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ON CERTAIN CLASS OF UNIVALENT FUNCTIONS WITH CONIC
DOMAINS INVOLVING
SOKOL - NUNOKAWA CLASS

S. Sivasubramanian®, M. Govindaraj?, K. Piejko®

The aim of this investigation is to introduce a new class of analytic uni-
valent functions k — MN that are connected to domains bounded by conic sections and
obtain certain differential subordination results involving k — MN. Certain comparisons
of the differential subordination is being analyzed with the classical results existing in
the literature. Apart from obtaining other results related to the class k — MN, we also
obtain a containment relation between the class k — MN and the class of starlike func-
tions under certain condition. A slight improvement of a recent work of On some class
of convez functions, C. R. Math. Acad. Sci. Paris, 353 (2015), 427-431, by Sokdt and
Nunokawa [19] is also obtained.
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1. Introduction and Definitions

Let A denote the class of all functions f of the form
o)
f(z):z+2anz”, (1)
n=2

which are analytic in the open unit disk U = {z : z € C and |z| < 1}. Let 8 denote the
subclass of A consisting of univalent functions. A function f € § is said to be convex if
and only if R (2f"(z)/f'(z)) > —1 for z € U and a function f € 8 is said to be starlike if
and only if R (zf'(z)/f(z)) > 0 for z € U. The class of all convex and starlike functions are
denoted by X and 8* respectively. Let P denote the class of analytic functions of the form
p(2) = 1+ p1z +paz? + -+ such that R(p(z)) > 0 in U. In 1999, Kanas and Wisniowska [7]
(and [8]) introduced the class of k-uniformly convex functions, denoted by k-UCV and the
class of k-starlike functions, denoted by k-8T respectively. The analytic conditions of these
classes are the following (see [6],[7],[8] for details).
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For 0 < k < o0,

k—UGVz{fES:&%(l—kz]{;;S)) >k Z]{,/;z) , zeIU} 2)
" k—S‘I:{fGS:?R(Zj:ES)>>kfoéz)—l, zeU}. (3)

Note that for £ = 1, we get the well known classes of UCV and &, studied by Goodman
[3],[4] and Renning [15], while for k& = 0, we get defined above families of convex X and
starlike 8* functions, respectively.

It is easy to see that the conditions (2) and (3) may be rewritten into the form

R(p(2)) > klp(z) = 1| (2 €U), (4)
where p(z) =1+ zf"(2)/f'(2) or p(z) = zf'(2)/ f(#) is a function from the class P.
Also, it is easy to see that p(U) is the conic domain

Q={weC: Nw) > klw—-1]} (5)
or
Qk:{w:u+iv:u>k\/m}, (6)
where 0 < k < co. Note that €y is such that 1 € Q and 09 is a curve defined by
oY ={w=u+iv:v* =k*(u—1)> +k*v°}. (7)

Elementary computations show that €2 represents a conic section symmetric about the real

axis. It follows that the domain € is bounded by an ellipse for & > 1, by a parabola for

k =1 and by a hyperbola if 0 < k& < 1. Finally, for k = 0, € is the right half plane.
Recently Sokdt and Nunokawa [19] defined an interesting new class of functions MN

defined by
MN_{fGS:é)‘E(1+ZJJ:,/;S)>> ZJJ:(IS)J', zeU}. (8)

It is clear that MN C XK. Motivated by the work [19] (related works are also done in
[2],[5],[13],[14],[16],[17],[18]) and the conic domain defined by Kanas and Wisniowska [7],
one may construct a new class k — MN defined by

k—MN:{fGS:%(l—s—ZJ{,/;ij))>kfoéfj) : zeU}. 9)

A function f is subordinate to the function g, written as f < g, provided that there is
an analytic function w(z) defined on U with w(0) = 0 and |w(z)| < 1 such that f(z) = glw(z)]
for z € U. In particular, if the function ¢ is univalent in U then f < ¢ is equivalent to
f(0) = g(0) and f(U) C ¢g(U). Denoting by px the conformal mapping that maps U onto
Qp, we obtain the family of conformal mappings depending on & (k € [0,00)). Therefore,

1
for each fixed k, the family k£ — UCYV is the family of all f € 8§ for which 1+ z;’(ij) =< pi(2)
2f'(2)
(2)

The idea of subordination was used for defining many of classes of functions studied

in geometric function theory. For obtaining the main result, we shall use the methods of

differential subordinations. The theory of differential subordinations were introduced by
Miller and Mocanu in [11] and [12].

