

A CLASS OF HARMONIC FUNCTIONS ASSOCIATED WITH A *q*-SĂLĂGEAN OPERATOR

Poonam Sharma¹ and Omendra Mishra²

*In this paper, a class $S_H^0(n, q, A, B)$ of harmonic functions $f \in \mathcal{H}^0$, associated with a *q*-Sălăgean operator is defined. A necessary and sufficient convolution condition for the functions $f \in \mathcal{H}^0$ to be in this class is proved. A sufficient coefficient condition for the functions $f \in \mathcal{H}^0$ to be sense preserving and univalent and in the same class is obtained. It is proved that this coefficient condition is necessary for the functions in its sub class $\mathcal{TS}_H^0(n, q, A, B)$. Using this necessary and sufficient coefficient condition, results based on the convexity and compactness of the class $\mathcal{TS}_H^0(n, q, A, B)$, and results on the radii of *q*-starlikeness and *q*-convexity of order α , extreme points for the functions in the class $\mathcal{TS}_H^0(n, q, A, B)$ are obtained.*

Keywords: *q*-Sălăgean operator; univalent functions; harmonic functions; subordination

1. Introduction

The theory of *q*-calculus has motivated the researchers due to its applications in the field of physical sciences, specially in quantum physics. Jackson [11, 12] was the first to give some applications of *q*-calculus by introducing the *q*-analogues of derivative and integral. Jackson's *q*-derivative operator ∂_q on a function h analytic in $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ is defined for $0 < q < 1$, by

$$\partial_q h(z) = \begin{cases} \frac{h(z) - h(qz)}{(1-q)z}, & z \neq 0 \\ h'(0), & z = 0. \end{cases}$$

For a power function $h(z) = z^k$, $k \in \mathbb{N} = \{1, 2, 3, \dots\}$,

$$\partial_q h(z) = \partial_q(z^k) = [k]_q z^{k-1},$$

where $[k]_q$ is the *q*-integer number k defined by

$$[k]_q = \frac{1 - q^k}{1 - q} = 1 + q + q^2 + \dots + q^{k-1}. \quad (1)$$

For more detailed study see [3]. Clearly, $\lim_{q \rightarrow 1^-} [k]_q = k$ and $\lim_{q \rightarrow 1^-} \partial_q h(z) = h'(z)$.

Let \mathcal{A} denote the class of functions h that are analytic in $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ with the normalization $h(0) = h'(0) - 1 = 0$.

Complex-valued harmonic functions of the form: $f = u + iv$, where u and v are real-valued harmonic functions in \mathbb{D} , can also be expressed as $f = h + \bar{g}$, where h and g are analytic in \mathbb{D} . The Jacobian of the function $f = h + \bar{g}$ is given by $J_f(z) = |h'(z)|^2 - |g'(z)|^2$. According to the Lewy [17], every harmonic function $f = h + \bar{g}$ is locally univalent and

¹ Department of Mathematics & Astronomy, University of Lucknow, Lucknow 226007 India, e-mail: sharma_poonam@lkuoniv.ac.in

² Department of Mathematics & Astronomy, University of Lucknow, Lucknow 226007 India

sense preserving in \mathbb{D} if and only if $J_f(z) > 0$ in \mathbb{D} which is equivalent to the existence of an analytic function $\omega(z) = g'(z)/h'(z)$ in \mathbb{D} such that

$$|\omega(z)| < 1 \quad \text{for all } z \in \mathbb{D}.$$

The function $\omega(z)$ is called the dilatation of f . By requiring harmonic function to be sense-preserving, we retain some basic properties exhibited by analytic functions, such as the open mapping property, the argument principal, and zeros being isolated (see for detail [4]).

A class of harmonic functions $f = h + \bar{g}$ with the normalized conditions $h(0) = 0 = g(0)$ and $h'(0) = 1$ is denoted by \mathcal{H} and functions therein are of the form:

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k + \sum_{n=1}^{\infty} \overline{b_n z^n}. \quad (2)$$

A sub class of functions $f = h + \bar{g} \in \mathcal{H}$ with the additional condition $g'(0) = 0$ is denoted by \mathcal{H}^0 . The class of all univalent, sense preserving harmonic functions $f = h + \bar{g} \in \mathcal{H}$ (\mathcal{H}^0) is denoted by $S_{\mathcal{H}}$ ($S_{\mathcal{H}}^0$). Further, if $g(z) \equiv 0$, the class $S_{\mathcal{H}}$ reduces to the class S of univalent functions in \mathcal{A} .

The convolution of two analytic functions $h(z) = \sum_{n=1}^{\infty} a_n z^n$ and $g(z) = \sum_{n=1}^{\infty} b_n z^n$ is defined by $(f * g)(z) = \sum_{n=1}^{\infty} a_n b_n z^n$. The convolution $\tilde{*}$ of two harmonic functions $f = h + \bar{g}$ and $F = H + \bar{G}$ is defined by $(f \tilde{*} F)(z) = (g * G)(z) + \overline{(h * H)(z)}$.

