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RESAMPLING FOR SPACE-TIME RANDOM FIELDS

Dana SYLVAN?, Constantin TARCOLEAZ?, Adrian Stere PARIS3

Motivated by the "big data” movement, this communication addresses
data -intensive bootstrap algorithms for space-time random fields. Over the
past decade it has been widely acknowledged that modeling and prediction
for space-time data (geostatistical or point patterns) can be a challenging
multi-disciplinary task with many open problems. New data science research
aimed at finding efficient statistical tools for the exploration, visualization
and inference is timely and useful in numerous applied disciplines. In this
paper we introduce a space-time moving block-bootstrap method for data
observed on a regular grid, also addressing potential extensions to
irregularly spaced data. The main ideas shared here may be also used for
non-homogeneous Poisson processes where the intensity function varies with
time and space. The proposed data -intensive algorithms have applications in
many disciplines as to atmospheric and earth sciences, education,
engineering, hydrology, public health.
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1. Introduction

The motivation for this paper is linked to the advent of “big data” and the
emergent field of data science, supported and constantly improved by increased
computing capabilities. In the past decade it has become possible to collect, store
and analyze enormous amounts of information. Moreover, the use simulations and
resampling techniques such as bootstrap is now quite common and was shown to
lead to improved estimations and predictions for highly dimensional stochastic
processes with very complex structures. There exists extensive statistical literature
on these topics; most relevant for this note is the monograph by Lahiri [1] devoted
to resampling for dependent data.

In particular, bootstrap for spatial processes was addressed in recent years
in a number of papers focused both on proving asymptotic results, as well as
showing applications on real life data. For instance, Mattenfeldt et al. [2] propose
a bootstrap variant involving wrapping and tiling to produce a consistent estimator
of the spatial intensity together with confidence bands.
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This paper also presents a very well-designed simulation study where the
spatial block bootstrap approach is compared with a parametric scheme involving
splitting.

Regarding inhomogeneous point patterns, Guan and Loh [3] use thinned block
bootstrap to correctly assess and prove consistency of the variance of the first
order intensity function. Resampling for time series was used in Cameletti,
Ignaccolo and Sylvan [4] by adapting a seasonal bootstrap scheme in the time
domain to improve predictions of threshold exceedance probabilities that were
afterwards mapped spatially via a stationary variogram. This was based on the
assumption of space-time separability which led to a manageable mathematical
framework. However, in many situations this assumption cannot be reasonably
justified and thus the need for space-time non-separable approaches. Sylvan,
Tarcolea and Paris [5] propose a space-time moving block design for modeling
quantile surfaces via kernel smoothing, use it in a comparison study of the
performance of several space-time quantile estimates, and show that
computational time can be significantly reduced with no loss in performance
when considering smoothing via non-separable, overlapping space-time moving
blocks.

Regarding bootstrap for space-time data, to the best of our knowledge
there are no current methods that rely on space-time block bootstrap for random
fields and in this respect this paper fills a gap. Resampling ideas have been tried in
small number of applied studies. For example, Kim and O'Kelly [6] use bootstrap
permutations in a space-time surveillance model, however this empirical approach
is appropriate for space-time point patterns and is designed to detect hot spots. For
a survey of recent computational methods and tools we refer to Shekhar et al. [7].

The paper is organized as follows. Next section presents the theoretical
framework for spatial block bootstrap for processes observed on a regular grid
that is extended to spatial-temporal random fields in Section 3. The article ends
with a brief discussion including challenges and potential extensions to space-time
point patterns.

2. Bootstrap for spatial data

The main idea behind statistical bootstrapping, a technique introduced by
Efron [8] for independent, identically distributed observations, is to produce
replicates of a statistic by sampling with replacement. When the data are
correlated, the sampling region needs to be divided into appropriate blocks in
order to preserve the dependence structure, and then the sampling can be carried
out in moving blocks. This was a breakthrough in bootstrap for stationary time
series and it was introduced in Kinsch [9] . The procedure is known as Moving
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Block Bootstrap (MBB). In this note we present a method to extend MBB to
space-time data.

Initially, consider bootstrapping a stationary spatial process {Z(s), s € Z}
observed at finitely many locations {si, . . ., sn}. Here d is the spatial dimension
and the observation points are given by the part of the integer grid Z¢ that lies
inside the sampling region Rn considered to be rectangular, namely {s, . . ., sn} =
RnN Z% Let:

Kn={k € 2% bn(k + [0, 1)% N Rn =@}, 1)

where by — o is a sequence of positive integers.
We define a bootstrap version of the spatial attribute Z(.) over Ry by taking
its version over each subregion

Rn(k) = Rn N [ba(k + [0, 1)d)], k € K (2)

Let Z, be the index set of all cubes of volume b in Rn. We take one Rn(k)

at a time, resample from a collection of subregions of type k of R, to define the
bootstrap version of Z(.) over Rn(k). Then, {i+bn[0, 1)¢, i € 2L} forms a collection
of cubic blocks that are overlapping and contained in Rn. For each i € Z,, the
subsample of observations {Z(s), s € Z¢ N i +bn[0, 1)} is complete, meaning that
Z(.) is observed at every point on the integer grid in the subregion i + bn[0, 1)°.

