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ON THE ESTIMATION OF INTRINSIC DIMENSION FOR 3D IMAGES

Serban Oprisescu1, Monica Dumitrescu2

The paper deals with the estimation of intrinsic dimension (ID) for three
dimensional images produced by different cameras such as a time-of-flight (ToF),
Kinect or other sensors. We introduce a slightly different definition (IDS) allow-
ing the use of samples extracted from the contours within images. We have imple-
mented the maximum likelihood estimator based on a fixed number of sub-spheres.
The experimental study we perform compares the performances of the estimated
ID for intensity (2D) ToF images and distance (3D) ToF images. Based on this
comparison, one could use ID appropriately in a fusion system for images pro-
vided by two-dimensional and three dimensional sensors.
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1. Introduction

In signal processing, the intrinsic dimensionality (ID) of a signal describes
how many variables are needed to represent that signal, and it is a key priori knowl-
edge to improve performance of processing. A reduction of the dimension can
result in reduced computational time, as the use of more dimensions than strictly
necessary leads to several problems such as the space needed to store the data, com-
pression for storage purposes, the speed of algorithms ([1]).

The analysis of local image regions which contain lines or edges became an
issue of genuine interest in early 80’s and it is the paper of Zetzsche and Barth
(1990) [2] where the term ”intrinsic dimension” was introduced. According to this
approach, intrinsic dimension of an image f has been defined for open, convex re-
gions Ω ⊂ Rp, p ≥ 2, and it has been denoted IDΩ ( f ) . Important related results
have followed, such as the uniqueness proof (Mota and Barth (2000) [3]), the ex-
tensions to multiple orientations (Aach et al (2006) [4]), the application for multiple
motions (Mota et al (2001) [5]) and the extensions to multispectral signals (Mota et
al (2006) [6]).

On the other hand, there exist some other approaches of the ID issue, such as
the one in [7] but, for the time being, we’ve started from the original definition of
IDΩ ( f ) .
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In practice, any definition of ID must be accompanied by an estimation pro-
cedure. ID estimation methods can be classified into three groups: projection ap-
proach, geometric approach and probabilistic (or statistical) approach. The projec-
tion approach first projects data into a low-dimensional space and then determine
the ID by verifying the low-dimensional representation of data (PCA is a classical
projection method). Geometric approaches make use of the geometric structure of
data to build ID estimators (fractal-based methods have been well developed and
used in time series analysis). The probabilistic technique builds estimators by mak-
ing distribution assumptions on data. The maximum likelihood (MLE) method pro-
posed by Levina and Bickel (2004) [8] is a representative method of this approach,
whose final global estimator is given by averaging the local estimators. MacKay
and Ghahramani (2005) [9] pointed out that, compared with averaging the local
estimators directly, it is more sensible to average their inverses for the maximum
likelihood purpose. Multiple applications of local intrinsic dimension estimation
are discussed by Carter et al ([10]). An experimental approach of estimating the in-
trinsic dimension using inherent clustering present in data is discussed by Eriksson
and Crovella ([11]).

In this paper we adopt a statistical approach for both the definition and the
estimation of ID and present an experimental study which compares two ways of
computing the intrinsic dimension of (depth) image structures.
• By defining and estimating intrinsic dimension locally, we can experimentally

prove the efficiency of ID to identify local structures (lines, edges, corners).
• By analyzing 2D images versus 3D ToF images, we offer a possible way for

superimposing / fusing 2D with depth information.
We modify the classical definition of intrinsic dimension of an image f , in

such a way that it is directly connected to a sample S = {−→v1 , ...,
−→vn} (where the −→v ′s

are the position vectors of the sample points) from that structure and we denote the
intrinsic dimension with respect to a sample S by IDS ( f ) . Afterwards, we apply the
MLE method in order to estimate IDS ( f ) .