-1

and k — 87 consists of all functions f € 8 such that < pr(2),z€U.
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The purpose of the present paper is to obtain interesting new results for the class
k — MN by using the method of differential subordination to improve a recent result ob-
tained in [19]. Finally, we compare our conclusions with the classical results in the univalent
function theory.

2. Main Results

Let us start with the following theorem to prove that the class K — MN is non empty.
In fact, the theorem will show that there are plenty of functions in the class k& — MN.

Theorem 2.1. A function
z

&) =1—0r (10)

1s in the class k — MN if and only if

1A] < 1% k> 0. (11)

Proof. If f is given by (10), then

R ) - () 12

" e A
zf'(z z
k -1 =k . 13
el Rl e "
We know that f € k — MN if and only if
Az 1+ Az
. 14
k’lAz <§R<1Az) (14)
It is suffices to study for |z| = 1. Setting |A| = r and Az = re'’ in (14), then
ret? 1+ re?
k - - . ].
‘1—7‘629 <m<1—rew> (15)
Following a computation,
1+ re? 1—r?
R . = . 16
(1—T€Z‘9> |1_,r.6z0|2 ( )
From (15) and (16), we get
kr 1—7?
, —— 17
|1—’)"6“9| — ‘1—7’67‘0|2 ( )
On simplification, we easily get
1—7r?
kr < - (18)

[1—2rcosf+ 122
The right-hand side of (18) is seen to have a minimum for # = 7 and this minimal value
is 1 —r. Hence, a necessary and sufficient condition for (18) is kr < 1—ror |4| =r < H—Lk
This completes the proof of Theorem 2.1. O

Corollary 2.1. The function f(z) = li belongs to the class k—MN if and only if k = 0.
—z

The following proposition follows directly from the definition.

Proposition 1. If ki > ko, then ki — MN C ko — MN.
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Next, we state a basic lemma and Theorems which are required prove our main results.

Lemma 2.1. [11] Let h be an analytic function on U except for at most one pole on U,
and univalent on U, p be an analytic function in U with p(0) = h(0) and p(z) # p(0), z € U.
If p is not subordinate to h, then there exist points zg € U, (o € OU and m > 1 for which

p(|2| < |20l) € h(U), p(20) = h(Co), 200 (20) = mloh'(Co)-

Theorem 2.2. [8] If f € 8*(«) for some o € [1/2,1], then

R (f(;)) >3 —120/ (19)
Theorem 2.3. [§] If§R( f’(z)) >« for some o € [1/2,1], then
5 (f(zz)) - 2a23+ L (20)

Theorem 2.4. Let k € [0,00). Also, let p be an analytic function in the unit disk such that
p(0)=1. If

PN )
% () + D)~ kipte) - 11> 0 (1)
then
po) < U2 ) (22)

where a > a(k), and a(k) is given by
1 1-2k\? 8 1-2k
k)= - - . 2
alk) =7 \/<1+k> TR <1+k> (23)

1
Proof. We may assume that a > 3’ since we have the condition,

R (p(z) + ZZ’;ES)) > 0 implies that at least R(p(z)) > 4. Suppose now, on the contrary, that
p A h. Then by Lemma 2.1 of Miller and Mocanu [11], there exist a zg € U, {y € U, {p # 1

and m > 1, such that

(1-a)?+a2

p(20) = a+iz, zp'(20) =my, where y < — 2i—a)

z,y € R.

