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COMPUTING SOME TOPOLOGICAL INDICES OF ROOTED 

PRODUCT OF GRAPHS 

Mahdieh AZARI1 

In this paper, exact formulas for computing the Szeged index, vertex PI index, 

weighted Szeged index, weighted vertex PI index, and revised Szeged index of rooted 

product of two graphs are presented. Results are applied to compute these indices 

for some chemical graphs by specializing components in rooted products.  

Keywords: Szeged index, vertex PI index, weighted Szeged index, weighted 

vertex PI index, revised Szeged index, rooted product of graphs  

1. Introduction 

Let G  be a simple connected graph with vertex set )(GV  and edge set 

)(GE . We denote by )( Gud  the degree of the vertex u  in G  and by ),( Gvud  

the distance between the vertices u  and v  in G . Let uve   be the edge of G  

connecting the vertices u  and v . The quantities )(0 Gen , )( Genu , and )( Genv  

are defined to be the number of vertices of G  equidistant from u  and v , the 

number of vertices of G  lying closer to u  than to v , and the number of vertices 

of G  lying closer to v  than to u , respectively, i.e., 

)},(),(:)({)(0 GvzdGuzdGVzGen  , 

)},(),(:)({)( GvzdGuzdGVzGenu  , 

)},(),(:)({)( GuzdGvzdGVzGenv  . 

For the vertex )(GVz , we define 

)},(),(:)({)( GzvdGzudGEuveGmz  . 

Chemical graphs are models of molecules in which atoms are represented 

by vertices and chemical bonds by edges of a graph. A topological index is any 

function on a chemical graph irrespective of the labeling of its vertices. The best 

known and widely used topological index is the Wiener index. This index was 

introduced in 1947 by Wiener [16] who used it for modeling the thermodynamic 

properties of alkanes. The Wiener index of a chemical graph represents the sum of 

distances between all pairs of its atoms/vertices. 
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Motivated by the original definition of the Wiener index of a tree, Gutman 

[9] introduced the Szeged index, which coincides with the Wiener index for a tree. 

It found applications in quantitative structure-property-activity-toxicity modeling 

[13]. The Szeged index of a graph G  is defined as

 



)(

)()()(
GEuve

vu GenGenGSz . 

In recent years, some variants of the Szeged index such as the vertex PI 

index [14], weighted Szeged index [10], weighted vertex PI index [10], and revised 

Szeged index [15] have been introduced and studied by both mathematicians and 

chemists. These indices are defined for a graph G  as follows.  
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We refer the reader to [1,7,8,12] for more information on these indices. 

The rooted product }{ 21 GG  of a graph 1G  and a rooted graph 2G  is the 

graph obtained by taking one copy of 
1G  and )( 1GV  copies of 2G , and by 

identifying the root vertex of the i-th copy of 2G  with the i-th vertex of 
1G , for 

)(,...,2,1 1GVi  .  

In this paper, the Szeged index, vertex PI index, weighted Szeged index, 

weighted vertex PI index, and revised Szeged index of rooted product of graphs 

are computed. For more information on computing topological indices of rooted 

product see [2-6,11,17].  

2. Results and discussion 

Let 1G  and 2G  be two simple connected graphs with vertex sets )( 1GV  and 

)( 2GV  and edge sets )( 1GE  and )( 2GE , respectively. In this section, we compute 

the Szeged index, vertex PI index, weighted Szeged index, weighted vertex PI 

index, and revised Szeged index of the rooted product of 1G  and 2G . Throughout 

this section, we denote the root vertex of 2G  by x  and the degree of x  in 2G  by 

 . Also, we denote by in  and
 im , the order and size of the graph iG , respectively, 

where }2,1{i . In addition, for notational convenience, we define 
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Theorem 2.1 The Szeged index of the rooted product }{ 21 GG  is given by 

 

       

NnnnGSznGSznGGSz )1()()(}){( 121211
2

221  .         (1) 

Proof. From the definition of the Szeged index, we have
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We partition the above sum into two sums as follows. 

The first sum 1S  consists of contributions to }){( 21 GGSz  of edges from 1G , 
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By definition of rooted product, we have 
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The second sum 2S  consists of contributions to }){( 21 GGSz  of edges from 

1n  copies of 2G , 
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By definition of rooted product, we have 
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Eq. (1) is obtained by adding the quantities 1S  and 2S . 