The paper focusses on three dimensional images produced by a time-of-flight
(ToF) camera but, of course, other sensors could be considered too. Some sub-
structures in the image may be viewed as structures in a two dimensional space
too. Therefore, one would be interested in comparing the performances of ID’s
as diagnosis tools in 2D and 3D cases. We implement the maximum likelihood
estimation of IDS for two dimensional (photo) images and for three dimensional
images produced by a ToF camera. The experimental study we perform aims at
establishing a comparison of the performances of the estimator in the case of differ-
ent dimensional images. Our conclusion is that the estimated IDS ( f ) can be used
appropriately in a fusion system for images provided by two-dimensional and three
dimensional sensors ([12]).
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2. IDS definition and estimation

Let us consider a 3D image defined by a probability density f on the mea-
surable set

(
R3,B3), where B3 is the Borel σ field, and let S = {−→v1 , ...,

−→vn} ⊂ R3

be a sample of available observations, which are independent, identical distributed
random vectors. Assume there exist m≤ 3 and the following items:
• {−→u1, ...,

−→un}⊂ Rm, independent, identical distributed random vectors with a prob-
ability density g(−→u ) on Rm,
• a matrix B(3,m) , such that −→vi = B−→ui , i = 1, ...,n

Hence, −→v1 , ...,
−→vn are independent, identical distributed random vectors with a prob-

ability density denoted f (−→v ) , which can be calculated from g(−→u ).
Then, the smallest number m for which the above property holds is called

the intrinsic dimension associated with the probability density f and the sample
S = {−→v1 , ...,

−→vn} and it is denoted IDS ( f ) . We have 0≤ IDS ( f )≤ 3.
Comment:
If IDS ( f ) = 0, then f is constant for the sample {−→v1 , ...,

−→vn} with respect to
all three variables (no local structure). If IDs ( f ) = 1, then f varies for the sample
{−→v1 , ...,

−→vn} along one direction (a curve, an edge). If IDS ( f ) = 2, then f varies
for the sample {−→v1 , ...,

−→vn} along two directions (a surface, a plane). If IDS ( f ) = 3,
then f varies for the sample {−→v1 , ...,

−→vn}with respect to all three variables (a corner).
A similar definition for a two-dimensional image and a sample S can be con-

sidered, and the corresponding discussion is: if IDS ( f ) = 0, then f is constant
for the sample {−→v1 , ...,

−→vn} with respect to both variables (no local structure). If
IDS ( f ) = 1, then f varies for the sample {−→v1 , ...,

−→vn} along one direction (a curve,
a line). If IDS ( f ) = 2, then f varies for the sample {−→v1 , ...,

−→vn} with respect to both
variables (a corner).

To estimate IDS ( f ) , we proceed from the MLE proposed by Levina and
Bickel (2004) and commented by MacKay and Ghahramani (2005). The basic ideas
of this approach are the following: (a) one can introduce an approximation of the
volume of the j−th nearest neighbor sphere by means of a counting process; (b) the
counting process can be approximated by a inhomogeneous Poisson process and its
intensity can be estimated by the maximum likelihood method.

Let us consider a set of random vectors S = {−→v1 , ...,
−→vn} ⊂ Rp (p = 2 or 3) and

assume that m is the true, unknown intrinsic dimension associated with the density
f (−→v ) and this sample. Let Vr (m) denote the volume of the sphere with radius r,
in Rm. Then Vr (m) =V (m) · rm, where V (m) denotes the volume of the unit sphere
in Rm. For −→vi0 fixed, let Tj (

−→vi0) denote the Euclidean distance from −→vi0 to its j−th
nearest neighbor (NN) in the set and let S

(−→vi0 ;Tj (
−→vi0)
)

denote the j−NN sphere
around −→vi0. The proportion of sample points falling into the j−NN sphere around
−→vi0 is roughly f (−→vi0) times the volume of the sphere, j/n' f (−→vi0) ·V (m)

(
Tj (
−→vi0)
)m

.
The sample S = {−→v1 , ...,

−→vn} is obtained by means of a count process. We
recall that a stochastic process {N (t) , t ∈ [0,∞)} is called a count process (or an
arrival process) if it is a jump - process (it increases by jumps only), N (0) = 0, and
its trajectories are non-decreasing, right - continuous functions. A count process is
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called a Poisson process if the range of its jumps is equal to 1, (N (s+ t)−N (s)) is
independent of {N (u) ,u≤ s} , and the distribution of (N (s+ t)−N (s)) is indepen-
dent of s. Observation of a Poisson process can be continuously performed, either
over a fixed period [0,T ] or over a random period, until N0 arrivals occur.

Applying these facts for images in Rp ( p = 2 or 3) with ID equal to m
(unknown), we have the parameter r ∈ [0,∞) and the count process addresses the
spheres S (−→v ;r) .