Making use the above relations, we have

zop’ (20) _ 20) —
m<p<20>+p(zo)) klp(zo) — 1]

zﬂ‘ﬁ(a—kix—l— Y )—k‘a—l—l—im|

o +1x
amy
:a+7a2+x2—k (1—a)?2 422
PRY 2
<a- 2 (U-a)f+z — kv (1 —a)? + 22

- 21 —a) a2+ a?
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The function r(z) is even as regards xz. Now, we show that r(x) attains its maximum at
z = 0 when % < a < 1. Clearly,

a2a—1) k
(- +a22  Ji—apia?

r'(z) = -z

Equating ’/(x) = 0, one can easily see that /(z) = 0 if and only if z = 0. For o > 3, the
expression (2 — 1) is nonnegative. Therefore, we have

-1
"0) = ———[2a — 1 k 0.
(0) = s (20 = 1)+ ko <
Therefore, we have 7(z) has a maximum at z = 0. Hence,

1—
r(z) <r(0)=a - % —k(1-a)=0, (24)

@
for a = a(k), as given by (23), which contradicts the assumption. This essentially completes
the proof of Theorem 2.4. O

Applying Theorem 2.4 we may formulate the following:

Theorem 2.5. If0 < k < oo, then k — MN C 8*(a), where 8*(«) is the class of starlike
functions of order a, o > a(k) and (k) is given by (23).

Proof. Let f € k — MN. Then, by (9)

zﬂwv 21'(2) ‘
RI1+ >k —-1|, zeU. 25
(1455 1) 25)
. zf'(2) s .
Setting p(z) = ) p(0) = 1, the above condition can be written as
R (10 + ) > k) -1 (26)
p(z)
or
ZP’(Z)>
R z)+ —klp(z) —1| > 0. 27
(o) + ZE) — kipte) -1 (27)
Now applying Theorem 2.4, we obtain the assertion as stated in Theorem 2.5. O

In view of Theorem 2.2 and Theorem 2.3, we compare the classical results concerning
the right half plane with these obtained for domains bounded by conic sections. This com-
parison shows that such a substitution provides ”a step to the right”. For instance classical

results give
R (1 + ZJ{,/;(ZZ))) >0= R (z}cgg)) > % = R (fiz)> > %

whereas, Theorem 2.2 and Theorem 2.4, gives us that

(1o F) A o+ () o (12

That is,

fek—MN:HR(ZJ{;S)) >a:>8%(f(;)) >,
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1 1—2k\?2 8 12k
h = alk) == _
where a = a(k) = 7 \/<1+k> TR <1+k> and

_ 1

= 3—2a’
Setting k = 1, we obtain from the above the following:
zf”(Z)) 2f'(z) ’ (Zf’(Z)) 1
R(1+ > -1l = ® > — [V1T+1| =~ 0.64
( f'(z) f(2) f(2) 8 [ }
f (Z)) 4
= R > ~ 0.58.
< z 11 —17

That is,

fEMNééﬁ(ZJ{ES)> > % [mﬂ} :»é}%(fiz)) > 11_4\/ﬁz0.58.

The above observation in (28) may stated as below.

Corollary 2.2. If f € MN then MN C 8*(«yg), where a« = 0.64038 - - - .

It is to be remarked here that Kanas [8] has obtained a similar improvement of order

3
of starlikeness for uniformly convex functions from 1= 0.75 to 0.705 by applying the method

of differential subordination techniques for domains involving conic section. Our corollary
2.2 is for the class MN. Although it is a slight improvement, the technique adopted by us

is different. Moreover, we have also given one more implication in (28) relating to the class
MN, which is a slight improvement of the recent result obtained by Sokét and

Nunokawa [19] as the order of starlikeness is slightly increased.

Remark 2.1. Observe that in the case, & = 0, we recover the classical sharp result that

each convex function is starlike at least of order 1/2.

Furthermore, we know that,

3‘:‘:<l+ Zﬁéi?) >0:>§R( f’(z)) >;:>§R<f(;)) > %,

whereas, Theorem 2.4 and Theorem 2.3, gives us

9%( 702) + fﬁ(Z)) >k’\/m—1’=>§}%(\/m)>a:>8?<f(j)> >0,

2f'(2)

1 1—2k\? 8 1— 2k 202 +1
Whereafa(k)—z \/<1+k> +(1+k)<1+k> and § = 7

Setting k = 1, we obtain from the above the following:

&e( f'(z)+zf”(z)>>‘\/m—1‘ = R f’(z))>%[\/ﬁ+1]m0.64

f(z)
f(z) 4
= §R< . )>11_ﬁN0'60'
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For k = 0, we get one more classical result as given below
2f"(z ( ; ) 1 )\ 1
<\/ +2f’ >0 = R(Vf'(2) >2:>§R )~ 5
Setting p(z) = f(z)/zandp(z) = f'(z) , Theorem 2.4 reduces to the following corol-

laries:

Corollary 2.3. Let 0 < k < co. Let f € A is analytic in U. Then

%(Zﬁi)) +M 1> >k’f<;) 1 :%(f(;)) > a(k). (29)
Corollary 2.4. Let 0 < k < co. Let f € A is analytic in U. Then
R (L 70) > 1) - 1= R () > ath) (30)

1)

For k=1 and p(z) =
z

in Theorem 2.4, we obtain the following corollary

Corollary 2.5.

