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LONGTIME BEHAVIOR OF A NON-AUTONOMOUS BEAM
EQUATION

Yonghua REN,' Jianwen ZHANG?

A perturbed non-autonomous equation of hyperbolic type with the structural
damped terms, which arises from the vibration of a beam, is considered. By using a
two-parameter operator family and decomposing the analytic semigroup, we obtain
the compact kernel sections, which are the key ingredients to show the existence of

the global attractor in the space H; (Q)x L*(Q).
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1. Introduction

This paper studies the longtime asymptotic behavior of a perturbed non-
autonomous beam equation:

U, + AU+ AU, + U, —[a(t)+M (JQ|VU|2dX) +N(J, Vuvu,dx)]Au

=h(x,t), xeQ, t>r, reR", )
associated with the following initial and boundary value conditions:
UK )| o0 =AU, D)o =0, t27, (2)
u(x,7)=U,, (X) e H (Q), U, (Xx,7) =U, (X) € L’(Q), xe Q, 3)

where u=u(x,t) describes the transversal motion of a beam. x is the space
variable, and Eq.(1) is posed in an open bounded connected domain Q in R"(with
a sufficiently smooth boundary 6Q ). The parameters ¢ and 7 are nonnegative,
and A is the Laplacian inR". For the external force, we assume that h(x,t) is
periodic with respect to t and satisfies:
h(x,t) e L”(R; L*(Q)),
h'(x,t) € C,(R; L' () = C(R; L' (Q) N L (R; L' () .

As it is well known (see [1]), attractor is an important problem

studying the longtime asymptotic behavior of dynamical system. System (1)-(3)

describes the nonlinear transversal vibrated motion of an elastic beam. In this
paper we investigate the non-autonomous system (1)-(3) via the compact kernel
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sections of the corresponding family of processes {S,(t,z),s X}, in which X is a

two-parameter set.

Let us recall some investigation in this area. To the best of our
knowledge, the classical equations in hyperbolic system were presented by
Woinowsky as a new idea in the field of nonlinear analysis [2]. After that,
hyperbolic problem with the nonlinearity analogous with the system (1)-(3) has
drawn much attention. Recently, many classical results of the attractor have been
obtained. For the autonomous beam equations, Chueshov and Lasiecka in [3]
considered the existence and structure of the global attractor for dynamic von
Karman equations with a nonlinear boundary dissipation. If the axial force was
added, Yang in [4] and Kolbasin in [5] were concerned with the attractor of the
nonlinear wave equation arising in elastic waveguide model. When the attractor is
posed on unbounded domain, the case can be complex, which is mainly caused by
the existence of a Lyapunov functional. To solve this problem, we refer to [6-8]
for the detailed description of the growth exponent of f(x,u). In addition, it was

used to testify the existence of strong solutions and global attractors for the
suspension bridge equations in the stronger space under the condition that the
damped term is critical [9]. Finally, in the case of plate equations, the asymptotic
behavior of solutions with a localized damping and a critical exponent was studied
in [10-12].

Comparing with the autonomous case, the non-autonomous equations are
more complex because the external force is time-dependent. Under appropriate
assumptions, we need to prove that the external force belongs to the contractive
function. In recent years, the non-autonomous string equations have attracted
more attention than before. For instance, the pullback, uniform and global
attractor of the string equations were explored in [13-17]. However, non-
autonomous beam equations have been less discussed, which is our concern in
this paper. Furthermore, Eq.(1) contains the structural damped terms of A’u, and

N (J'QVuVutdx)]Au , and it makes our study more mechanically significant.

This paper is organized as follows. In section 2, we give some
preparations for our consideration on forcing term h(x,t), as well as on
nonlinearities a(-) and M(:). Using the new sectorial operator approach, the

existence of solutions is proved. In section 3, we show the boundedness of
compact kernel sections. In the last section, by decomposing the analytic
semigroup of Eq.(1), we obtain the existence of the global attractor generated by
the system (1)-(3).
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2. Preliminaries

In this section, we formulate the system (1)-(3) as abstract Cauchy initial-
boundary value problem. With the usual notation, some other notations will be
introduced and used throughout this paper. We denote the Hilbert spaces
H=L(Q),V=H;(Q), VcH, Vdense in H, the injection of V in H being
continuous, and we endow these spaces with the usual scalar product and the
norms in H and V are, respectively, denoted by (-), |{ and ((-)), [|{|, where

W.v) = [ ueov(dx, uf* =(u,u),  Vuve (),
((u,v)) = L AU(X)AV(x)dx, ||u||2 =((u,u)), Vu,veH (Q).

