U.P.B. Sci. Bull., Series D, Vol. 85, Iss. 2, 2023 ISSN 1454-2358

PATH OPTIMIZATION FOR DYNAMIC OBSTACLE
AVOIDANCE OF PIONEER ROBOT BASED ON DDPG
SMART AGENT

Qingchun ZHENG!2, Zhi PENG'"?3, Peihao ZHU'*", Yangyang ZHAO?*,
Wenpeng MA!~

To improve the path efficiency for dynamic obstacle avoidance algorithms of
Pioneer robots, this paper proposes an approach to create deep deterministic policy
gradient (DDPG) smart agents with recurrent neural networks (RNN) to optimize
the path strategy. This approach is realized by training RNN with the
backpropagation (BP) algorithm to train the agent. First, the SolidWorks model and
obstacle avoidance model of the Pioneer robot is established. The LIDAR sensor is
used to obtain environmental information. Further, deep reinforcement learning
obstacle avoidance algorithm based on RNN is presented. The dynamic obstacle
avoidance path of the Pioneer robot is further simulated in two different virtual
robot experiment platform (V-REP) scenarios. The simulation results show that the
proposed algorithm shortens the training time by 26.3% compared with the DDPG
algorithm. Our proposed scheme can improve the path efficiency for dynamic
obstacle avoidance of the Pioneer robot.

Keywords: recurrent neural network, deep deterministic policy gradient, mobile
robot, pioneer, deep reinforcement learning

1. Introduction

With the continuous development of science and technology in the world,
mobile robot (MR) [1] technology is widely used in the robot industry, which is
one of the key research contents in the field of robotics. Navigation and obstacle
avoidance have become key technologies for mobile robots to deal with complex
working environments. However, in dynamic environments with more complex
requirements, obstacle avoidance alone is no longer sufficient for the work of
mobile robots.

! Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control,
Tianjin University of Technology, Tianjin, 300384, China.

2 National Demonstration Center for Experimental Mechanical and Electrical Engineering
Education (Tianjin University of Technology).

3 School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, China.
School of Computer Science and Engineering, Tianjin University of Technology, Tianjin,
300384, China.

* E-mail: zhupeihao ch@163.com

30 Q. Zheng, Z. Peng, P. Zhu, Y. Zhao, W. Ma

In complex obstacle environments, mobile robot faces a large number of
external obstacles and disturbances. It is crucial to identify these disturbances,
quickly determine the obstacle location, and adopt an optimal obstacle avoidance
strategy. Mobile robots need to optimize the obstacle avoidance algorithm and
obstacle avoidance strategy when avoiding obstacles in front of them [2]. In
addition, the highly dynamic environment is prone to incorrect data correlation,
which leads to robot positioning errors or positioning failures [3] and affects the
normal operation of mobile robots. Therefore, improving the accuracy and
localization robustness of the mobile robot obstacle avoidance algorithm is the
most important task to improve the obstacle avoidance capability of mobile
robots.

Traditional path optimization obstacle avoidance algorithms include A-
star, rapidly exploring random trees (RRT), and artificial potential field (APF).
Liu et al. [4] proposed a dynamic fusion pathfinding algorithm based on the
Delaunay triangulation algorithm and improved A-star, which improves the
success rate of path planning for mobile robots under complex obstacles. This
method applies to simple maps and increases consumption when the number of
path nodes increases. Song et al. [5] proposed an improved smooth rapidly
exploring random tree algorithm to remove redundant nodes and generate smooth
paths, which can effectively shorten the path length of global path planning. This
method is suitable for simple path planning, while complex path needs to combine
with other algorithms to train the dataset. Rostami et al. [6] proposed an improved
artificial potential field method to avoid collision between mobile robots and fixed
obstacles. This method is at the local minimum value and the target is inaccessible
when the obstacle is near the target. Wu et al. [7] proposed an algorithm based on
beetle antennae search and the APF algorithm, which accelerates the convergence
speed and avoids the local minimum problem of the APF algorithm.

In addition to traditional obstacle avoidance algorithms, reinforcement
learning methods are also the focus of research. Not only improve the accuracy of
mobile robot obstacle avoidance algorithms but also advance the current mobile
robot obstacle avoidance technology. Choi et al. [8] proposed a framework for
reinforcement learning in decentralized collision avoidance where each agent
independently makes its decision without communication with others. Peng et al.
[9] proposed a novel method based on the multistep update method and double
deep Q-network to improve autonomous navigation. This method adopts terminal
and non-terminal rewards to train the mobile robot navigation, which improves
the learning speed and reduces the learning time. Cheng et al. [10] trained
nonholonomic wheeled mobile robots to reach the followed path and avoid
obstacles based on a deep deterministic policy gradient. This method needs to
optimize the strategy and design the reward function.