The q -Sălăgean operator D_q^n of order $n \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$ for an analytic function h , is defined by ([8])

$$D_q^0 h(z) = h(z), \quad D_q^1 h(z) = D_q h(z) = z \partial_q h(z)$$

and for $n \in \mathbb{N}$,

$$D_q^n h(z) = D_q(D_q^{n-1} h(z)). \quad (3)$$

Observe that

$$D_q h(z) = h(z) * D_q \left(\frac{z}{1-z} \right), \quad (4)$$

and

$$\begin{aligned} D_q \left(\frac{z}{1-z} \right) &= z + \sum_{k=2}^{\infty} [k]_q z^k \\ &= \frac{z}{(1-z)(1-qz)}, \end{aligned} \quad (5)$$

where $[k]_q$ is the q -integer number k defined by (1). The operator D_q^n reduces to the well known Sălăgean operator D^n [21] as $q \rightarrow 1^-$.

Further, the q -Sălăgean operator \mathcal{D}_q^n of order $n \in \mathbb{N}_0$ for the harmonic function $f = h + \bar{g}$ is defined by ([13])

$$\mathcal{D}_q^n f(z) = D_q^n h(z) + (-1)^n \overline{D_q^n g(z)}. \quad (6)$$

As $q \rightarrow 1^-$, the operator \mathcal{D}_q^n reduces to the operator \mathcal{D}^n which is the modified Sălăgean operator for a harmonic function $f = h + \bar{g}$ ([16]).

We say that a function $h : \mathbb{D} \rightarrow \mathbb{C}$ is subordinate to a function $g : \mathbb{D} \rightarrow \mathbb{C}$ and write $h(z) \prec g(z)$, $z \in \mathbb{D}$, if there exists a complex-valued function w which map \mathbb{D} into itself such that $w(0) = 0$ and $h(z) = g(w(z))$. In particular, if g is univalent in \mathbb{D} , then we have the following equivalence:

$$h(z) \prec g(z), \quad z \in \mathbb{D} \iff h(0) = g(0) \text{ and } h(\mathbb{D}) \subset g(\mathbb{D}).$$

The above definition of subordination " \prec " was earlier used by Dziok in [5] (see also [2, 6, 7, 15] and in the recent work [1]).

Associated with the q -Sălăgean operator \mathcal{D}_q^n , we define a subclass $S_H^0(n, q, A, B)$ of harmonic functions $f \in \mathcal{H}^0$ that satisfy the subordination condition

$$\frac{\mathcal{D}_q^{n+1}f(z)}{\mathcal{D}_q^n f(z)} \prec \frac{1+Az}{1+Bz} \quad (-B \leq A < B \leq 1; z \in \mathbb{D}) \quad (7)$$

which is equivalent to the condition

$$\left| \frac{\mathcal{D}_q^{n+1}f(z) - \mathcal{D}_q^n f(z)}{B\mathcal{D}_q^{n+1}f(z) - A\mathcal{D}_q^n f(z)} \right| < 1, \quad z \in \mathbb{D}. \quad (8)$$

We denote by $\mathcal{TS}_H^0(n, q, A, B)$ a subclass of harmonic functions $f = h + \bar{g} \in S_H^0(n, q, A, B)$, where for this n , functions h and g are of the form:

$$h(z) = z - \sum_{k=2}^{\infty} |a_k|z^k \quad \text{and} \quad g(z) = (-1)^n \sum_{k=2}^{\infty} |b_k|z^k \quad (z \in \mathbb{D}). \quad (9)$$

Clearly, the functions $f \in S_H^0(n, q, A, B)$ satisfy the condition

$$\left| \frac{\mathcal{D}_q^{n+1}f(z)}{\mathcal{D}_q^n f(z)} - \frac{1-AB}{1-B^2} \right| < \frac{B-A}{1-B^2}, \quad \text{if } B \neq 1,$$

and

$$\Re e \left(\frac{\mathcal{D}_q^{n+1}f(z)}{\mathcal{D}_q^n f(z)} \right) > \frac{1+A}{2}, \quad \text{if } B = 1.$$

In particular, if we take $B = q$ ($0 < q < 1$), then for the same q , the class $S_H^0(n, q, A, q)$ may equivalently be defined by

$$\left| \frac{\mathcal{D}_q^{n+1}f(z)}{\mathcal{D}_q^n f(z)} - \frac{1-Aq}{1-q^2} \right| < \frac{q-A}{1-q^2} \quad (-q \leq A < q; z \in \mathbb{D}).$$

Observe that as $q \rightarrow 1^-$, the class $S_H^0(\lambda, q, A, B) = H^\lambda(A, B)$ was studied by Dziok *et al.* [7] and the class $H^\lambda(A, B)$ for $\lambda = 0, 1$ was studied in [5]. Certain generalized classes of the class $H^\lambda(A, B)$ were studied in [2, 15]. We denote the class $S_H^0(n, q, (1+q)\alpha - 1, q)$ ($0 \leq \alpha < 1$) by $\mathcal{H}_q^n(\alpha)$ and hence, the classes $\mathcal{H}_q^0(\alpha)$ and $\mathcal{H}_q^1(\alpha)$ are the q -analogue of harmonic starlike and harmonic convex functions of order α , respectively. Further, as $q \rightarrow 1^-$, the classes $\mathcal{H}_q^0(\alpha) =: S_H^*(\alpha)$ and $\mathcal{H}_q^1(\alpha) =: S_H^c(\alpha)$ are the well known classes of the functions $f \in S_H^0$ which are starlike and convex functions of order α , respectively, in \mathbb{D} and are investigated by Jahangiri [14].

