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A CLASS OF HARMONIC FUNCTIONS ASSOCIATED WITH A
¢+SALAGEAN OPERATOR

Poonam Sharma'! and Omendra Mishra?

In this paper, a class S'Ezl(n,q7 A, B) of harmonic functions f € H°, associated
with a q-Salagean operator is defined. A mecessary and sufficient convolution condition
for the functions f € H° to be in this class is proved. A sufficient coefficient condition
for the functions f € HO to be sense preserving and univalent and in the same class
is obtained. It is proved that this coefficient condition is necessary for the functions in
its sub class ‘J'S% (n,q, A, B). Using this necessary and sufficient coefficient condition,
results based on the convexity and compactness of the class ‘J'S?{(n7 q, A, B), and results
on the radii of q-starlikeness and q-convezity of order a, extreme points for the functions
in the class ‘J'S?_I (n,q, A, B) are obtained.

Keywords: ¢-Salidgean operator; univalent functions; harmonic functions; subordina-
tion

1. Introduction

The theory of g-calculus has motivated the researchers due to its applications in the
field of physical sciences, specially in quantum physics. Jackson [11, 12] was the first to give
some applications of g-calculus by introducing the g-analogues of derivative and integral.
Jackson’s g-derivative operator 9, on a function h analyticin D = {z € C: |z| < 1} is defined
for 0 < ¢ <1, by

h(z)=h(gz) £0

G =1 o) 2o,

For a power function h(z) = zF, ke N={1,2,3,...},
Byh(2) = 9y (2*) = [K]g2" 1,

where [k], is the g-integer number k defined by

k

l—q
k =
[ ]q 1— q
For more detailed study see [3]. Clearly, lim [k], =k and lim J4h(z) = h/(z).
q—1- q—1—

=14qg+¢+..¢" L (1)

Let A denote the class of functions h that are analytic in D = {z € C: |z| < 1} with
the normalization h(0) = h’'(0) —1 = 0.

Complex-valued harmonic functions of the form: f = u + dv, where u and v are real-
valued harmonic functions in D, can also be expressed as f = h + g, where h and g are
analytic in D. The Jacobian of the function f = h+7 is given by J¢(z) = |W'(2)|> — |¢'(2)|*.
According to the Lewy [17], every harmonic function f = h 4+ g is locally univalent and
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sense preserving in D if and only if J¢(z) > 0 in D which is equivalent to the existence of an
analytic function w(z) = ¢’(z)/h/(2) in D such that

lw(z)] <1 forall ze€D.

The function w(z) is called the dilatation of f. By requiring harmonic function to be sense-
preserving, we retain some basic properties exhibited by analytic functions, such as the open
mapping property, the argument principal, and zeros being isolated (see for detail [4]).

A class of harmonic functions f = h + g with the normalized conditions h(0) =0 =
¢(0) and R'(0) = 1 is denoted by H and functions therein are of the form:

f(z):Z—G—Zakzk—l—ZW. (2)
k=2 n=1

A sub class of functions f = h+g € H with the additional condition ¢’(0) = 0 is denoted by
HP. The class of all univalent, sense preserving harmonic functions f = h +g € H (J—CO) is
denoted by Ss¢ (S9). Further, if g(z) = 0, the class Sy reduces to the class S of univalent
functions in A.

The convolution of two analytic functions h(z) = >0 | a,z™ and g(z) = > oo | bp2"
is defined by (f * g)(z) = Yoo, anbnz". The convolution * of two harmonic functions
f=h+gand F = H + G is defined by (f*F)(z) = (9 G) (2) + (hx H)(z).

The g-Salagean operator Dy of order n € Ng = NU {0} for an analytic function h, is
defined by ([8])

Dgh(z) = h(z), D;h(z) = Dyh(z) = 204h(z)
and for n € N,
Dgh(z) = Dg(Dg™"h(2)). (3)

Observe that

and

D, <1fz) = z—|—§[/€]qzk

z
= —_— 5
=20~ ®)
where [k], is the g-integer number k defined by (1). The operator Dy reduces to the well
known Saldgean operator D™ [21] as ¢ — 1.
Further, the g¢-Sdlagean operator Dy of order n € Ny for the harmonic function
f = h+g is defined by ([13])

Dy f(z) = Dgh(z) + (=1)"Dig(2). (6)

As ¢ — 17, the operator Dy reduces to the operator D™ which is the modified Salagean
operator for a harmonic function f = h+ g ([16]).