Based on Levina and Bickel approach, we assume that, for a fixed point −→v ,
the image is characterized by a constant probability density f (−→v ) ' ct in a small
sphere with radius r around −→v . Denote the number of observations within distance

r from −→v by N (−→v ;r) =
n

∑
i=1

1{−→vi∈S(−→v ;r)}

For a given −→v , the inhomogeneous process {N (−→v ;r) ,r ∈ [0,∞)} can be ap-
proximated by a inhomogeneous Poisson process. Suppressing the dependence
on −→v , we use the notation {N (r) ,r ∈ [0,∞)} , and denote the intensity of this
process by λ (r) . From the Poisson processes properties, the intensity (rate) is
λ (r) = d

dr ( f (−→v ) ·V (m)rm) = f (−→v ) ·V (m)mrm−1.
As we’ve mentioned, estimation of m can be achieved through two differ-

ent approaches: (a) Consider {N (r) ,0≤ r ≤ R} and take into consideration the
observations within the j−NN spheres, with Tj (

−→v )≤ R; (b) Consider a fixed num-
ber of j−NN, j ≤ J and take into consideration the observations for distances{

Tj (
−→v ) , j ≤ J

}
. In both cases, one would estimate the intensity of the Poisson

process by the maximum likelihood method.
Case (a) (fixed maximum radius R)
The Levina & Bickel estimator for a fixed −→v is

m̂R (
−→v ) =

(
1

N (−→v ;R)

N(−→v ;R)

∑
j=1

log
R

Tj (
−→v )

)−1

(1)

The independent, identical distributed observations {−→v1 , ...,
−→vn} represent an

embedding of a lower dimensional sample {−→u1, ...,
−→un} .

• For any fixed point −→v , consider a small sphere of radius R , consider the
j−NN j = 1,2, ..., and count the observations within the corresponding sub-spheres
S (−→v ;T1 (

−→v )) ⊂ S (−→v ;T2 (
−→v )) ⊂ ... ⊂ S (−→v ;R) . Accordingly, record the values

{N (−→v ;T1 (
−→v )) ,N (−→v ;T2 (

−→v )) , ....,N (−→v ;R)} . The radius R is fixed, but the num-
ber of sub-spheres in not fixed a priori.
• Repeat the procedure for every observation −→v1 , ...,

−→vn and calculate m̂R (
−→vi ) ,

i = 1, ...,n, using formula (1) . Then, estimate the ID by

m̂R =
1
n

n

∑
i=1

m̂R (
−→vi ) (2)
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The modified MacKay and Ghahramani estimate is

m̂R
−1 =

(
n

∑
i=1

N(−→vi ;R)

∑
j=1

log
R

Tj (
−→vi )

)
/

(
n

∑
i=1

N (−→vi ;R)

)
(3)

Case (b) (fixed number of NN-neighbours J)
The Levina & Bickel estimate for a fixed −→v is

m̂J (
−→v ) =

(
1

J−1

J−1

∑
j=1

log
TJ (
−→v )

Tj (
−→v )

)−1

(4)

• For any fixed point −→v , consider a small sphere of radius R , consider the
j−NN j = 1,2, ..., and count the observations within the corresponding sub-spheres
S (−→v ;T1 (

−→v ))⊂ S (−→v ;T2 (
−→v ))⊂ ...⊂ S (−→v ;TJ (

−→v )) . Accordingly, record the val-
ues {N (−→v ;T1 (

−→v )) ,N (−→v ;T2 (
−→v )) , ....,N (−→v ;TJ (

−→v ))}. The number of sub-spheres
is fixed a priori.
• Repeat the procedure for every observation −→v1 , ...,

−→vn and calculate m̂J (
−→vi ) ,

i = 1, ...,n, using formula (4) (or the one obtained by dividing by (J−2)). Then,
estimate the ID by

m̂J =
1
n

n

∑
i=1

m̂J (
−→vi ) (5)

The modified MacKay and Ghahramani estimate is

m̂J
−1 =

(
n

∑
i=1

J−1

∑
j=1

log
TJ (
−→vi )

Tj (
−→vi )

)
/(n · (J−1)) (6)

According to MacKay and Ghahramani , the modified estimates are less bi-
ased than the original Levina and Bickel ones.