Research work in connection with function theory and q -calculus was first introduced by Ismail *et al.* [10]. Recently, q -calculus is involved in the theory of analytic functions in the work [8, 9, 18, 20] etc.. But research on q -calculus in connection with harmonic functions is fairly new and not much published (one may find papers [13], [19] and most recently [1]).

In this paper, a class $S_H^0(n, q, A, B)$ of harmonic functions $f \in \mathcal{H}^0$, associated with q -Sălăgean operator is defined as above (7). A necessary and sufficient convolution condition for the functions $f \in \mathcal{H}^0$ to be in this class is proved as Theorem 2.1 below. A sufficient coefficient condition for the functions $f \in \mathcal{H}^0$ to be sense preserving and univalent and in the same class is obtained as Theorem 2.2. It is proved that this coefficient condition is necessary for the functions in its sub class $\mathcal{TS}_H^0(n, q, A, B)$ as Theorem 2.3. Using this necessary and sufficient coefficient condition, in the subsequent work, results on convexity and compactness; results based on the radii of q -starlikeness and q -convexity of order α , and extreme points for the functions in the class $\mathcal{TS}_H^0(n, q, A, B)$ are obtained. This research work will motivate future research to work in the area of q -calculus operators together with harmonic functions.

2. MAIN RESULTS

Theorem 2.1. *Let $f \in \mathcal{H}^0$. Then the function $f \in S_H^0(n, q, A, B)$ if and only if*

$$\mathcal{D}_q^n f(z) \tilde{*} \Phi(z; \zeta) \neq 0 \quad (\zeta \in \mathbb{C}, |\zeta| = 1, z \in \mathbb{D} \setminus \{0\}),$$

where

$$\Phi(z; \zeta) = \frac{(B - A)\zeta z + (1 + A\zeta)qz^2}{(1 - z)(1 - qz)} - \overline{\left(\frac{2z + (A + B)\bar{\zeta}z - (1 + A\bar{\zeta})qz^2}{(1 - z)(1 - qz)} \right)}. \quad (10)$$

Proof. Let $f = h + \bar{g} \in \mathcal{H}^0$ be of the form (2). Then $f \in S_H^0(n, q, A, B)$ if and only if (7) holds or equivalently

$$\frac{\mathcal{D}_q^{n+1} f(z)}{\mathcal{D}_q^n f(z)} \neq \frac{1 + A\zeta}{1 + B\zeta} \quad (\zeta \in \mathbb{C}, |\zeta| = 1, z \in \mathbb{D} \setminus \{0\})$$

which by (6) is given by

$$\begin{aligned} & (1 + B\zeta) \left[D_q^n (D_q h(z)) + (-1)^{n+1} \overline{D_q^n (D_q g(z))} \right] \\ & - (1 + A\zeta) \left[D_q^n h(z) + (-1)^n \overline{D_q^n g(z)} \right] \\ & \neq 0. \end{aligned} \quad (11)$$

On using (4) and (5), the condition (11) may also be given by

$$\begin{aligned} & D_q^n h(z) * \left[(1 + B\zeta) \frac{z}{(1 - z)(1 - qz)} - (1 + A\zeta) \frac{z}{1 - z} \right] \\ & - (-1)^n \overline{D_q^n g(z)} * \left[(1 + B\zeta) \frac{\bar{z}}{(1 - \bar{z})(1 - q\bar{z})} + (1 + A\zeta) \frac{\bar{z}}{1 - \bar{z}} \right] \neq 0 \end{aligned}$$

which on using the convolution $\tilde{*}$ between two harmonic functions, we get

$$\mathcal{D}_q^n f(z) \tilde{*} \Phi(z; \zeta) \neq 0,$$

where the harmonic function $\Phi(z; \zeta)$ is given by (10). \square

If we consider $q \rightarrow 1^-$ in Theorem 2.1, we get following result involving the Sălăgean operator \mathcal{D}^n :

Corollary 2.1. *Let $f \in \mathcal{H}^0$. Then the function $f \in S_H^0(n, A, B)$ if and only if*

$$\mathcal{D}^n f(z) \tilde{*} \phi(z; \zeta) \neq 0 \quad (\zeta \in \mathbb{C}, |\zeta| = 1, z \in \mathbb{D} \setminus \{0\}),$$

where

$$\phi(z; \zeta) = \frac{(B - A)\zeta z + (1 + A\zeta)z^2}{(1 - z)^2} - \overline{\left(\frac{2z + (A + B)\bar{\zeta}z - (1 + A\bar{\zeta})z^2}{(1 - z)^2} \right)}. \quad (12)$$

Remark 2.1. The result of Corollary 2.1 with $\phi(z; \zeta)$ given by (12) improves the results of Dziok *et al.* [7, Theorem 1, p.3].