We say that a function h : D — C is subordinate to a function g : D — C and write
h(z) < g(2), z € D, if there exists a complex-valued function w which map D into itself
such that w(0) = 0 and h(z) = g(w(z)). In particular, if g is univalent in I, then we have
the following equivalence:

h(z) < g(z), z€D < h(0) =g(0) and (D) C g(D).

The above definition of subordination ” < 7 was earlier used by Dziok in [5] (see also
[2, 6, 7, 15] and in the recent work [1]).
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Associated with the g-Saldgean operator Dy, we define a subclass S%(n,q, A, B) of

harmonic functions f € H° that satisfy the subordination condition
Dptlf(z) 1+ Az
Dof (2) 1+ Bz
which is equivalent to the condition
n+1 n
Dy f(z) - Dif(2)
BDG* f(z2) — ADy f(2)

(-B<A<B<1;z€D) (7)

<1, zeD. (8)

We denote by TS%(n,q, A, B) a subclass of harmonic functions f = h+g € S%(n,q, 4, B),
where for this n, functions h and g are of the form:

oo (oo}
h(z)=z— Z lar|z¥  and  g(z) = (-=1)" Z |br|2* (2 € D). (9)
k=2 k=2
Clearly, the functions f € S%(n,q, A, B) satisfy the condition
@n-&-l _ _
q f(z)_l AB B A,ifB;«él,
Dif(z)  1-B | 1-B

and

D)) 144
%e<Dgf(z)>> 3 , if B=1.

In particular, if we take B = ¢ (0 < ¢ < 1), then for the same g, the class S%(n,q, A, q)
may equivalently be defined by

Dyt'f(z) 1-Aq| q-A
Dof(z)  1-¢*| 1-¢?

Observe that as ¢ — 17, the class S% (A, ¢, A, B) = H(A, B) was studied by Dziok et al. [7]
and the class H*(A, B) for A = 0, 1 was studied in [5]. Certain generalized classes of the class
H*(A, B) were studied in [2, 15]. We denote the class S%(n,q,(1+q)a—1,9) (0<a<1)
by H;'(«r) and hence, the classes H)(r) and H,(a) are the g-analogue of harmonic starlike
and harmonic convex functions of order «, respectively. Further, as ¢ — 17, the classes
H(ar) =: Sj;(@) and H} (o) =: S§; () are the well known classes of the functions f € S
which are starlike and convex functions of order a, respectively, in D and are investigated
by Jahangiri [14].

Research work in connection with function theory and g¢-calculus was first introduced
by Ismail et al. [10]. Recently, g-calculus is involved in the theory of analytic functions in
the work [8, 9, 18, 20] etc.. But research on g-calculus in connection with harmonic functions
is fairly new and not much published (one may find papers [13], [19] and most recently [1]).

In this paper, a class S%(n,q, A, B) of harmonic functions f € H°, associated with
g-Salagean operator is defined as above (7). A necessary and sufficient convolution condition
for the functions f € H to be in this class is proved as Theorem 2.1 below. A sufficient
coefficient condition for the functions f € H° to be sense preserving and univalent and
in the same class is obtained as Theorem 2.2. It is proved that this coefficient condition
is necessary for the functions in its sub class T5Y%(n,q, A, B) as Theorem 2.3. Using this
necessary and sufficient coefficient condition, in the subsequent work, results on convexity
and compactness; results based on the radii of ¢g-starlikeness and g-convexity of order «, and
extreme points for the functions in the class T75%(n,q, A, B) are obtained. This research
work will motivate future research to work in the area of g-calculus operators together with
harmonic functions.

(< A<qzeD).
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2. MAIN RESULTS
Theorem 2.1. Let f € H°. Then the function f € S%(n,q, A, B) if and only if
Dyf(z)x@(z() #0  (C€C,|¢|=1,2€ D\{0}),

where

P(2;() =

(B—A)Cz+(1+AQq2” (22+(A+B)CZ (1+49) qz2>. (10)

(1—2)(1-gz) (1-2)(1-gz)

Proof. Let f = h+7g € H® be of the form (2). Then f € S%(n,q, A, B) if and only if (7)
holds or equivalently

Dt f(2)
Dy f(2)
which by (6) is given by

(14 BE) | Dy (Dyh(2)) + (1) Dy (Dyg(2))]

1+ AC
1+ BC

7 (€€ C Il =1,z € D\{0})