3. Experimental Study

3.1. Methodology

We have conducted an experimental study to estimate IDS ( f ) for 2D images
(either photo images, or intensity ToF images) and for 3D images (distance ToF
images). In the case of IDS ( f ) , we have used samples S extracted from the the
contours within images (a sample represents a connected contour segment within
the neighborhood). The performances of the estimates have been evaluated and a
comparison of ID estimates for 2D and 3D images has been established.

- A preliminary analysis was performed on 2D natural images in order to choose
between the estimators given by formulae (5) and (6) . The conclusion was that
formula (5) gives a stronger ID response than formula (6). Therefore, formula (5)
was used in this study for estimating ID.

- We have focused our study on local structures such as 2D straight lines and 3D
edges, 2D and 3D corners, connections or curved lines, as well as for planes in 3D.

- In order to compute IDS ( f ) , a contour extractor has been implemented and,
afterwards, a sample set S was chosen (S represents the longest connected contour
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line within the current neighborhood). The obtained IDS images are presented and
interpreted and some key points are selected. The Canny extractor was used for
2D images, and an original contour extractor which works better than the Canny
extractor was used for distance ToF images.

3.2. Reported results

Several images have been analyzed, and here we present the results for two
images: a 2D natural, photo image (Fig. 1.a) and a ToF image (Fig. 1.b: intensity
ToF image and Fig. 1.c: distance ToF image).

(A) (B) (C)

FIG. 1. a) Classic gray level test 2D-image ”house.png”; b) Intensity ToF image;
c) Distance ToF image

3.2.1. IDS ( f ) for a 2D natural image. The study addresses the image in Fig. 1.a.
In order to obtain the ”available observations”, we have used the Canny contour ex-
tractor. Then, formula (5) has been implemented to estimate ID in specified pixels.

Fig. 2 displays the estimated IDS ( f ) on using formula (5). The IDS ( f ) is
displayed as a level of gray, white meaning zero IDS ( f ) values (disregarded pixels)
and black meaning the maximum obtained IDS ( f ) value. The overall maximum
IDS ( f ) for the image in Fig. 1 was 1.67 (sky disregarded). Detailed ID values are
included in Fig. 3.a - 3.g .

FIG. 2. IDS image for the 2D image ”house.png”
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(A) (B) (C)

FIG. 3. Detailed IDS values for straight lines

(D) (E)

FIG. 3. Detailed IDS values for corners

(F) (G)

FIG. 3. Detailed IDS values for a connection point (f) and a low curvature corner (g)

• The IDS ( f ) values obtained for straight lines (at any orientation) are around
0.93, including the left side of the chimney, as shown in Fig. 3.a., b. and c. This
result is conform to the theory (for a line the ID should be 1).
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• In Fig. 3.d., the maximum value for a simple corner is around 1.3, while in Fig.
3.e., a strong curvature corner has an IDS of 1.48 (should be 2). Fig. 3.g. shows that
even a low curvature corner can be detected, the computed IDS being grater than 1.
• In Fig. 3.f an example of connection point is shown. These points have the

maximum IDS over the whole image (sky disregarded).
We have considered the average values of the estimated IDS ( f )’s for some

local patterns in order to check the efficiency of their (correct) identification.
In Table 1 we present the 2D-ID values obtained for a specified ideal structure.

The ”max IDS” value represents the maximum value on a pixel within the structure
and the ”average IDS” represents the arithmetic mean over all pixels of the structure
(the structure has about 5 to 9 pixels).

Table 1
2D - IDS values obtained for a specified ideal structure

2D structure max IDS average IDS
0.93 0.93

1.17 1.14

1.54 1.31

1.52 1.46

1.78 1.45

Usually the maximum IDS value is reached in the pixel where there are some
crossing lines, but this value can be located also in the neighbor pixel, due to the
fact that the IDS is computed within a neighborhood. But, even if we don’t obtain
the absolute maximum in the theoretical point, this maximum is not farther than a
pixel distance.

3.2.2. IDS ( f ) for a ToF natural image. The study addresses the images in Fig.
1.b and 1.c. We have used an original contour extractor, which searches for maxi-
mum curvature points within the distance image, as a deviation from linearity. This
extractor works better than the Canny extractor for ToF distance images ([13]). Af-
terwards, formula (5) has been implemented to estimate the IDS.

Fig. 4.a and 4.b display the IDS image for intensity ToF image and IDS image
for distance ToF image respectively. As before, white stands for 0 ID (disregarded
pixels) and black means maximum ID.