Theorem 2.2. *Let $f = h + \bar{g} \in \mathcal{H}^0$ be of the form (2) and let $-B \leq A < B \leq 1$. If*

$$\sum_{k=2}^{\infty} (C_k |a_k| + D_k |b_k|) \leq B - A, \quad (13)$$

where

$$C_k = ([k]_q)^n \{ [k]_q (1 + B) - (1 + A) \}, \quad (14)$$

$$D_k = ([k]_q)^n \{ [k]_q (1 + B) + (1 + A) \}, \quad (15)$$

and $[k]_q$ is the q -integer number k defined by (1), then

- (i) the function f is locally univalent and sense-preserving as $q \rightarrow 1^-$ and univalent in \mathbb{D} ,
- (ii) the function $f \in S_H^0(n, q, A, B)$.

Proof. It is clear that the theorem is true for the function $f(z) \equiv z$. Let $f = h + \bar{g}$, where h and g of the form (2) and assume that there exist $k \in \{2, 3, \dots\}$ such that $a_k \neq 0$ or $b_k \neq 0$. Since, from (1), $[k]_q > 1$, we observe from (14) and (15) that $D_k \geq C_k > [k]_q(B - A)$ ($k = 2, 3, \dots$), by which the condition (13) implies the condition

$$\sum_{k=2}^{\infty} [k]_q (|a_k| + |b_k|) < 1 \quad (16)$$

and hence, we get for any q ($0 < q < 1$),

$$\begin{aligned} |\partial_q h(z)| - |\partial_q g(z)| &\geq 1 - \sum_{k=2}^{\infty} [k]_q |a_k| |z^{k-1}| - \sum_{k=2}^{\infty} [k]_q |b_k| |z^{k-1}| \\ &> 1 - |z| \sum_{k=2}^{\infty} [k]_q (|a_k| + |b_k|) > 1 - |z| > 0 \end{aligned}$$

in \mathbb{D} which implies as $q \rightarrow 1^-$ that $|h'(z)| > |g'(z)|$ in \mathbb{D} that is the function f is locally univalent and sense-preserving in \mathbb{D} . Moreover, if $z_1, z_2 \in \mathbb{D}$ and for some q ($0 < q < 1$), $z_1 \neq qz_2$. Then for that q ,

$$\left| \frac{z_1^k - (qz_2)^k}{z_1 - (qz_2)} \right| = \left| \sum_{l=1}^k z_1^{l-1} (qz_2)^{k-l} \right| \leq \sum_{l=1}^k |z_1|^{l-1} q^{k-l} |z_2|^{k-l} < [k]_q \quad (k = 2, 3, \dots).$$

Hence, for that value of q , from (16), we have

$$\begin{aligned} |f(z_1) - f(qz_2)| &\geq |h(z_1) - h(qz_2)| - |g(z_1) - g(qz_2)| \\ &\geq \left| z_1 - qz_2 - \sum_{k=2}^{\infty} a_k (z_1^k - (qz_2)^k) \right| - \left| \sum_{k=2}^{\infty} b_k (z_1^k - (qz_2)^k) \right| \\ &\geq |z_1 - qz_2| \left(1 - \sum_{k=2}^{\infty} |a_k| \left| \frac{z_1^k - (qz_2)^k}{z_1 - qz_2} \right| - \sum_{k=2}^{\infty} |b_k| \left| \frac{z_1^k - (qz_2)^k}{z_1 - qz_2} \right| \right) \\ &> |z_1 - qz_2| \left(1 - \sum_{k=2}^{\infty} [k]_q |a_k| - \sum_{k=2}^{\infty} [k]_q |b_k| \right) > 0 \end{aligned}$$

which proves that f is univalent in \mathbb{D} . This proves the result (i). To prove result (ii), it needs to show that the function f satisfy the condition (8). Consider for $f = h + \bar{g}$, where h and g of the form (2) and for $|z| = r$ ($0 < r < 1$),

$$\begin{aligned} &|\mathcal{D}_q^{n+1} f(z) - \mathcal{D}_q^n f(z)| - |B\mathcal{D}_q^{n+1} f(z) - A\mathcal{D}_q^n f(z)| \\ &= \left| \sum_{k=2}^{\infty} ([k]_q)^n ([k]_q - 1) a_k z^k - (-1)^n \sum_{k=2}^{\infty} ([k]_q)^n ([k]_q + 1) \bar{b}_k z^k \right| \\ &\quad - \left| (B - A)z + \sum_{k=2}^{\infty} ([k]_q)^n (B[k]_q - A) a_k z^k \right. \\ &\quad \left. - (-1)^n \sum_{k=2}^{\infty} ([k]_q)^n (B[k]_q + A) \bar{b}_k z^k \right| \end{aligned}$$

$$\begin{aligned}
&\leq \sum_{k=2}^{\infty} ([k]_q)^n ([k]_q - 1) |a_k| r^k + \sum_{k=2}^{\infty} ([k]_q)^n ([k]_q + 1) |b_k| r^k \\
&\quad - (B - A)r + \sum_{k=2}^{\infty} ([k]_q)^n (B([k]_q - A)) |a_k| r^k \\
&\quad + \sum_{k=2}^{\infty} ([k]_q)^n (B([k]_q + A)) |b_k| r^k \\
&< \sum_{k=2}^{\infty} (C_k |a_k| + D_k |b_k|) r^{k-1} - (B - A) \\
&\leq \sum_{k=2}^{\infty} (C_k |a_k| + D_k |b_k|) r^{k-1} - (B - A) \leq 0
\end{aligned}$$

if the condition (13) holds, where C_k and D_k are given, respectively, by (14) and (15). This proves the condition (8). This completes the proof of Theorem 2.2. \square