— (14 AQ) [ Dih(z) + (~1)" Dyg ()|

# 0. (11)
On using (4) and (5), the condition (11) may also be given by

(1-2)(1-gqz) 1—2

(1) D) + [(1 1 Bo)

Dyh(z) * [(1 +BO) o — (1+ AQ) — }
z z
—— + (1 + A) —— 0
A9 _qy T 49 12} 7
which on using the convolution * between two harmonic functions, we get
Dy f(2)x®(z2;¢) # 0,
where the harmonic function ®(z; () is given by (10). O

If we consider ¢ — 17 in Theorem 2.1, we get following result involving the Salagean
operator D™:

Corollary 2.1. Let f € H°. Then the function f € S%(n, A, B) if and only if
D" f(2)*p(2:¢) #0 (€ €C,[¢| =1,z € D\{0}),

where

P(z;¢) =

(B—A)(z+ (1+AQ) 22 <2z+(A+B)gz_ (1+ A7) 22> )
(1*2)2 (172)2 ’

Remark 2.1. The result of Corollary 2.1 with ¢(z; () given by (12) improves the results of
Dziok et al. |7, Theorem 1, p.3].

Theorem 2.2. Let f = h+g € H° be of the form (2) and let —B < A< B < 1. If

> (Crlak| + Dilbr|) < B — 4, (13)
k=2
where
Cr = ([Klg)"{[klg(1+ B) = (1 + A)}, (14)
Dy, = ([k]q)"{[kl¢(1 + B) + (1 + A)}, (15)

and [k], is the g-integer number k defined by (1), then
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(i) the function f is locally univalent and sense-preserving as ¢ — 1~ and univalent in D,
(ii) the function f € S%(n,q, A, B).

Proof. 1t is clear that the theorem is true for the function f(z) = z . Let f = h+g, where h
and g of the form (2) and assume that there exist k € {2,3, ...} such that a; # 0 or by, # 0.
Since, from (1), [k], > 1, we observe from (14) and (15) that Dy > Cy, > [k],(B—A4) (k=
2,3,...), by which the condition (13) implies the condition

o0

> [klg (Jar] + [be]) < (16)

k=2

and hence, we get for any ¢ (0 < ¢ < 1),

oo oo

103h(2)] = 1849(2)] = 1= [Klglan| |21 = > [K]qlbxl|=" "]

k=2 k=2

>1—|Z|Z (lag| + |bk]) > 1—|2| > 0

in D which implies as ¢ — 1~ that |h/(2)| > |¢'(z)| in D that is the function f is locally
univalent and sense-preserving in . Moreover, if 21, 2o € D and for some ¢ (0 < ¢ < 1), 21 #
qz2. Then for that ¢,

k

Z QZ2

=1

Ea

Zk qu
qZQ

Z Wzt < (K], (K=2,3,...).

Hence, for that value of ¢, from (16), we have
|f(z1) = flaz2)| = [h(z1) = h(qz2)| — |g9(z1) — 9(qz2)]

2 |71~ qz2 — Zak (gz2)" bi(2F — (g22)%)

> |21 — gz <1Z|
- (1 = > [Hlglae] - Z[k]qu) >0

k=2 k=2

ng)k

QZQ '

which proves that f is univalent in . This proves the result (i). To prove result (ii), it
needs to show that the function f satisfy the condition (8). Consider for f = h + g, where
h and g of the form (2) and for |z| =r (0 <r < 1),

DI f(2) = DI f(2)] — |BDIH f(2) — ADI f(2)]
= D (K™ (kg — Darz® — (=1)" > " ([klg)" ([k]q + 1)br2F
k=2 k=2
z+z |y — A)agz"
k=2

nz +A)bkz’f
=2
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<> (¥ o — Dlag|r” +Z Jq + 1)|bg|r*

k=2
(B — Ar+z ly — A)lag|r*
(o)
+ > (K] o + A)|bg|r”
k=2
< D (Cilax| + Dylbrl)r* =t — (B = A4)
k=2
<> (Chlag| + Dylok|)r*=" — (B — 4) <0
k=2
if the condition (13) holds, where Cj and Dy, are given, respectively, by (14) and (15). This
proves the condition (8). This completes the proof of Theorem 2.2. O

Remark 2.2. Equality in (13) occurs for the function
. B- B Ai
SEN> :
k=2 Ck
where Cy and Dy, are defined, respectively, by (14) and (15), —-B<A<B<1l,z€D and

>opes (low] + [Br]) = 1.