In Fig. 5.a - 5.h. the detailed IDS values in the distance (3D) ToF image are
included: for 2D lines and corners, for 3D corners.
• If the sample S is extracted from a 2D line within a 3D image, the IDS is between

0.93 and 0.98 (it should be 1).
• In Fig. 5.c one can see the distance profile of a corner in 2D (the upper plane

is perpendicular to the ToF camera plane, and the corner is marked with a bright
circle). The corresponding computed IDS’s are presented in Fig. 5.d. Thus, if S is
extracted for a 2D corner within a 3D image, the IDS is between 1 and 2 (it should
be 2).
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FIG. 4. a ,b: IDS images for intensity / distance ToF image

(A) (B)

FIG. 5. Detailed IDS values for 2D lines

(C) (D)

FIG. 5. Detailed IDS values for a 2D corner

As expected, the ID for objects which do not vary in distance is equivalent to
the one computed in the 2D case.
• In Fig. 5.e the profile for a 3D corner is presented (here, the pixels’ intensity

varies in all dimensions). The estimated IDS’s for such a corner profile is presented
in Fig. 5.f, the value in the target being close to 3, which is the theoretical ID.
• In Fig. 5.g the IDS’s computed for a vertical contour line are presented. We

have noticed the IDS variation, caused by the variation in distance of the contour
line (depicted in Fig. 5.h). Hence, the ID is well estimated in this case too, when
the theoretical ID is 2 and the variation plane is parallel to the camera plane.
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(E) (F)

FIG. 5. Detailed IDS values for a 3D corner

(G) (H)

FIG. 5. a vertical contour line; h) is the distance profile of g)

3.3. Comparison of the ID estimation results for 2D and 3D ToF images

Comparison with respect to the average values for local structures
By comparing 2D versus 3D average ID values (see Tables 2 and 3), one

cannot discriminate if one has a 2D or a 3D corner. Hence, in order to discriminate
between a 2D and a 3D corner, one has to look at the maximum values within a
neighborhood.

Comparison with respect to the point-wise values
As mentioned before, one must focus on the maximum ID values in order to

detect pixels defining a local structure. By comparing these values for the two cases,
we notice that the 3D values are higher, sometimes much higher (as 7.12 in Table 3
versus 1.78 in Table 1).

The results of estimating the ID on the intensity ToF image are presented in
Fig. 4.a, and those on the distance ToF image in Fig. 4.b. The erroneous contours
extracted by the Canny extractor are displayed in Fig. 4.a, and they are the result
of the image noise and object’s non- uniformities. Anyway, one can compare the
2D versus 3D ID estimations. Hence, if we compute the IDS as for a gray level
image by disregarding the distance information (Fig. 4.a and 6.a the maximum ID
is 1.04 (as for a low curvature 2D corner); but, if we compute the IDS as for a 3D
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ToF image, by considering also the distance information, the ID is about 3, which
reveals the 3D corner from the image.

Table 2
Average values (the 3D - IDS average values obtained

for a specified structure in a ToF image)
3D ToF structure max IDS average IDS
Fig. 5 d) 1.7 1.4
Fig. 5 f) 3.2 2.55

Table 3
Average values (the 3D - IDS average values obtained

for a specified structure in an ideal image)
3D structure max IDS average IDS

1.75 1.32

2.06 1.37

1.75 1.32
1.27 1.04
7.12 2.25

FIG. 6. a) 2D detail; b) 3D detail

Thus, the importance of estimating the ID on the 3D image is shown in Fig.
6.b, where ID is close to the theoretical value equal to 3.

4. Conclusions

We proposed a slightly modified definition of ID, allowing to estimate it on
the basis of a specified sample S (such as a “contour – sample”)

The MLE constructed for a fixed number of NN-neighbors is recommended
when a comparison of ID’s for 2D and 3D images is of interest.

When using IDS, identification of the local structures is correct, as this ap-
proach works very well for natural, 2D images and well enough for ToF 3D images.
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The quality of the estimate depends on the performances of the contour extractor,
due to the involved noise.

One must focus on the maximum ID values in order to detect pixels defining
a local structure, and not on the average values for that structure.

The estimated 3D ID for objects which do not vary in distance is equivalent
to the one computed in the 2D case.

The values of IDS for a 3D corner are close to the theoretical value both for
2D intensity images and 3D distance images.
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