We identify H with its dual H", and H™ with a dense subspace of the dual V" of
V (norm |.,); thus,

VcHcV'.
So, all embeddings are continuous and their domains are dense, where the
injections are continuous and each space is dense. Let us denote by
A:D(A)c H — H the operator
Au=Au, for ueD(A).

It is well known that the linear unbounded operator A is an isomorphism from V
onto V* and it can also be considered as a self-adjoint positive operator strictly
defined on a separable Hilbert space H with domain D(A)cV , where

D(A) ={p € H*(©). 0], .a=A'0| 0 =0}.

The space D(A) is dense in H , and it is a Banach space when endowed with the

2

Au| . We also assume that the resolvent of A is compact
H

graph norm u — |uf’ +

in H, and one denotes by {e,} the orthonormal basis in H, consisting of
1
eigenfunctions of the operator A?

1
AZe =8,

and the eigenvalues {4} _, of it satisfy:

ieN
0<A <A, <<A <, and lim 4 =+

Under these hypotheses, it is possible to define the powers A° of A for seR,
which operate on the spaces D(A®). We have D(A°)=H ,D(A*)=V , D(A*)=V",
and D(A)cV cH=H" cV". Meanwhile, we write
V,, =D(A%), seR.
This is a Hilbert space for the scalar product and the norm as follows:
UV),, = (AU, AV), U} =(u,u),), YuveD(A).
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A'is an isomorphism from D(A®) onto D(A*"), Vs,reR, and one shows that

under several hypotheses its longtime behavior is also described by a global
attractor. From the Poincaré inequality, there exists a proper constant 4, >0, such

that M| =AM, wveV,

where 4, denotes the first eigenvalue of A:.

Now let us consider the system (1)-(3). In order to prove the existence of

solutions of (1)-(3), we assume that
M(s),N(s)eC'(R), M'(s),N'(s)>0, sN(s)>0, N(s)>s, 4)
a(t) is time-periodic, a(t)>0. &)

It is usually more convenient to reduce the system (1)-(3) to an abstract
ordinary differential equations of the first order in time in the following manner.
This is easy to do by letting u, =w, then the system (1)-(3) can be rewritten as the
following initial-value problem in the Hilbert space E of the form:

{Y:CY+F(Y,t), xeQ t>r, ©6)
Y(r)=Y, =(,.u,)" €E,

whereY = (U,W)", Y (z) = (u,,.u,.)", z(t) = ‘A*u ", E=H2(Q)xL*(Q) with finite

energy normyfy | = ‘A‘?u +|w|", and we can define C: E — E by the operator

matrix
0 | . 1
C =[ ] with D(C) = D(A)x D(A"),
—A —(pA+al)
F(Y,t)=(0,-[at)+ M (z)+ N (Z')]A%u +h(x, ). 7
Next, it is going to be proved that C is a sectorial operator and generates an
analytic semigroup on E .
Lemma 1. For u,7>0, the operator C generates an analytic semigroup e“on

E for t>0with D(C)=D(A)xD(A®), where A is sectorial operator, and C is
defined in (6).

Proof. Let
0 —1
B= :
[A ,uA-i—?ﬂ]

(/M | j
(Al -B)= .
—A (A-p)l - A

First, all that we need to show is that B is a sectorial operator. Obviously, B
is closed and densely defined. Then, we can conclude the resolvent:
R(4;B) = (1l —B)"'

then
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(Gl —pA -1 ’
_( A i J[(/i—n)}tJr(l—yﬁ)A] .

Due to the fact that all of the operators can be commuted, it is easy to prove that
this indeed is the resolvent. Since the linear operator A is sectorial operator, the
sector

p(B)DX,,

= {/1 e C;arg|/1—a| ST+ A+ a}U {a}, (pe(O,%),

is in the resolvent set and

(A1 - A< M forall 2e Tans (8)

[A-4|

some M >1, and some real a. After that, the boundedness should be proved to be
able to be held (similar to [3]).