Theorem 2.3. Let f = h+g € H°, where h and g are given by (9). Then f € TS%(n,q, A, B),
if and only if the condition (13) holds.

Proof. If part is proved in Theorem 2.2. To prove only if part let f = h+g € TS%(n,q, A, B),
where h and g are given by (9). Then by the class condition (7) we have from (8) that for
any z € D,

Pia (k)" ([k)g = Dlax]z* + 575 ([k]g)" ([Klq + 1)|be[2*

(B = A)z = 325, ([Klg)"(B([k]g — Alar| 2k — 372, ([Klg) ™ (B([k]q + A) by, |z* <h
where for z =1 (0 <r < 1), we obtain
> na((k]g)" ([Klg — Dlar|r® = + 5772 5 ((k]q)" ([Klg + 1)lbx|r™ <1
(B = A) = 2o (k)" (B([Klg = Ala|rt =t = 3525 ([Klg)" (B([Klg + A)[bg|r*—
which proves for Cy and Dy, defined, respectively, by (14) and (15), that
> (Crlar| + Dilbe) "' < B—A (0<r<1). (17)
k=2

Let o be the sequence of partial sums of the series

oo

> (Clar] + Dilbgl) -

k=2
Then o}, is a non decreasing sequence and by (17) it is bounded above. Thus, as r — 17, it
is convergent and

Z [Cklar| + Dg|bi|] = khm o, < B— A
—00
k=2
This gives the condition (13).
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Remark 2.3. As ¢ — 17, the result of Theorem 2.3 coincides with the result [7, Theorem
2, p.4].

Taking B=¢ (0<g<l)and A=(1+¢a—-1 (0<a<1)in Theorem 2.3, we
get following result:

Corollary 2.2. Let f = h+g € H°, where h and g are given by (9). Then f € TH; (), if
and only if the condition

oo

> (K™ [([Klg — @) lax] + (g +a) [bell < 1 - (18)

k=2
holds, where [k], is the g-integer number k defined by (1).
Remark 2.4. Corollary 2.2 gives a necessary and sufficient condition for the functions

f=h+g¢e X where h and g are given by (9) to be g-starlike and g-convex of order « in
D if we put n = 0 and 1, respectively, in (18) and are given by

[([Elg — o) lak| + ([k]q + @) [br]] <1 — o (19)
k=2
and
> Ky [([klg — ) ax| + ([K]g + o) [bi]] < 1= . (20)
k=2

Theorem 2.4. The class TSY(n,q, A, B) is a convex and compact subclass of the class of
functions f = h +7g € H°, where h and g are of the form (9).
Proof. Let for t = 1,2, f; € TS%(n,q, A, B), and let for this n it is of the form

o0

2= larkl* + (1" > |buslz* (z€D). (21)

k=2 k=2
Then for 0 < p <1,
F(z) :+ =pfi(z) + (1 =p)fa(z)
o0 (o)
= 2= {plavel + (1 = p)lazsl} 2 + (=1)" Y _{plorl + (1 = p)lbzsl} 2*
k=2 k=2
and by Theorem 2.3, we get for C, and Dy defined by (14), that

oo

[Cr {plar k| + (1 = p)lagk|} + Dy {plbr ] + (1 - p)

]

k=2
=p Y {Cklar |+ Dilbrel} + (1= p) > _{Cklag| + Dilba x|}
k=2 P

<p(B—A)+(1—p)(B—A)=B—A

This proves that the function F € TS%(n,q, A, B). Hence, the class TS%(n,q, A, B) is
convex. On the other hand, if we consider a sequence of functions f; € TS%(n,q, 4, B),
t e N={1,2,3,...} of the form (21), then by Theorem 2.3, we get for Cj, and Dy, defined by
(14),

Z{Ck‘at’ﬂ + Dglbk|} < B — A. (22)
k=2
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Hence, for |z| <r (0 <7 < 1),

