
U.P.B. Sci. Bull., Series C, Vol. 86, Iss. 4, 2024 ISSN 2286-3540

A CASE STUDY ON DBMS STABILITY PERFORMANCE

EVALUATION

Daniel-Călin POPEANGĂ1, Mariana-Ionela MOCANU2, Alexandru BOICEA3,

Florin RĂDULESCU4, Sorin-Nicolae CIOLOFAN5

The actual Database Management Systems (DBMS) contain significant

technologies and elaborate mechanisms that sustain a high level of processing

capacities and reduced response times, among multiple possibilities of high amount

of data storage. Our present study is focused on another important indicator of a

DBMS good performance, the stability during normal operation, as a part of a

methodology we developed to evaluate relational DBMS’s stability performance

during system runtime. We run over 15.900.000 single queries on the tested database,

to analyze how the system performs in terms of stability and determine the optimal

workload of a tested system for a most stable answer. The results of the studied phase

can provide important information for a running system database administrator, in

terms of performance stability.

Keywords: database, DBMS, stability, query, performance, evaluation, runtime

1. Introduction

The DBMS domain significantly evolved, in the last decades, proportionally

with the technology evolution [1]. The databases vendors continuously improved

their capacities to manage the permanent requirement to increase the data volumes

of storage capabilities. The database and DBMS have become an integral part of

every kind of work, whether in managing business-related data or managing our

household accounts [2]. This evolution generated a natural need to evaluate the

different DBMS performances on multiple levels, starting from the elementary

indexes such as query response time and the query response cost [3], evolving to

the new areas, such as cloud computing and NoSQL databases performances.

1 Assist., Computer Science Dept., National University of Science and Technology

POLITEHNICA of Bucharest, Romania, daniel.popeanga@upb.ro
2 Prof., Computer Science Dept., National University of Science and Technology POLITEHNICA

of Bucharest, Romania, mariana.mocanu@upb.ro
3 Prof., Computer Science Dept., National University of Science and Technology POLITEHNICA

of Bucharest, Romania, alexandru.boicea@upb.ro
4 Prof., Computer Science Dept., National University of Science and Technology POLITEHNICA

of Bucharest, Romania, florin.radulescu@upb.ro
5 Prof., Computer Science Dept., National University of Science and Technology POLITEHNICA

of Bucharest, Romania, sorin.ciolofan@upb.ro

mailto:daniel.popeanga@upb.ro
mailto:mariana.mocanu@upb.ro
mailto:alexandru.boicea@upb.ro
mailto:florin.radulescu@upb.ro
mailto:sorin.ciolofan@upb.ro

142 Daniel Popeangă, Mariana Mocanu, Alexandru Boicea, Florin Rădulescu, Sorin Ciolofan

In our previous research activities, we’ve analyzed the DBMS performance

in various areas of interest, starting from the influence brought by the transaction

execution plan in system performances [4], continuing with various techniques of

query optimization [3] and the general framework of database performance

evaluation stated by the Transaction Performance Council [5], [9], [10]. The

continuous effort on DBMS performance evaluation provided some significant

answers in a comparison of different types of database systems, such as Oracle,

Microsoft SQL Server, MySQL.

Our studies on the TPC benchmarking systems evolved into multiple

directions, evaluating various types of DBMS performances [6], [11], producing

performance indexes used to make a comparison between different systems. These

indexes provide significant and transparent comparison between different

significant DBMS, expressing both the transaction performance and the average

cost per transaction comparison.

Another main goal of our DBMS performance evaluation efforts was

dedicated to a comparison between different database systems performances and

attributes, including comparison between No-SQL and SQL [4].

In our current studies, we proposed a methodology, called C-SGBD, to

analyze the DBMS performance in a different area of interest: the stability of a

relational database system, during a normal runtime execution of the database

server [8]. C-SGBD is an evaluation methodology composed by the evaluation

method and experimental algorithms, involving column-based text fetching

procedures, word extraction, term weight calculation, multiple queries posed to the

DBMS.

This paper presents the experimental activity involved in the database

querying phase of the stability evaluation procedure. Our proposed goals is to reach

a conclusion, based on the experimental results, related to the number of queries

that must be run on the database within the methodology in order to reach a stable

performance.

2. C-SGBD Methodology

C-SGBD contains a stability performance evaluation method for a real

runtime DBMS. It is based on a database populated with real records, generated in

a normal runtime evolution of a real website/on-line application [8]. It is mostly

dedicated to analyzing the performance stability of on-line systems that provide

public hosting and database services. The performance analysis takes into

consideration the influence of the specific moment when the performance was

recorded to the measured values. The method consists of five main phases: `

1. Identifying the target tables from the system database tables that contain the

main text records of the system (ST - Selected Tables)

A case study on DBMS stability performance evaluation 143

2. Words extraction from text columns of the ST and weight calculus for every

distinct word. The word weight counts the number of the word appearances

within the text columns in the ST.