Hence, we can conclude that C =B is sectorial. Meanwhile, it is known that
if B is sectorial, then C generates an analytic semigroup e“.

At last, by the assumptions above, it is easy to show that the function
F(Y,t):E — E is locally Lipschitz continuous with respect to Y . Furthermore, by
the classical semigroup theory concerning the existence and uniqueness of the
solutions of abstract differential equations [1], we have the following theorem.
Theorem 1. Consider the initial value problem (6) in the Hilbert space E . Under
the conditions (4), (5) and w,n>0, for any Y, €E, there exists a unique
continuous functionY (-) =Y (+,Y,,) € C((z,+=); E) such that Y(z,Y,,) =
Y,., and Y (t) satisfies the equation

Y(LY,) =Y, + [e IR (s),5)ds . ©)
where Y (t) is called a mild solution of (6), Y (t,Y,,) is jointly continuous in t and
Y,,, meanwhile

(u,u,) € C((7,+00); H{ ()
< [C((7,490); L Q)N L2 (7,7 +T);)HZ(Q))], VT >0. (10)
Proof. The existence and uniqueness of the solutions are obviously showed from
[1], and the global existence of solution can be obtained from the existence of an

absorbing set below(see Lemma 3).
For any t > 7,, let us introduce a map

S(t.0):Y,, = {u,,.u, > U ®}=YLY,), E-E,
where Y(t,Y,) is the (mild) solution of (4), then {S(t,7),t>7} is a continuous
process on E which has the following properties:
(1) S(t,r):E—>E,
(2)  S(z,7) is the identity on E,
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(3)  S(,5)S(s,7)=S(t,7) forall t>s>T,

4 Str)Y—>Y ast—r forallYeE,

(5) S(t,r)eC(E,E).

In this article, we will show the existence of non-empty compact kernel
sections for the process {S(t,z),t>z}. Then, we also prove the existence of the

global attractor.
3. Boundedness of Compact Kernel Sections
In this section, we will prove the uniform boundedness of solutions for the
system (1)-(3) in the space E . For this purpose, we define a new weighted inner
product and norm in E =H;(Q)x L*(Q) by
(@.P)e =K(ULU+ V), ol =(@.0)c (an
forany ¢=(u,,v,)", »=(u,,v,)" € E, where

2
kzue(l,l)_ 12)
4+24°0 2
Obviously, the norm |{_ in (11) is equivalent to the usual norm |{_ of E .

Let
T M A
p=(U,V) ,V=U+a, O<e&<g,=min(~—,—),
4 2u

where ¢ 1s chosen as

1A
Y 13
“Tar 2074, =
and then the system (6) can be written as
{%+A”=f’ T (14)
¢(T):(u01’ulr +éu01) ’
where
~ 0
f= L , (15)
[—[a(t) +M(2)+ N(2)]A*u+ h(x,t)]
( & -1 )
A, = : (16)
(I-g)A+e(e-ml pA-(s-n)l

Next, we present a positive property of the operator (A,p,p) defined in (16),

which plays an important role in this article.
Lemma 2. Forany ¢=(u,v)' €E, we have

12
(7.0.0): >ololl + £ > ol + L an

where
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0:—,u/11 ,
Vi AT
y=4+1°0, y, =14, (18)

Proof. For any ¢=(u,v)' eD(C), by (11),(16), the Poincaré inequality and
k =1-&u, we have

/12
(A.9.0)c - ololl - L2
= ek|u]” + uM[ — (e =N + 1~k - gu)(Au,v)
2
+daﬂMmW—dwr—ﬂW—%§
2
> -kl + Py - - - EED. 19
(e —o)k|u|” +( S tn=o &)V ik (19)
By (13) and (19), an elementary computation shows:
P g'(e-n)’
4e—-o) : +77—0'—5)|V|2ZT. (20)

Thus,
2
(A,0.0)e 20|, ﬁu“7’11|v|2 , forany ¢=(u,v)" €D(C).

since E is dense in D(C). By (20), the proof is completed.
Now, we consider the absorbing property of the semigroup {S,(t,z),t>7} on
E . Obviously, the mapping
S,t,7):E—>E, t>7,

