engineering, hydrology, public health. 
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1. Introduction 

The motivation for this paper is linked to the advent of “big data” and the 
emergent field of data science, supported and constantly improved by increased 
computing capabilities. In the past decade it has become possible to collect, store 
and analyze enormous amounts of information. Moreover, the use simulations and 
resampling techniques such as bootstrap is now quite common and was shown to 
lead to improved estimations and predictions for highly dimensional stochastic 
processes with very complex structures. There exists extensive statistical literature 
on these topics; most relevant for this note is the monograph by Lahiri [1] devoted 
to resampling for dependent data.  

In particular, bootstrap for spatial processes was addressed in recent years 
in a number of papers focused both on proving asymptotic results, as well as 
showing applications on real life data. For instance, Mattenfeldt et al. [2] propose 
a bootstrap variant involving wrapping and tiling to produce a consistent estimator 
of the spatial intensity together with confidence bands.  
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This paper also presents a very well-designed simulation study where the 
spatial block bootstrap approach is compared with a parametric scheme involving 
splitting.  
Regarding inhomogeneous point patterns, Guan and Loh [3] use thinned block 
bootstrap to correctly assess and prove consistency of the variance of the first  
order intensity function. Resampling for time series was used in Cameletti, 
Ignaccolo and Sylvan [4] by adapting a seasonal bootstrap scheme in the time 
domain to improve predictions of threshold exceedance probabilities that were 
afterwards mapped spatially via a stationary variogram. This was based on the 
assumption of space-time separability which led to a manageable mathematical 
framework. However, in many situations this assumption cannot be reasonably 
justified and thus the need for space-time non-separable approaches. Sylvan, 
Târcolea and Paris [5]  propose a space-time moving block design for modeling 
quantile surfaces via kernel smoothing, use it in a comparison study of the 
performance of several space-time quantile estimates, and show that 
computational time can be significantly reduced with no loss in performance 
when considering smoothing via non-separable, overlapping space-time moving 
blocks.  

Regarding bootstrap for space-time data, to the best of our knowledge 
there are no current methods that rely on space-time block bootstrap for random 
fields and in this respect this paper fills a gap. Resampling ideas have been tried in 
small number of applied studies. For example, Kim and O'Kelly [6] use bootstrap 
permutations in a space-time surveillance model, however this empirical approach 
is appropriate for space-time point patterns and is designed to detect hot spots. For 
a survey of recent computational methods and tools we refer to Shekhar et al. [7]. 

The paper is organized as follows. Next section presents the theoretical 
framework for spatial block bootstrap for processes observed on a regular grid 
that is extended to spatial-temporal random fields in Section 3. The article ends 
with a brief discussion including challenges and potential extensions to space-time 
point patterns. 

2. Bootstrap for spatial data 

The main idea behind statistical bootstrapping, a technique introduced by 
Efron [8] for independent, identically distributed observations, is to produce 
replicates of a statistic by sampling with replacement. When the data are 
correlated, the sampling region needs to be divided into appropriate blocks in 
order to preserve the dependence structure, and then the sampling can be carried 
out in moving blocks. This was a breakthrough in bootstrap for stationary time 
series and it was introduced in Künsch [9] .   The procedure is known as Moving 
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Block Bootstrap (MBB). In this note we present a method to extend MBB to 
space-time data.  

Initially, consider bootstrapping a stationary spatial process {Z(s), s ∈ Zd} 
observed at finitely many locations {s1, . . . , sn}. Here d is the spatial dimension 
and the observation points are given by the part of the integer grid Zd that lies 
inside the sampling region Rn considered to be rectangular, namely {s1, . . . , sn} = 
Rn ∩ Zd. Let: 

 
n = {k ∈ Zd, bn(k + [0, 1)d) ∩ Rn ≠ ∅},                                                         (1) 

 
where bn → ∞ is a sequence of positive integers. 

We define a bootstrap version of the spatial attribute Z(.) over Rn by taking  
its version over  each subregion  
 
Rn(k) = Rn ∩ [bn(k + [0, 1)d)], k ∈ n                                                                  (2) 

 
Let n be the index set of all cubes of volume d

nb in Rn. We take one Rn(k) 
at a time, resample from a collection of subregions of type k of Rn to define the 
bootstrap version of Z(.) over Rn(k). Then, {i+bn[0, 1)d, i ∈ n} forms a collection 
of cubic blocks that are overlapping and contained in Rn. For each i ∈ n, the 
subsample of observations {Z(s), s ∈ Zd ∩ i +bn[0, 1)d} is complete, meaning that 
Z(.) is observed at every point on the integer grid in the subregion i + bn[0, 1)d. 
Thus the number of observations in the resampled block *

nZ (Rn(k)) equals d
nb . 

The overlapping block bootstrap version *
nZ (Rn) of Zn(Rn) is obtained by 

concatenating the resampled blocks of observations,  { *
nZ (Rn(k)), k ∈ n}.  