3. Multiple sets of database queries, each of one consisting of N queries (Queries

Set - QS) of an equivalent of medium word search weight, are posed to the

database, during the system normal operation. The total response time for every

run set is registered.

4. A quantitative analysis is conducted on the influence of the test runtime moment

of the day to the recorded response time of every QS. Several time slots are

defined as references within a complete day. A first DBMS performance

index is obtained, based on the time slots variations applied to the recorded

response time of QS.

5. The global stability index (SI – Stability Index) is obtained based on the time

slots medium values of the QS results.

C-SGBD produces two different indexes, both of them containing the contribution

of the different time slot influence posed to the QS results:

➢ The DBMS weighed medium response time for a query. The lower the

response time is, the higher is the DBMS performance

➢ SI, as an indicator for DBMS performance stability, Also, the lower the

stability index is, the higher is the DBMS performance, indicating an

increase in terms of system performance of stability.

Two different DBMS can be compared basing this methodology by both indexes

3. Experiment on the influence of the number of QS on the time slots

values

3.1 The experimental base

In this paper, we will present an experiment run to analyze the system

response to multiple different number of queries, to obtain the optimal number of

the QS that must be run in the third phase, reaching, as much as possible, stable and

consistent indexes in the C-SGBD methodology. In the proposed methodology, the

minimum number of QS generated and executed by the DBMS is set to 200 queries

and this number will be increased, gradually, and the influence of the number of

QS in the performance stability will be evaluated in order to obtain the minimum

number Noptimal of queries that can provide a consistent performance to the third

phase of C-SGBD (Noptimal >=200).

The queries must be run at different moments, as much as possible in a

evenly distributed way of daytime. An individual QS consists in N queries of

different types:

144 Daniel Popeangă, Mariana Mocanu, Alexandru Boicea, Florin Rădulescu, Sorin Ciolofan

➢ SELECTS (e.g.: "SELECT BOOK_ID, TITLE, DESCRIPTION FROM

BOOKS WHERE DESCRIPTION LIKE '%$cuv_crt%'") on the ST tables, that

emulate normal user search queries on the portal text tables. The SELECT

operations simulates normal searches that regular users are posing to the system,

using the application search tools. The search tools are generally used to retrieve

information from the portal on the users’ topics of interest.

➢ AGGREGATE queries (e. g.: "SELECT COUNT (*) FROM

OFFICIAL_JOURNAL WHERE JOURNAL_CONTENT LIKE '%$cuv_crt%'")

such as SUM and COUNT operations, also regularly used in a normal on-line

application operation. These requests simulate regular application information

provided by the application to the user as feedback to different requests (e.g no of

items retrieved by a search, no of elements found in a search, sum of selected item

prices).

➢ UNION operations (e.g.: "SELECT TITLE, BOOK_ID FROM BOOKS

WHERE DESCRIPTION LIKE %$cuv_crt%' UNION SELECT TITLE,

NEWS_ID FROM NEWS WHERE NEWS_CONTENT LIKE '%$cuv_crt%'“)

between different types of data sources, that integrate multiples records from

various sources within one result.

3.2 The experimental procedure

The experimental procedure consists in running multiple QS on the database

system and measuring the response times recorded for finalizing the complete sets

of queries. The number of queries N is increased from 200 to higher values and the

response times are analyzed within the same number of queries recorded.

The experiment consists of measuring the total execution time for multiple

operations made on database, including random choices of the exact data tables on

every QS run. The C-SGBD procedure requests that every query should be

generated based on a specific search complexity within the column texts of the text

tables, named word weight.

In the analyzed system, on the Romanian running legal website DreptOnline.ro,

the identified data tables are:

NEWS (2,381,679 individual selection terms), QUESTIONS (51,803

individual selection terms), BOOKS (113,178 individual selection terms),

JOURNAL (3,837,220 individual selection terms), ANSWERS (8,128,808

individual selection terms) and the generated terms weight table, called WEIGHTS

Every QS is generated according to the following procedure:

➢ The number of queries N is set. The number of SELECT operations is set, the

number of GROUP BY operations is set, the number of UNION operations is

set (e.g. 45% +45%+10%)

➢ The timer is started T1

A case study on DBMS stability performance evaluation 145

➢ For every step I from 1 to N

o The average word weight is selected based on the data generated by the

previous phases of C-SGBD

o The text table is randomly selected

o The query is generated based on:

▪ The selected text table

▪ The type of operation

▪ The selected word within the average calculated word weight

o The query is run

➢ The timer is stopped, T2 and the QS total execution time is calculated: ET=T2-

T1

➢ The result is recorded

The QS generating procedure, and the ET calculation are described in Fig. 1.