A< Dl + Pl
k=2
1 (o)
ST R By = (5 AT 2 Cklessl + eyt
B—A ,
<r-+

(@) {2l 0+ B)— (1 +A)}

Similarly, we get for |z] <r (0 <7 < 1),

B-A 5
= LG+ B - G+ A

Therefore, class TS (n,q, A, B) is locally uniformly bounded. Let f = h + g, where h and
g are given by (9). If we assume that f; — f, then we conclude that |a; x| — |ax| and
|be k| = |bg| as t — oo for any k=2,3,... . Hence, from (22), we get

o0
Z{Cklak‘ + Dilbi|} < B—-A
k=2
which proves that f € T5%(n, g, A, B) and therefore the class TSY (n, g, A, B) is closed. This
proves the compactness of the class TS%(n, q, 4, B). O
Corollary 2.3. Let f € T5%(n,q, A, B). Then for |z| =71 (r < 1),
L * < f() <t L :
r— r z T re.
([2lg)™{[2l,(1 + B) = (1 + A)} (2l ™{[2](1+ B) = (1 + A)}

Furthermore,

B—-A
(2]g)™{[2]1+B) — (1 + A)}} C f(D).

The minimum of all values of the radius r € (0,1) for functions f € T5%(n,q, A, B)
such that @ € J(;(a) is called the radius of g-starlikeness of order o and is denoted by
r?f(’;(a)(‘IS?I(nv q, Av B))

In the following theorem we obtain the radius of g-starlikeness of order « for functions
f€T58%(n,q, A, B).

Theorem 2.5. Let 0 < o < 1 and Cy, Dy, are defined, respectively, by (14), (15). Then
1

{we(C:|w|<1—

. l—«a . Ck Dk F=T
@S ) = ot [ = min {2 2T e

where [k], is the g-integer number k defined by (1).
Proof. Let f =h+g € TS%(n,q, A, B), where h and g are given by (9). Then by Theorem

2.3, we have
[ Ck Dy,
b <1
> {5 glon+ g} <1

where Cy and Dy are defined, respectively, by (14) and (15). Let ro be the radius of ¢-
starlikeness of order av. Then £(r02) ¢ 3G, () if and only if from (19) that

T0

> (Kl — )lax| + (kg + a)lbel}rg ' <1 -«
k=2
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whichistrueifMéC < Ck (k=2,3,...) and %r(ﬁ_lg;ﬁq (k=2,3,...)

or if )
Dy, FoT
k=2.3,...).
os il g o)) !
It follows that the radius rg¢:( (‘TSH (n q, A , B)) is given by (23). O

Similarly, we may find the radius of g-convexity of order « for functions f € TS%(n,q,
A, B) which is as below:

Theorem 2.6. Let 0 < a < 1 and Cy and Dy are defined, respectively, by (14) and (15).
Then

. - _f C D 7"
race(a) (TSH(n,q, A, B)) = 1nf {(BlA)[k] min { i, k_ o T, —T—a H , (24)

where [k], is the g-integer number k defined by (1).
Theorem 2.7. Let f=h+7 be of the form (9). Then f € TS%(n,q, A, B) if and only if

z) = Z [wihi(2) + yrgr(2)], (25)
=1
where k
M) =2 i) =z 2 8H g1(2) = ngule) = 24 ()" DAk k=a3,
k k
Ttk 20, 11 =1-Y Tk — Y Uk (26)
= =1

In particular the points {hy} and {gr} are called the extreme points of the closed convex hull
of the class TS%(n,q, A, B) denoted by clcoTS%(n,q, A, B).

Proof. Let f be given by (25). Then from (26), it is of the form

o0

—Z—Zka A (—U"Zka_
k=2

which by Theorem 2.3 proves that f € ‘J'S% (n,q, A, B), since for this function

zIc

—A B-A >
Z <C'kl"k + Drye—p, ) =(B-A4)) (zr+uyk)
k=2 k k=2

= (B- )(1f:cl—y1)<B A.
Conversely, let f = h+g € TS%(n,q, A, B) be of the form (9). Set x) = 523

BDjA b
Then on using (26), we obtain

FE) = 2= a2 (—)m Y el 3 —z—zkaCkA Zyk

k=2 k=2

2= wp{z—hi(2)} + Zyk {9k(2) — 2}
k=2 k=2

[1 — Z (xr+yr)| 2+ Z {@khi(2) + yrgr(2)}

k=2 k=2
which is of the form (25). This proofs Theorem 2.7. O

Yk =
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Corollary 2.4. Let f € T5%(n,q, A, B) be of the form (9). Then

B4 0 < B4

lak| < , k=2,3,4,.., (27)

where Cy, and Dy, are defined, respectively, by (14) and (15). Equality in the inequalities
(27) occurs for the extremal functions hg(2) and gx(2) given in (26) for k=2,3,4,...
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