Based on the above, the bootstrap version of a random variable  
Tn = tn(Zn , θ) is given by  *

nT = tn( *
nZ (Rn), nθ

~ ),  where  the  same  function  tn(. , .)  
that appears in the definition of Tn is also used to define its bootstrap version. 

Here nθ
~  is an estimator of θ and is obtained by replicating the relation 

between the joint distribution of Zn and θ.  
Let  

Tn  =  |Nn(h)|1/2( nθ̂ − θ),  with  θ =  Cov(Z(0), Z(h)),                                              (3) 
is  the  autocovariance  of  the  spatial process at a fixed lag h ∈ Zd\{0}, and nθ̂  is 
the empirical estimator 
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Then Tn is a function of the bivariate spatial process  
 

,))(),(()( ′+= hsZsZsY                                                                                                           (6) 
defined for s∈Rn ∩ ( Rn –h). 
As with MBB for time series, the bootstrap version of the spatial variables can be 
obtained by considering the vectorized process {Y (s), s ∈ Rn ∩ (Rn − h) ∩ Zd}.  
For a discussion of consistency properties of autocovariance estimators in spatial 
block bootstrap we refer to Lahiri [1].  

3. Space-time Moving Block Bootstrap 

We begin by developing a scheme for space-time MBB by extending the 
spatial block bootstrap previously described to space-time processes observed on 
a grid. 

Let {Z(s, t), (s, t) ∈ Zd+1} be a space-time random field assumed to be non-
separable. 

We can mimic the previous approach by simply thinking of time as an 
added dimension, then defining space-time overlapping blocks accordingly. We 
conjecture that extensive Monte Carlo simulations will inform further adjustments 
and refinements of the resampling scheme. A significant practical issue in geo-
statistics is that the random field of interest may not be observed on a lattice.  

However, if the number of spatial locations is sufficient large, we can 
incorporate a missing data step in the MBB by using spatial interpolation (kriging) 
and thus impute the attribute at the grid points with no data.  

The most important aspect of statistical inference for random fields relies 
on correct uncertainty assessment in the estimates of the trend (mean function), as 
well in the estimates of the dependence structure of the variable or attribute of 
interest.  

Under second-order stationarity, the dependence is assumed to be captured 
by the autocovariance function. Parametric autocovariance models are preferred, 
then inference is made based on maximum likelihood estimators of these 
parameters. For non-separable space- time processes, we will employ the flexible 
Whittle-Matern family of isotropic space-time covariance functions introduced in 
Gneiting [10]. Typically, the problem of interest is to predict the attribute field at 
space-time points with no observations and this can be done by using the space-
time analogue of kriging. Krigged predictions and the corresponding prediction 
errors are functions of the autocovariance function. In practice, the auto-
covariance matrix is estimated from the same data and this yields additional error. 

Analytical expressions of the overall error are very hard, if not impossible 
to derive. Resampling and/or conditional simulation techniques need to be further 
employed in order to adjust for all uncertainty sources. We propose a construction 
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of space-time MBB confidence bands based on the resampling scheme previously 
summarized and thus produce reliable confidence bands for the estimators and 
predictors under consideration. A large number of recent studies showed that 
several variants of bootstrap led to improved confidence bands in time series and 
in spatial models. It seems therefore reasonable to conjecture that the space-time 
MBB scheme previously described leads to asymptotically efficient estimators of 
the parameters of the Whittle-Matern space-time autocovariance function. 

4. Discussion 

Motivated by “big data” and the emergent field of data science, we 
propose some data-intensive bootstrap algorithms for stationary space-time 
random fields. Specifically, we show how MBB for spatial data can be extended 
to space-time random fields for data observed on a regular grid. We also comment 
on potential extensions to irregularly spaced data and make conjectures on 
asymptotic properties of parameter estimates of non-separable space-time 
covariance functions with focus on uncertainty assessment through the resulting 
space-time MBB confidence bands. Implementation challenges may be significant 
because of the data-intensive nature of the proposed algorithms, there is a need for 
future optimized routines. We also believe that the main ideas shared here could 
be extended to space-time point processes. Specifically, for non-homogeneous 
Poisson processes where the intensity function varies with time and space, a 
bootstrap selector of the optimal space-time smoothing parameter may be 
constructed by adapting the moving block bootstrap scheme previously described. 
In future work we will start with fixed and time-dependent bandwidths and 
address edge corrections for the spatial bandwidth matrix. Both overlapping and 
non-overlapping space-time blocks may be used. In future work we will consider 
space-time MBB in Monte Carlo simulations and applications to real data. 
Moreover, as we are learning from the current health crisis, it is extremely 
important to get new insights to understanding complex space-time point patters. 

To conclude, modeling space-time data (geostatistical or point patterns) is 
a challenging multi-disciplinary task with many open problems. New data science 
research aimed at finding efficient statistical tools for the exploration, 
visualization and inference is timely and useful in numerous applied disciplines. 
This paper proposes data-intensive algorithms with countless applications in many 
disciplines including but not limited to atmospheric and earth sciences, education, 
engineering hydrology and public health.  
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