Fig. 1: Generating A Query Set, and the ET recording

For every significant value of N (starting from 200) the experiment consists

of over NoIt (number of iterations) =1000 set of queries, in order to obtain a

significant behavior of the system.

START

STOP

Set value for N

Start timer T1

Stop timer T2

ET=T2-T1

SELECT WORD

WEIGHT

SELECT THE

TABLE AND QUERY

TYPE

FOR I = 1..N

RUN QUERY ON

TABLE

146 Daniel Popeangă, Mariana Mocanu, Alexandru Boicea, Florin Rădulescu, Sorin Ciolofan

The total number of single queries run can be obtained from the formula:

𝑻𝑸 = 𝑵𝒐𝑰𝒕 ∗ ∑ 𝑵𝟏𝟖𝟎𝟎
𝑵=𝟐𝟎𝟎 , 𝒘𝒉𝒆𝒓𝒆 𝑵𝒐𝑰𝒕 ≥ 𝟏𝟎𝟎𝟎 (1)

Using formula (1), TQ = 15.900.000 individual queries run on the server.

Therefore, we run over 15.900.000 single queries on the tested database to obtain a

conclusive behavior of the system.

Every individual query is run on the DBMS using a PHP application code,

exemplified in Fig. 2.

Fig. 2: PHP code example for individual query execution

3.3 The Server details

C-SGBD methodology is designed to measure the stability performances for a real

operating DBMS during its normal runtime evolution and among the normal users

tasks overload. The server used for the main operations was running with the

parameters described in Table 1.

Table 1

cPanel Version 110.0 (build 31)

Apache Version 2.4.58

MySQL Version 10.3.27-MariaDB

Architecture x86_64

Operating System Linux

Kernel Version 4.18.0-348.23.1.lve.el7h.x86_64

Perl Version 5.16.3

A case study on DBMS stability performance evaluation 147

4. Interpreting the results

The result for every QS is recorded into the RESULTS table, having the

structure presented in Fig. 3.

Fig. 3: RESULTS table structure for the third Phase of C-SGBD

The results are analyzed within the same amount of the transactions (N) in order to

obtain the global variation of the results and the system stability for every recorded

value for N. For this purpose, we’ve calculated the following indicators:

➢ The maximum time recorded for running of 100 queries [in seconds]

➢ The minimum time recorded for running of 100 queries [in seconds]

➢ The average time recorded for running of 100 queries [in seconds]

➢ Standard deviation for the QS

The obtained results are presented in Table 2:

 Table 2

C-SGBD Algorithm - Phase no 3

No of

queries

(set)

Min Value (sec

for 100Q)

Max Value

(sec for

100Q)

Average Value (sec

for 100Q)

Standard

Deviation

200 3.94462657 5.853013515 4.824274908 0.417957448

300 4.177803675 5.041297277 4.67937941 0.248076217

400 4.254061222 5.427081585 4.668644978 0.271440501

500 4.466841888 5.216475677 4.813941852 0.213201031

600 4.074904442 5.034558932 4.68699095 0.276048424

700 4.26140104 5.063520704 4.705557115 0.183611351

800 4.378765106 4.840855122 4.626365594 0.151185646

900 4.269561768 4.865469615 4.635016069 0.157424179

1000 4.479382324 5.146421051 4.710367508 0.17449132

1200 4.437171618 4.848783493 4.65450355 0.148543125

1300 4.485152318 4.777329372 4.656403121 0.101873729

148 Daniel Popeangă, Mariana Mocanu, Alexandru Boicea, Florin Rădulescu, Sorin Ciolofan

1400 4.426936558 4.926513672 4.630674022 0.148233259

1500 4.282950846 4.862237549 4.636847632 0.128704877

1600 4.380867481 4.947503567 4.651077075 0.144093498

1700 4.431859634 4.929005342 4.671387593 0.121021237

1800 4.486450195 5.014217801 4.654694206 0.133319803

Analyzing the chart data, a significant decrease of the standard deviation

can be seen from the initial queries series of N starting from 200, to a lowest value

of 0.101873729, reached for N=1300, followed by a significant increase of this

value again.

It is important to evaluate the maximum decrease of the standard deviation

and the point from where its values start to increase again consistently.