Remark 2.2. Equality in (13) occurs for the function

$$f(z) = z + \sum_{k=2}^{\infty} \frac{B - A}{C_k} \alpha_k z^k + \sum_{n=2}^{\infty} \frac{B - A}{D_k} \beta_k \bar{z}^k,$$

where C_k and D_k are defined, respectively, by (14) and (15), $-B \leq A < B \leq 1$, $z \in \mathbb{D}$ and $\sum_{k=2}^{\infty} (|\alpha_k| + |\beta_k|) = 1$.

Theorem 2.3. Let $f = h + \bar{g} \in \mathcal{H}^0$, where h and g are given by (9). Then $f \in \mathcal{TS}_H^0(n, q, A, B)$, if and only if the condition (13) holds.

Proof. If part is proved in Theorem 2.2. To prove only if part let $f = h + \bar{g} \in \mathcal{TS}_H^0(n, q, A, B)$, where h and g are given by (9). Then by the class condition (7) we have from (8) that for any $z \in \mathbb{D}$,

$$\left| \frac{\sum_{k=2}^{\infty} ([k]_q)^n ([k]_q - 1) |a_k| z^k + \sum_{k=2}^{\infty} ([k]_q)^n ([k]_q + 1) |b_k| \bar{z}^k}{(B - A)z - \sum_{k=2}^{\infty} ([k]_q)^n (B([k]_q - A)) |a_k| z^k - \sum_{k=2}^{\infty} ([k]_q)^n (B([k]_q + A)) |b_k| \bar{z}^k} \right| < 1,$$

where for $z = r$ ($0 \leq r < 1$), we obtain

$$\frac{\sum_{k=2}^{\infty} ([k]_q)^n ([k]_q - 1) |a_k| r^{k-1} + \sum_{k=2}^{\infty} ([k]_q)^n ([k]_q + 1) |b_k| r^{k-1}}{(B - A) - \sum_{k=2}^{\infty} ([k]_q)^n (B([k]_q - A)) |a_k| r^{k-1} - \sum_{k=2}^{\infty} ([k]_q)^n (B([k]_q + A)) |b_k| r^{k-1}} < 1$$

which proves for C_k and D_k defined, respectively, by (14) and (15), that

$$\sum_{k=2}^{\infty} (C_k |a_k| + D_k |b_k|) r^{k-1} < B - A \quad (0 \leq r < 1). \quad (17)$$

Let σ_k be the sequence of partial sums of the series

$$\sum_{k=2}^{\infty} (C_k |a_k| + D_k |b_k|).$$

Then σ_k is a non decreasing sequence and by (17) it is bounded above. Thus, as $r \rightarrow 1^-$, it is convergent and

$$\sum_{k=2}^{\infty} [C_k |a_k| + D_k |b_k|] = \lim_{k \rightarrow \infty} \sigma_k \leq B - A.$$

This gives the condition (13). \square

Remark 2.3. As $q \rightarrow 1^-$, the result of Theorem 2.3 coincides with the result [7, Theorem 2, p.4].

Taking $B = q$ ($0 < q < 1$) and $A = (1 + q)\alpha - 1$ ($0 \leq \alpha < 1$) in Theorem 2.3, we get following result:

Corollary 2.2. Let $f = h + \bar{g} \in \mathcal{H}^0$, where h and g are given by (9). Then $f \in \mathcal{TH}_q^n(\alpha)$, if and only if the condition

$$\sum_{k=2}^{\infty} ([k]_q)^n [([k]_q - \alpha) |a_k| + ([k]_q + \alpha) |b_k|] \leq 1 - \alpha \quad (18)$$

holds, where $[k]_q$ is the q -integer number k defined by (1).

Remark 2.4. Corollary 2.2 gives a necessary and sufficient condition for the functions $f = h + \bar{g} \in \mathcal{H}^0$, where h and g are given by (9) to be q -starlike and q -convex of order α in \mathbb{D} if we put $n = 0$ and 1, respectively, in (18) and are given by

$$\sum_{k=2}^{\infty} [([k]_q - \alpha) |a_k| + ([k]_q + \alpha) |b_k|] \leq 1 - \alpha \quad (19)$$

and

$$\sum_{k=2}^{\infty} [k]_q [([k]_q - \alpha) |a_k| + ([k]_q + \alpha) |b_k|] \leq 1 - \alpha. \quad (20)$$

Theorem 2.4. The class $\mathcal{TS}_H^0(n, q, A, B)$ is a convex and compact subclass of the class of functions $f = h + \bar{g} \in \mathcal{H}^0$, where h and g are of the form (9).