Dy = {uowv()z =Uu; +‘€U0r}T

= o) ={u®.vt) =u, O+ au ], (21)
has the following relation with S(t,7):
S,(t,r) =R.S,(t,7)R__, (22)

where ¢ is the solution of (14) which satisfies ¢(0)= ¢,, and S(t,z) is the linear
operator in E :

fu,,u,f > ud.u o
(u is the solution of (1),(2)), and R,,s € R, is an isomorphism of E :

R, :{u,v}— {u,v+au}.
So, we only need to consider the equivalent system (14). For the boundedness of
solutions of (14), we have
Lemma 3. Suppose M, >0 (independent of 7), for any bounded set B of E,
there exists T,(B)>0 such that the solution ¢(t)={u(t),v(t)]" of (14) with ¢(zr)eB
satisfies:
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le@|; =ku®|” +NOf <MZ, vt=2T,(B)27, reR, (23)

in which v=u, +&u.

Proof.  Set (t)={u(t),v(t)]" be a solution of (14) with initial value ¢(r)=
{u,,.u,, +eu, | € E. As indicated above,

(t) € C(z,+00;H ()
x[C(z,+00; L' (Q)N L (z, +T;H; ()], VT >0.

Taking the scalar product on each side of (14) with ¢= {u,v}T in E, where
V=u, +e&u, we have

(@ 0)+ (A, 0,0) +[a(t) + M (2) + N()](A'U,v) = (h(X,1),V).
Under the hypothesis above, we can conclude:

a(t)(Atu,v) = %%(a(t) At —a ) Al + sat)|At],
M @XA00) =S (V) + M 2,
N(2)(A'u,v) = % N(2)]2 + N(2)]z.
Then, %%H(pﬁ ra®|a] 2N (2) + At 1+ ol
+(sat)—a®)| Al + ¥ (2) < ! Sht)’, vizz.  (24)
2ul,
Let
Y ()= olgl] + (cat)—a)| AU +aM(2)
—o %ol + P20 A i, (25)
and,
L(t) =|gl} +a®|Al] +2M (2) + £aly[ . (26)
So,
iY(t) —Lt) = (4—"—1)|¢|2 +(\ﬁ Al + \Ea)z
& € E 2 b
b |4 2a2 1 4 . 5
+(5—5)|A o - -4 Gam-—awm)
28> 1 4., .C,
2= Gal) - Zam) 2 27)

Set
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k=% , e< min{4a,9} .
2 2
Then, by (24) and (27),
d 1
—L®)+kL(t)<C, +—|h
S LO+KL® °+M||

1

2
07

(28)

where |h| =sup, .,

h(x,t)|. Applying the Gronwall’s inequality, we obtain the
following absorbing inequality in the space (E,|{.):

h
|g0(t)| <L) <L(r)e ™ " + i[' |° +C,1, t=r,
Or limsuplg(t). <MZ, t>7. (29)
t—>+o
Taking
2,1l K
M =L(r)e™ " + = +C,1,
(7) " ﬂﬂf o

(independent of 7)), the proof is completed.
Let B, be a bounded closed ball of E centered at 0 of radius M, :

B, = {u.v)  E:Ju + vl < p*- (30)
Then, B, is the bounded absorbing set of the analytic semigroups{S_(t,7)}, t>7

of (1)-(3).
Corollary 1. For any initial value Vo(r)eB,, that is, (p(r)|2E = K|u,. [’
there exists M, >0 such that the solution of (14)

p(t) = {u(t),v(t)|" satisfies lp®)|. <M, ,t>7.

4, Existence of the Global Attractor

To obtain the global attractor for the process {S,(t,7),t >z}, we need to show
the uniform asymptotic compactness of the process {S,(t,7),t>7} in E, that is,
{S.(t,z),t > 7} possesses a uniformly attracting compact set in E with respect to

7 e R . Next, let us recall some concepts in [1].
Definition 1. The kernel K of the process {S,(t,z),t>7} consists of all bounded

complete trajectories of the process {S, (t,7),t>7}:
K = { _<M,,VteR|, 31)
and the section K(s)c E of the kernel K at times seR is

K(s)={p(s) () e K}.
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Definition 2. A process {S,(t,z),t >} possessing a compact uniformly attracting

set is said to be uniformly asymptotically compact.
Lemma 4. Let {S,(t,7),t >z} be a uniformly compact process acting in the space

E, with a compact uniformly attracting set A — E. Each mapping S, (t,7):E > E
is assumed continuous. Then the kernel sections K(s) of the process {S,(t,7),t >z}
are all compact, and K(s)c A .