Thus the number of observations in the resampled block Z (Rn(k)) equals b?.
The overlapping block bootstrap version Z (Rn) of Zn(Rn) is obtained by
concatenating the resampled blocks of observations, {Z  (Ra(K)), k € Kn}.

Based on the above, the bootstrap version of a random variable
Tn=ta(Zn, 0) isgivenby T = tn(Z:(Rn),gn), where the same function ta(., .)
that appears in the definition of T, is also used to define its bootstrap version.

Here §n is an estimator of 6 and is obtained by replicating the relation

between the joint distribution of Z, and 6.
Let

Tn = INn(h)"2(8,— 6), with 6= Cov(Z(0), Z(h)), 3)
is the autocovariance of the spatial process at a fixed lag h € Z\{0}, and én IS
the empirical estimator

~ 1 -1

en = |Nn (h)| ZSENn(h) Z(S)Z (S + h) - |Nn (h)| (ZSEN"(h) Z(S))2 ' (4)
where

N (h)y={seZ:s,s+heR} (5)
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Then Ty is a function of the bivariate spatial process

Y(s)=(Z(s),Z(s+h))/ (6)
defined for se Rn n ( Rn—h).

As with MBB for time series, the bootstrap version of the spatial variables can be
obtained by considering the vectorized process {Y (s), s €Rn N (Rn — 1) N Z°.
For a discussion of consistency properties of autocovariance estimators in spatial
block bootstrap we refer to Lahiri [1].

3. Space-time Moving Block Bootstrap

We begin by developing a scheme for space-time MBB by extending the
spatial block bootstrap previously described to space-time processes observed on
agrid.

Let {Z(s, 1), (s, t) € Z%*'} be a space-time random field assumed to be non-
separable.

We can mimic the previous approach by simply thinking of time as an
added dimension, then defining space-time overlapping blocks accordingly. We
conjecture that extensive Monte Carlo simulations will inform further adjustments
and refinements of the resampling scheme. A significant practical issue in geo-
statistics is that the random field of interest may not be observed on a lattice.

However, if the number of spatial locations is sufficient large, we can
incorporate a missing data step in the MBB by using spatial interpolation (kriging)
and thus impute the attribute at the grid points with no data.

The most important aspect of statistical inference for random fields relies
on correct uncertainty assessment in the estimates of the trend (mean function), as
well in the estimates of the dependence structure of the variable or attribute of
interest.

Under second-order stationarity, the dependence is assumed to be captured
by the autocovariance function. Parametric autocovariance models are preferred,
then inference is made based on maximum likelihood estimators of these
parameters. For non-separable space- time processes, we will employ the flexible
Whittle-Matern family of isotropic space-time covariance functions introduced in
Gneiting [10]. Typically, the problem of interest is to predict the attribute field at
space-time points with no observations and this can be done by using the space-
time analogue of kriging. Krigged predictions and the corresponding prediction
errors are functions of the autocovariance function. In practice, the auto-
covariance matrix is estimated from the same data and this yields additional error.

Analytical expressions of the overall error are very hard, if not impossible
to derive. Resampling and/or conditional simulation techniques need to be further
employed in order to adjust for all uncertainty sources. We propose a construction
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of space-time MBB confidence bands based on the resampling scheme previously
summarized and thus produce reliable confidence bands for the estimators and
predictors under consideration. A large number of recent studies showed that
several variants of bootstrap led to improved confidence bands in time series and
in spatial models. It seems therefore reasonable to conjecture that the space-time
MBB scheme previously described leads to asymptotically efficient estimators of
the parameters of the Whittle-Matern space-time autocovariance function.

4. Discussion

Motivated by “big data” and the emergent field of data science, we
propose some data-intensive bootstrap algorithms for stationary space-time
random fields. Specifically, we show how MBB for spatial data can be extended
to space-time random fields for data observed on a regular grid. We also comment
on potential extensions to irregularly spaced data and make conjectures on
asymptotic properties of parameter estimates of non-separable space-time
covariance functions with focus on uncertainty assessment through the resulting
space-time MBB confidence bands. Implementation challenges may be significant
because of the data-intensive nature of the proposed algorithms, there is a need for
future optimized routines. We also believe that the main ideas shared here could
be extended to space-time point processes. Specifically, for non-homogeneous
Poisson processes where the intensity function varies with time and space, a
bootstrap selector of the optimal space-time smoothing parameter may be
constructed by adapting the moving block bootstrap scheme previously described.
In future work we will start with fixed and time-dependent bandwidths and
address edge corrections for the spatial bandwidth matrix. Both overlapping and
non-overlapping space-time blocks may be used. In future work we will consider
space-time MBB in Monte Carlo simulations and applications to real data.
Moreover, as we are learning from the current health crisis, it is extremely
important to get new insights to understanding complex space-time point patters.

To conclude, modeling space-time data (geostatistical or point patterns) is
a challenging multi-disciplinary task with many open problems. New data science
research aimed at finding efficient statistical tools for the exploration,
visualization and inference is timely and useful in numerous applied disciplines.
This paper proposes data-intensive algorithms with countless applications in many
disciplines including but not limited to atmospheric and earth sciences, education,
engineering hydrology and public health.
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