Proof. Let for $t = 1, 2$, $f_t \in \mathcal{TS}_H^0(n, q, A, B)$, and let for this n it is of the form

$$f_t(z) = z - \sum_{k=2}^{\infty} |a_{t,k}| z^k + (-1)^n \sum_{k=2}^{\infty} |b_{t,k}| \bar{z}^k \quad (z \in \mathbb{D}). \quad (21)$$

Then for $0 \leq \rho \leq 1$,

$$\begin{aligned} F(z) &:= \rho f_1(z) + (1 - \rho) f_2(z) \\ &= z - \sum_{k=2}^{\infty} \{\rho |a_{1,k}| + (1 - \rho) |a_{2,k}|\} z^k + (-1)^n \sum_{k=2}^{\infty} \{\rho |b_{1,k}| + (1 - \rho) |b_{2,k}|\} \bar{z}^k \end{aligned}$$

and by Theorem 2.3, we get for C_k and D_k defined by (14), that

$$\begin{aligned} &\sum_{k=2}^{\infty} [C_k \{\rho |a_{1,k}| + (1 - \rho) |a_{2,k}|\} + D_k \{\rho |b_{1,k}| + (1 - \rho) |b_{2,k}|\}] \\ &= \rho \sum_{k=2}^{\infty} \{C_k |a_{1,k}| + D_k |b_{1,k}|\} + (1 - \rho) \sum_{k=2}^{\infty} \{C_k |a_{2,k}| + D_k |b_{2,k}|\} \\ &\leq \rho(B - A) + (1 - \rho)(B - A) = B - A \end{aligned}$$

This proves that the function $F \in \mathcal{TS}_H^0(n, q, A, B)$. Hence, the class $\mathcal{TS}_H^0(n, q, A, B)$ is convex. On the other hand, if we consider a sequence of functions $f_t \in \mathcal{TS}_H^0(n, q, A, B)$, $t \in \mathbb{N} = \{1, 2, 3, \dots\}$ of the form (21), then by Theorem 2.3, we get for C_k and D_k defined by (14),

$$\sum_{k=2}^{\infty} \{C_k |a_{t,k}| + D_k |b_{t,k}|\} \leq B - A. \quad (22)$$

Hence, for $|z| \leq r$ ($0 < r < 1$),

$$\begin{aligned} |f_t(z)| &\leq r + \sum_{k=2}^{\infty} \{|a_{t,k}| + |b_{t,k}|\} r^k \\ &\leq r + \frac{1}{([2]_q)^n \{[2]_q(1+B) - (1+A)\}} \sum_{k=2}^{\infty} \{C_k |a_{t,k}| + D_k |b_{t,k}|\} r^k \\ &< r + \frac{B-A}{([2]_q)^n \{[2]_q(1+B) - (1+A)\}} r^2. \end{aligned}$$

Similarly, we get for $|z| \leq r$ ($0 < r < 1$),

$$|f_t(z)| > r - \frac{B-A}{([2]_q)^n \{[2]_q(1+B) - (1+A)\}} r^2.$$

Therefore, class $\mathcal{TS}_H^0(n, q, A, B)$ is locally uniformly bounded. Let $f = h + \bar{g}$, where h and g are given by (9). If we assume that $f_t \rightarrow f$, then we conclude that $|a_{t,k}| \rightarrow |a_k|$ and $|b_{t,k}| \rightarrow |b_k|$ as $t \rightarrow \infty$ for any $k=2, 3, \dots$. Hence, from (22), we get

$$\sum_{k=2}^{\infty} \{C_k |a_k| + D_k |b_k|\} \leq B - A$$

which proves that $f \in \mathcal{TS}_H^0(n, q, A, B)$ and therefore the class $\mathcal{TS}_H^0(n, q, A, B)$ is closed. This proves the compactness of the class $\mathcal{TS}_H^0(n, q, A, B)$. \square

Corollary 2.3. *Let $f \in \mathcal{TS}_H^0(n, q, A, B)$. Then for $|z| = r$ ($r < 1$),*

$$r - \frac{B-A}{([2]_q)^n \{[2]_q(1+B) - (1+A)\}} r^2 < |f(z)| < r + \frac{B-A}{([2]_q)^n \{[2]_q(1+B) - (1+A)\}} r^2.$$

Furthermore,

$$\left\{ w \in \mathbb{C} : |w| < 1 - \frac{B-A}{([2]_q)^n \{[2]_q(1+B) - (1+A)\}} \right\} \subset f(\mathbb{D}).$$

The minimum of all values of the radius $r \in (0, 1)$ for functions $f \in \mathcal{TS}_H^0(n, q, A, B)$ such that $\frac{f(rz)}{r} \in \mathcal{H}_q^*(\alpha)$ is called the radius of q -starlikeness of order α and is denoted by $r_{\mathcal{H}_q^*(\alpha)}(\mathcal{TS}_H^0(n, q, A, B))$.

In the following theorem we obtain the radius of q -starlikeness of order α for functions $f \in \mathcal{TS}_H^0(n, q, A, B)$.

Theorem 2.5. *Let $0 \leq \alpha < 1$ and C_k, D_k are defined, respectively, by (14), (15). Then*

$$r_{\mathcal{H}_q^*(\alpha)}(\mathcal{TS}_H^0(n, q, A, B)) = \inf_{k \geq 2} \left[\frac{1-\alpha}{B-A} \min \left\{ \frac{C_k}{[k]_q - \alpha}, \frac{D_k}{[k]_q + \alpha} \right\} \right]^{\frac{1}{k-1}}, \quad (23)$$

where $[k]_q$ is the q -integer number k defined by (1).