()2

For k = 1,p(z) = f'(2) in Theorem 2.4, we obtain the following corollary

Corollary 2.6.

Zf//(z) , , 7 ", 1
§’“f(f,(z) +f(2))>|f(z) =R(f'(2)> 5. (32)
From (9) we obtain
R <P<Z> + Zﬁ(g) > > klp(z) = 1| >k R(1-p(2) (z€U) (33)
and hence
R ( () + 2 ) ) > o (34)
P (1+k)p(2) E+1

The above inequality is equivalent to the familiar Briot-Bouquet differential subordi-
nation of the form,

2p'(2) tt (1+k) :
p(z)+ (14 k)p(z) 1—z
In view of Theorem 3.3d, ([11], p.109), we obtain

p(e) < a(2) = L (3)

2y (1)
~(om (s y)) — e, (36)

A simple computation yields
B o 8, Btk » 8G+REHR) 5

ge(2) = (1 — 2)(¥%) <1+3(1+k) M isE 2 HOEL 2+ ) (37)

In order to prove the results involving coefficient inequalities, we need the following lemmas.
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Lemma 2.2. [1] If p(z) = 1+ p1z + p22® + -+ € P, then for each k > 1, |px| <2, and

2 2
b1 |p1|
—— <2 - —. 38
‘Pz 5= B (38)
Lemma 2.3. [10] If q(2) = 1 + c12 + c22® + - -+ is an analytic function with positive real
part in U, then
lco —vei| < 2max{1;|2v — 1|} (39)

In particular, if v is a real number, then

—4v+2 if v <0,

lco —vc?| < {2 if 0<wv <1,
4y —2 if v>1.
1
When v < 0 or v > 1, the equality in (39) holds true if and only if q(z) = T % or one of
—z
1 2
its rotations. If 0 < v < 1, then the equality holds true if and only if q(z) = % or one
—z

of its rotations. If v =0, then the equality holds true if and only if

1 A\ 1+z 1 A\1-—-=z
(L. A A <A<
a(z) (2+2>1—z+(2 2>1+z (0sArs)

or one of its rotations, while for v = 1, equality holds if and only if q(z) is a reciprocal of
one of the functions such that the equality holds true in the case when v = 0.

Theorem 2.6. If f(z) € k — MN, then we have
2f'(2)
f(2)

where gi(z) is as given by (37).

<) = —= (:€D) (40)

Theorem 2.7. Let 0 < k < 0o and let f, given by (1), be in the class k — MN. Then
4

< — 41
and
29+ 9k
—_ for k < AT,
Jag| < { 18R i (42)
- > 17
3(1+k) Jor k=3
For any complex number p
2 13 + 9% 4 8
—pal| < ———— 1; - . 4
s = nazl < 3375 max{ 120+ k) 3(1+k) +3(1+k)’} (43)

Proof. If f € k — MN, then exist a Schwarz function w(z) is analytic in U, with w(0) = 0
and |w(z)| < 1in U, then

= qr(w(2)). (44)
Define the function ¢;(z) is given by

b1(2) = 1+w(z)

=t =1 SR 4
) + ez + ez + (45)



On certain class of univalent functions with conic domains involving Sokoét - Nunokawa class 131

Since w(z) is a Schwarz function, we see that R(¢1(z)) > 0 and ¢1(0) = 1. Define the
function p(z) is given by