Fig 4: Standard deviation of the total DBMS response time for N queries

Considering C-SGBD methodology is searching for stability indicators of

the system’s response and behavior, the N value corresponding to the lowest

standard deviation is indicating the most stable performances of the DBMS.

We can, therefore, conclude that, for N=1300 queries, the system response

is optimal, from the response time stability point of view. For lower values of N,

the system response was significantly lower as performance stability. For higher

values of N, the system response was significantly more stable, but the stability

performance followed a slow decrease in the standard deviation levels. The

identified value is very important, because C-SGBD can use this result in the

subsequent phases.

0

0.1

0.2

0.3

0.4

0.5

No of Queries

St
d

ev
 (

se
c)

Standard Deviation (sec for 100 Q)

Standard Deviation

A case study on DBMS stability performance evaluation 149

5. Conclusions

In this paper, we’ve presented the experimental activity involved in the

database querying phase of the stability evaluation procedure of the third phase of

C-SGBD [8]. The experiment presented consisted in generating multiple sets of N

queries, and analyzing the DBMS behavior and stability.

Over 15 million single queries were run to a real runtime operational

DBMS, in order to register the query response time and to analyze the way the

system performs in terms of stability. We’ve obtained a value for N=1300 queries

(the number of QS) that reached the optimal value for stability, in terms of standard

deviation of the response times within the same range of N.

The result will permit us to use this value as a proven indicator in the C-

SGBD methodology research activities that will permit us obtain the stability

indicator for a DBMS.

The study provides a different approach of the DBMS performance

evaluation and can be useful for a runtime system administrator, in the process of

assuring a certain level of system stability. The studied procedure, as part of the C-

SGBD methodology, can provide a significant starting point in the effort of

elaborating adapted benchmarking techniques for a runtime system using a

relational DBMS.

An intuitive direction in the future research in this domain can analyze the

dependency between the number of the queries included in a set (N) and the DBMS

capacity and runtime workload. The procedure can easily be adapted and evolved

to detect the proper text columns within a running database to perform the described

tests and to provide an automated result.

R E F E R E N C E S

[1] Abdullah, T. and Resul, K., “A performance evaluation of in-memory databases”, Journal of

King Saud University - Computer and Information Sciences, 2017, pp. 520-525

[2] Kristi L. Berg, Tom Seymour, Richa Goel, “History Of Databases“, International Journal of

Management & Information Systems — First Quarter 2013 Volume 17, Number 1

[3] Petrescu, M.; Popeangă, D.; Vasilescu R., Performance Evaluation in Databases. Analyses and

Experiments, Buletinul Științific din Timișoara, Transactions on Automatic Control and

Computer Science, 4th International Conference on Technical Informatics CONTI’2000,

Timișoara 2000

[4] Petrescu, M., Popeangă, D., Vasilescu, R, “The TPC-C Database Performance Benchmarking

System, Analysis and Experiments”, CSCS-13, June 2001, București

[5] Petrescu, M., Popeangă, D., “Relation Between Query Optimization and Execution Plan in

Relational Databases”, CSCS-14, July 2003, Bucuresti

[6] Raab, F., Kohler and W., Shah A. “Overview of the TPC-C Benchmark. The Order-Entry

Benchmark“, TPC, [Retrieved September 10, 2020] http://www.tpc.org/tpcc/detail5.asp

http://www.tpc.org/tpcc/detail5.asp

150 Daniel Popeangă, Mariana Mocanu, Alexandru Boicea, Florin Rădulescu, Sorin Ciolofan

[7] Boicea, A., Rădulescu, F. and Agapin, L., "MongoDB vs Oracle - Database Comparison", Third

International Conference on Emerging Intelligent Data and Web Technologies, DOI:

10.1109/EIDWT.2012.32, pp. 330-335

[8] Popeangă, D, Boicea A., Rădulescu F., Rădulescu I., and Petrescu M., S., “C-SGBD – A

Procedure for DBMS Performance Stability Evaluation”, Proceedings of the 36th

International Business Information Management Association (IBIMA), ISBN: 978-0-

9998551-5-7, 4-5 November 2020, Granada, Spain

[9] TPC-C Most Recently Published Results, Version Results As of 18-Feb-2023 at 12:21 PM,

https://www.tpc.org/tpcc/results/tpcc_last_ten_results5.asp

[10] TPC Express Big Bench, TPCx-BB, Standard Specification,

https://www.tpc.org/tpc_documents_current_versions/pdf/tpcx-bb_v1.6.0.pdf

[11] TPC-E, https://www.tpc.org/tpce/ accessed February 2023