Proof. Let $f = h + \bar{g} \in \mathcal{TS}_H^0(n, q, A, B)$, where h and g are given by (9). Then by Theorem 2.3, we have

$$\sum_{k=2}^{\infty} \left\{ \frac{C_k}{B-A} |a_k| + \frac{D_k}{B-A} |b_k| \right\} \leq 1,$$

where C_k and D_k are defined, respectively, by (14) and (15). Let r_0 be the radius of q -starlikeness of order α . Then $\frac{f(r_0 z)}{r_0} \in \mathcal{H}_q^*(\alpha)$ if and only if from (19) that

$$\sum_{k=2}^{\infty} \{([k]_q - \alpha) |a_k| + ([k]_q + \alpha) |b_k|\} r_0^{k-1} \leq 1 - \alpha$$

which is true if $\frac{([k]_q - \alpha)}{1 - \alpha} r_0^{k-1} \leq \frac{C_k}{B - A}$ ($k = 2, 3, \dots$) and $\frac{([k]_q + \alpha)}{1 - \alpha} r_0^{k-1} \leq \frac{D_k}{B - A}$ ($k = 2, 3, \dots$) or if

$$r_0 \leq \left[\frac{1 - \alpha}{B - A} \min \left\{ \frac{C_k}{([k]_q - \alpha)}, \frac{D_k}{([k]_q + \alpha)} \right\} \right]^{\frac{1}{k-1}} \quad (k = 2, 3, \dots).$$

It follows that the radius $r_{\mathcal{H}_q^*(\alpha)}(\mathcal{TS}_H^0(n, q, A, B))$ is given by (23). \square

Similarly, we may find the radius of q -convexity of order α for functions $f \in \mathcal{TS}_H^0(n, q, A, B)$ which is as below:

Theorem 2.6. *Let $0 \leq \alpha < 1$ and C_k and D_k are defined, respectively, by (14) and (15). Then*

$$r_{\mathcal{H}_q^c(\alpha)}(\mathcal{TS}_H^0(n, q, A, B)) = \inf_{k \geq 2} \left[\frac{1 - \alpha}{(B - A) [k]_q} \min \left\{ \frac{C_k}{[k]_q - \alpha}, \frac{D_k}{[k]_q + \alpha} \right\} \right]^{\frac{1}{k-1}}, \quad (24)$$

where $[k]_q$ is the q -integer number k defined by (1).

Theorem 2.7. *Let $f = h + \bar{g}$ be of the form (9). Then $f \in \mathcal{TS}_H^0(n, q, A, B)$ if and only if*

$$f(z) = \sum_{k=1}^{\infty} [x_k h_k(z) + y_k g_k(z)], \quad (25)$$

where

$$\begin{aligned} h_1(z) &= z, \quad h_k(z) = z - \frac{B - A}{C_k} z^k, \quad g_1(z) = z, \quad g_k(z) = z + (-1)^n \frac{B - A}{D_k} \bar{z}^k, \quad k = 2, 3, \dots \\ x_k, y_k &\geq 0, \quad x_1 = 1 - \sum_{k=2}^{\infty} x_k - \sum_{k=1}^{\infty} y_k. \end{aligned} \quad (26)$$

In particular the points $\{h_k\}$ and $\{g_k\}$ are called the extreme points of the closed convex hull of the class $\mathcal{TS}_H^0(n, q, A, B)$ denoted by $\text{clco}\mathcal{TS}_H^0(n, q, A, B)$.

Proof. Let f be given by (25). Then from (26), it is of the form

$$f(z) = z - \sum_{k=2}^{\infty} x_k \frac{B - A}{C_k} z^k + (-1)^n \sum_{k=2}^{\infty} y_k \frac{B - A}{D_k} \bar{z}^k$$

which by Theorem 2.3 proves that $f \in \mathcal{TS}_H^0(n, q, A, B)$, since for this function

$$\begin{aligned} \sum_{k=2}^{\infty} \left(C_k x_k \frac{B - A}{C_k} + D_k y_k \frac{B - A}{D_k} \right) &= (B - A) \sum_{k=2}^{\infty} (x_k + y_k) \\ &= (B - A) (1 - x_1 - y_1) \leq B - A. \end{aligned}$$

Conversely, let $f = h + \bar{g} \in \mathcal{TS}_H^0(n, q, A, B)$ be of the form (9). Set $x_k = \frac{C_k}{B - A} |a_k|$, $y_k = \frac{D_k}{B - A} |b_k|$.