2f'(2)

p(z) = B =1+ agz + (2a3 — a3)2* + (3a4 + a3 — 3azas)z> + . .. (46)
In view of above equations (44), (45) and (46), we have
¢1(2) — 1)
= —_— . 47
P(2) = @ <¢1(Z) | (47)
Since
P1(z) — 1 1 C% 2 C? 3
o112 c1z+ | e 5 z+(C3+4 c1c9)z° + .
Therefore,
<¢1(Z) - 1) _
A\ —F~ 7] =
2 2 c 13+9k L] ,
14— — = (D)2 . 48
+3(1+k)clz+[3(1+k) (C2 2>+36(1+k)2cl e (48)
From (46) and (47), we get
2
= 49
az 3(1 +k)cl7 ( )
and
2 2 13 + 9%
%3 —ai=— [y D)4 2T 2 50
BTR2T 301k <C2 2 ) UETENAEA (50)
It is easily get
1[ 2 & 13+9k 4,
_1 _a . 51
575 {3(1+k) (62 2>+36(1+k)261+9(1+k:)261 (51)

Now applying the coefficient estimate |c| < 2 for k = 1,2,.. ., it is easily to get by Lemma
2.3,

4
ol < 51 = 3 (52)
and
1 2 |1 |? 13 + 9k 9 4 5
< = 2 — PP EE—— . 53
jasl = 3 {3(1+k) ( > ) Tearnzal Tograzal (53)
That is
2 13 + 9k 2 1 9
< - . 54
sl < 57 {72(1 TR ok 6+ k)] el (54)
This gives the bound for |as| is given by (42).
1
asz — ,LL(Z% = m [CQ - O'C%] . (55)
where
1 8u 4 134+ 9k
=—1 - - . 56
7 2[ T304k 301k 12(1+k)] (56)
This completes proof of the Theorem 2.7 by Lemma 2.3 . |

From Theorem 2.7, we get the following corollary.
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Corollary 2.7. Let 0 < k < oo and let f, given by (1), be in the class k — MN. Then, for
any real number

2949k 16p ifu<o
IB(L+R)? 91+ h)? =t
lag — pa3| < e if o1 < p < oo, (57)
29 + 9k 164 ,
_ >
SA+RE ot Re  THZo
where
904k (16 4 1340k
=732 \o(l+k) 3 91+k))
L9tk [ 16 4 13+9k
27732 \9(l+k) 3 90+k)/)

The result is sharp.

Theorem 2.8. Let 0 < k < oco. Also, let f(z) € k—MN. Then f(U) contains an open disk
of radius

3(1+k)
— 58
10 4 6k (58)
Proof. Let wg # 0 be a complex number such that f(z) # wy for z € U. Then
wo f(2) 1 2
= 2\ il e 59
f(2) wo — f(2) z+<a2+w0 o (59)
Since fi is univalent in U, so that
1
az + —| < 2. (60)
wo
Now using Theorem 2.7, we have
<24 —. 61
wo| + 3(1 + If) ( )
and hence ( )
3(1+k
> —. 62
ol 2 306k (62)
|

Since, f € 8, the inverse of f(z) has a Maclaurin expansion in a disk of radius at least
1, say
Fw)=f'w) =w+dw? +dsw® +---.
In an earlier investigation, Libera and Zlotkiewicz [9] obtained few earlier coefficients of

the inverse of a regular convex function f. Now, we obtain the first two early coefficient
estimates of the inverse when f € k — MN.

Theorem 2.9. Let f € k — MN and
F(w) :fil(w) :w+d2w2—|—d3w3+... .

Then A
< -



On certain class of univalent functions with conic domains involving Sokoét - Nunokawa class 133

and 27 + 15k
ds| < ———M—. 64
ds| < 18(1 + k)2 (64)
Proof. As F(f(2)) = z, we have,
d2 = —ag, d3 = 2&3 — as. (65)
From (49) and (51), we have
2
do= ——— 66
2T T30+ ) (66)
and ) .
4, 1] 2 e 1349 4,
S [ e . 67
91+k2T 6 {(1+kz) (CQ 2>+12(1+k)201+3(1+k)261 (67)
1 2 13 + 9k 1 )
= — . 68
30+ Mt [9(1 TR (4R e+ k)} “ (68)
Now applying Lemma 2.3, the proof of Theorem 2.9 is completed. O

Concluding remarks and observations

Very similar to the interesting classes MN defined by Sokét and Nunokawa [19], and

the class & — MN defined in this paper by the authors, one might think of the emerging
classes that appear in (29),(30), (31)and (32) .
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