Theorem 2.2 The vertex PI index of the rooted product }{ 21 GG  is given by 

 )()1()()(}){( 2121211221 GmnnnGPInGPInGGPI xvvv  .           (2) 

Proof. From the definition of the vertex PI index, we have
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We partition the above sum into two sums as follows.  

The first sum 1S  consists of contributions to }){( 21 GGPIv of edges from 1G , 
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By definition of rooted product, we have 
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The second sum 2S  consists of contributions to }){( 21 GGPIv  of edges 

from 1n  copies of 2G , 
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Eq. (2) is obtained by adding the quantities 1S  and 2S . 

Theorem 2.3 The weighted Szeged index of the rooted product }{ 21 GG is given by  

)()(2)(}){( 211
2

21
2

221 GSznGSznGSznGGSz www   )(2 1 xSzm               (3)
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Proof. From the definition of the weighted Szeged index, we have
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We partition the above sum into two sums as follows.  

The first sum 1S  consists of contributions to }){( 21 GGSzw of edges from 1G , 
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By definition of rooted product, we have 
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              The second sum 2S  consists of contributions to }){( 21 GGSzw  of edges 

from 1n  copies of 2G ,
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To compute the sum 2S , we partition it into two sums 21S  and 22S  as follows.  

The sum 21S  is equal to 
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By definition of rooted product, we have 
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The sum 22S  is equal to 
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By definition of rooted product, we have 
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By adding 21S  and 22S , we get
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Eq. (3) is obtained by adding the quantities 1S  and 2S . 

Theorem 2.4 The weighted vertex PI index of the rooted product }{ 21 GG  is given 

by 
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Proof. From the definition of the weighted vertex PI index, we have
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We partition the above sum into two sums as follows. 
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By definition of rooted product, we have 
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To compute the sum 2S , we partition it into two sums 21S  and 22S  as follows.  
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By definition of rooted product, we have 
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Eq. (4) is obtained by adding the quantities 1S  and 2S . 

We define the second vertex PI index of a graph G  as  
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Theorem 2.5 [7] Let G  be a graph of order n and size m. Then 
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Lemma 2.6 The second vertex PI index of the rooted product }{ 21 GG  is given by 
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 Eq. (6) is obtained by adding the quantities 1S  and 2S . 
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Theorem 2.7 The revised Szeged index of the rooted product }{ 21 GG  is given by 
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Eq. (7) is obtained by simplifying the above expression.  

3. Examples and corollaries 

In this section, we apply Eqs. (1)-(4) and Eq. (7) to compute the Szeged 

index, vertex PI index, weighted Szeged index, weighted vertex PI index, and 

revised Szeged index of some chemical graphs. 
Table 1 

Some topological indices of path, star, and cycle 

Graph Pn Sn Cn, n is even Cn, n is odd 
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Let nP , nS , and nC
 
denote the n-vertex path, star, and cycle, respectively. 

Throughout this section, we assume that nP  is rooted at one of its pendant vertices 

(vertices of degree one) and nS  is rooted at its vertex of degree 1n . Because of 

symmetry of nC
 
any vertex of this graph can be considered at its root vertex. 

Some topological indices of these graphs have been given in Table 1. 

As the first example, consider the rooted product of nP  and mP . This  
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molecular graph is called the comb lattice graph. Using Eqs. (1)-(4), Eq. (7), and 

Table 1, we easily arrive at: 

Corollary 3.1 Let }{ mn PPG  . The following equalities hold. 
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Let )(* mPn  denote the m-thorn path which is the graph obtained by 

attaching m pendant vertices to each vertex of the path nP . This graph can be 

viewed as the rooted product of nP  and the star graph on 1m  vertices 1mS . 

Using Eqs. (1)-(4), Eq. (7), and Table 1, we easily arrive at: 

Corollary 3.2 The following equalities hold. 
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Let )(* mCn  
denote the m-thorn cycle which is the graph obtained by 

attaching m pendant vertices to each vertex of the cycle nC . This graph can be 

seen as the rooted product of nC  and the star graph on 1m  vertices 1mS . Using 

Eqs. (1)-(4), Eq. (7), and Table 1, we easily arrive at: 

Corollary 3.3 The following equalities hold. 
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Finally, consider the rooted product of nP  and mC . Using Eqs. (1)-(4), Eq. 

(7), and Table 1, we easily arrive at: 

Corollary 3.4 Let }{ mn CPG  . The following equalities hold. 
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(iv)
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