Then on using (26), we obtain

$$\begin{aligned} f(z) &= z - \sum_{k=2}^{\infty} |a_k| z^k + (-1)^n \sum_{k=2}^{\infty} |b_k| \bar{z}^k = z - \sum_{k=2}^{\infty} x_k \frac{B - A}{C_k} z^k + (-1)^n \sum_{k=2}^{\infty} y_k \frac{B - A}{D_k} \bar{z}^k \\ &= z - \sum_{k=2}^{\infty} x_k \{z - h_k(z)\} + \sum_{k=2}^{\infty} y_k \{g_k(z) - z\} \\ &= \left[1 - \sum_{k=2}^{\infty} (x_k + y_k) \right] z + \sum_{k=2}^{\infty} \{x_k h_k(z) + y_k g_k(z)\} \end{aligned}$$

which is of the form (25). This proofs Theorem 2.7. \square

Corollary 2.4. Let $f \in \mathcal{TS}_H^0(n, q, A, B)$ be of the form (9). Then

$$|a_k| \leq \frac{B-A}{C_k} \text{ and } |b_k| \leq \frac{B-A}{D_k}, \quad k = 2, 3, 4, \dots, \quad (27)$$

where C_k and D_k are defined, respectively, by (14) and (15). Equality in the inequalities (27) occurs for the extremal functions $h_k(z)$ and $g_k(z)$ given in (26) for $k = 2, 3, 4, \dots$

Acknowledgement: Authors would like to thank the anonymous referee/referees for his/her valuable suggestions that helped in improving this article.

REFERENCES

- [1] *M. Arif, O. Barkub, H. M. Srivastava, S. Abdullah and S. A. Khan*, Some Janowski type harmonic q -starlike functions associated with symmetrical points, *Mathematics* 2020, **8**, 629; doi:10.3390/math8040629.
- [2] *S. Altinkaya, S. Çakmak and S. Yalçın*, On a new class of Salagean-type harmonic univalent functions associated with subordination, *Honam Math. J.* **40** (2018), no. 3, 433–446.
- [3] *A. Aral, V. Gupta and R. P. Agarwal*, *Applications of q -calculus in operator theory*, Springer, New York, 2013.
- [4] *P. Duren, W. Hengartner and R. S. Laugesen*, The argument principle for harmonic functions, *Amer. Math. Monthly* **103** (1996), no. 5, 411–415.
- [5] *J. Dziok*, On Janowski harmonic functions, *J. Appl. Anal.* **21** (2015), no. 2, 99–107.
- [6] *J. Dziok, M. Darus, J. Sokół and T. Bulboaca*, Generalizations of starlike harmonic functions, *C. R. Math. Acad. Sci. Paris* **354** (2016), no. 1, 13–18.
- [7] *J. Dziok, J. M. Jahangiri and H. Silverman*, Harmonic functions with varying coefficients, *J. Inequal. Appl.* **2016**, Paper No. 139, 12 pp.; doi 10.1186/s13660-016-1079-z
- [8] *M. Govindaraj and S. Sivasubramanian*, On a class of analytic functions related to conic domains involving q -calculus, *Anal. Math.* **43** (2017), no. 3, 475–487.
- [9] *S. Hussain, S. Khan, M. A. Zaighum and M. Darus*, Certain subclass of analytic functions related with conic domains and associated with Salagean q -differential operator, *AIMS Journal*, **2**(4), (2017) 622–634. DOI 10.3934/Math.2017.4.622
- [10] *M. E. H. Ismail, E. Merkes and D. Styer*, A generalization of starlike functions, *Complex Variables Theory Appl.* **14** (1990), no. 1-4, 77–84.
- [11] *F. H. Jackson*, On q -functions and a certain difference operator, *Transactions of the Royal Society of Edinburgh*, **46**(2), pp. 253–281, 1909.
- [12] *F. H. Jackson*, On q -definite integrals, *Q. J. Pure Appl. Math.*, **41**(15), (1910), 193–203.
- [13] *J. M. Jahangiri*, Harmonic univalent functions defined by q -calculus operator, *International journal of Mathematical analysis and applications*, **5**(2), (2018), 39–43.
- [14] *J. M. Jahangiri*, Harmonic functions starlike in the unit disk, *J. Math. Anal. Appl.* **235** (1999), no. 2, 470–477.
- [15] *J. M. Jahangiri, N. Magesh and C. Murugesan*, Certain subclasses of starlike harmonic functions defined by subordination, *J. Fract. Calc. Appl.* **8** (2017), no. 2, 88–100.
- [16] *J. M. Jahangiri, G. Murugusundaramoorthy and K. Vijaya*, Salagean-type harmonic univalent functions, *Southwest J. Pure Appl. Math.* **2002**, no. 2, 77–82.
- [17] *H. Lewy*, On the non-vanishing of the Jacobian in certain one-to-one mappings, *Bull. Amer. Math. Soc.* **42** (1936), no. 10, 689–692.
- [18] *S. Mahmood and J. Sokół*, New subclass of analytic functions in conical domain associated with Ruscheweyh q -differential operator, *Results Math.* **71** (2017), no. 3-4, 1345–1357.
- [19] *G. Murugusundaramoorthy and J. M. Jahangiri*, Ruscheweyh-type harmonic functions defined by q -differential operators, *Khayyam J. Math.* **5** (2019), no. 1, 79–88.
- [20] *Y-Polatoglu, F. Ucar and B. Yilmaz*, q -Starlike Functions of order alpha, *TWMS J. App. Eng. Math.*, **8**(1a), 2018, pp. 186–192.
- [21] *G. Sălăgean*, Subclasses of univalent functions, in *Complex analysis—fifth Romanian-Finnish seminar, Part 1 (Bucharest, 1981)*, 362–372, *Lecture Notes in Math.*, 1013, Springer, Berlin.