Lemma 5. For the initial value V¢(r)eB,, the solution of (14) ¢(t) = (u(t),
v(t))' can be decomposed, where ¢/(t)=(u;(t),v,(1)", v;(t) = Uy, +&u; (1),

i =1,2, satisfy, respectively,

o[ =KJu, @+ <m?, t2r, (33)
and
‘s 2 Bt 2 s 2 N
|Az(p2(t)|E - k|A ; uz(t)| +|sz2(t)| <MZ, txr, (34)
where
s, HA4 (35)

- 4+ 4’4, +y\/4ﬂl + 1A .
Proof. Let o(t)=(u(t),v(t))", t>7 be a solution of (14). Thus,

@)} =Ky, || +|u, +eu,, | <MZ. (36)
Let  pt)=(u),v, 1) +U,®.v, )", ) =u, D) +eu ), =12, satisfy,
respectively,
{um +Nu, + AU, +u, =0, t>7, 37)
u(zr)=u,, u(r)=u,,
and

Uy, + AU, + uA’U,, +7u, =b (1) +b,(t), t>7,
U, (7) =y (7) =0, (38)
b, (t) =h(x,t), b,(t)=[a(t)+M(z)+ N(2)]Au.

Let y=(u,,u, +e&u)", then y(r)=(u,,u, +&u, )" , where

My
_ 39
gl 4+ 2#221 > ( )
(37) can be written as
y, +Hy=0, (40)
where
( gl —1 j
H= : (41)
(1_51,U)A+51(51 _ﬂ)l IUA_(gl _’7)|

Similar to Lemma 2, for any y=(u,,0,)" €E,
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~ A
() 2oyl + AL > oyl + Ao @)

where o, is as in (35). Taking the inner product of (40) with y in E , we obtain

lYO[2 < K|uo|” +u,, +eu,, + (& =, | exp(-20,(t-17))
<2 +4e, el )p* exp(-20,(t- 7))
<Cp’exp(—20,(t-1)), Vt>r. (43)
Thus, lp)]2 =K|u, @[ +|u, (©) +eu, @]
<2+4e e )p’ exp(-20,(t-1)), Vixr. (44)

Setting M} =(2+4|e, — g|2)p2 exp(-20,(t—7)), one obtains (33).
In the following, we prove that u,(t) satisfies (34). Setting ¢=A’u,,
¢=¢, +¢&( , then, (38) can be written as

52t+H52:§(t)a 52 :(;’g)T,

B(®)=(0.A”(b,()+b,®))",  #(z)=0. (45)
Taking the scalar product (-). of (45) with ¢, =(¢,¢)", we have
d ~p o ~
Bl (ML) = A B +b.O), (46)

By the embedding theorem, we obtain
72.*4(1*ﬂ )

2k

(. A%b, (1) <|A%g|n(x.t)| < 2k|A%g|2 +

Meanwhile, by (42) and (46), we have
(5, A’b, (1)) =—{a(®) + M (2) + N(D)I(A'u, A’g)

lhex, 0|

A L B 3 g |2 s |2

By (45), (46) and the positivity of H in the new norm, we fine
d - ~
a|(p2|2E +20,|3,). <C, vtz (47)
By the Gronwall inequality and zero initial value at t =z, we obtain
7, <m2, vz, (48)
The proof is completed.
Let B, be the ball of V,,xV, cE of radius M,, ie. Vp=(uv) €B,
P 2
satisfying |A7(p| <M.
E
Theorem 2. The process {S,(t,7),t >z} possesses a kernel K such that the kernel
section K(S) at the time S is compact and K(s)cB,, VseR.
Proof. The proof is omitted.
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Theorem 3. The analytic semigroup {S,(t,z),t>7} of (14) possesses a global
attractor B in E.
Proof. By Theorem 2, (9) and e® is compact, we complete the proof of Theorem
3.
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