Path optimization for dynamic obstacle avoidance of pioneer robot based on DDPG smart agent 31

As can be seen from the above research, the performance of path
optimization obstacle avoidance algorithms based on deep reinforcement learning
outperforms the traditional method. DDPG algorithm is a deterministic strategy
with limited exploration ability. Therefore, this paper proposes a method to create
DDPG smart agents with recurrent neural networks to optimize the path strategy.
The RNN is trained with a BP algorithm to minimize the loss to solve the gradient
disappearance before the RNN update. The main contributions of this paper can
be described as follows:

(1) We propose an approach to create DDPG smart agents with recurrent
neural networks, which is based on a backpropagation algorithm to train RNN to
train the agent. In dynamic and complex environments, the smart agent is used to
learn how to avoid obstacles and reach the target point efficiently.

(2) Our proposed algorithm reduces the training time by 26.3% compared
with the DDPG algorithm.

(3) Path optimization is integrated with reinforcement learning-based
obstacle avoidance to solve the problem of not finding paths in dynamic
environments, thus improving path efficiency.

The main content of the work is described as follows. Section 2 presents
the Pioneer robot model and obstacle avoidance model. Section 3 depicts the
dynamic obstacle avoidance algorithm based on deep reinforcement learning. In
Section 4, the dynamic obstacle avoidance path of the Pioneer robot is simulated.
In Section 5, we summarize our research progress.

2. Pioneer robot modeling

2.1 Pioneer robot model

The research object of mobile robots in this paper is the Pioneer3-DX
robot. Its SolidWorks model is shown in Figure 1. Pioneer3-DX is a two-wheel
differential drive mobile robot, which is suitable for all-terrain operation and
experiments. The robot has a total weight of 12kg and can carry 12kg on tiles and
floors. It can easily work on grass, dirt, asphalt, and other complex terrains. The
Pioneer3-DX is equipped with batteries, wheel encoders, 19cm tires, 16 anti-
collision sonars, a microcontroller with ARCOS firmware, and a mobile robot
software development kit. Its versatility and reliability make it the research
platform of choice for advanced intelligent robots.

32 Q. Zheng, Z. Peng, P. Zhu, Y. Zhao, W. Ma

Fig. 1. Pioneer robot model
2.2 Pioneer robot obstacle avoidance model

The purpose of obstacle avoidance [11] is to enable the Pioneer robot to
detect obstacles in the known environment map, avoid obstacles in time, and
finally reach the target destination. The regular curve of the mobile robot path
tracking is shown in Equation (1).

Path = {Xr(k) enn

X,(k) = p(6, () (1)
Where, X,.(k) is the reference position of the mobile robot at k£ time,

p(0,.(k)) is the path at k time, and 6,.(k) is the path parameter at & time.

The necessary condition of obstacle avoidance is environment perception.
Obstacle avoidance in an unknown environment requires sensors to obtain the
surrounding environment information, including the shape and position of
obstacles. Therefore, sensor technology plays a key role in obstacle avoidance of
mobile robots. In this paper, the LIDAR sensor is used to obtain environmental
information, and the laser is used to measure the distance between Pioneer robots
and obstacles [12].

ct
d 5 (2)

Where d is the distance, ¢ is the speed of light, and ¢ is the time interval
from the transmission to reception.

The obstacle avoidance diagram of the Pioneer robot is shown in Figure
2(a). When the mobile robot moves on the path and recognizes obstacles ahead, it
would judge whether the next action is to stop or turn to stay away from obstacles.
The composition of the obstacle avoidance area of the Pioneer robot is shown in
Figure 2(b). When the robot is away from obstacles, the robot's state is safe. When
the mobile robot approaches the obstacle and enters the reward area, the robot's
state is considered relatively safe. When the robot enters the punishment area, the
robot would impact the obstacle. The obstacle avoidance model of the Pioneer
robot is defined as follows:

d,, ifd,<r,

d .. =
obs =V o ira, >

3)

Path optimization for dynamic obstacle avoidance of pioneer robot based on DDPG smart agent 33

_ |490bs—0|, ifd, <8,
QObS _{ O, lf‘ do > 0@ (4)

Where, d,;; and 6,,, are the state parameters for obstacle avoidance,
d

center.

obs Tepresent the distance between the obstacle center and the Pioneer robot

Path

Obstacle

Punishmen
area

Reward area

(a) Obstacle avoidance diagram (b) Obstacle avoidance area composition diagram
Fig. 2. Pioneer robot obstacle avoidance diagram

3. Obstacle avoidance algorithm based on DRL

3.1 Smart agent

Deep reinforcement learning (DRL) is an intelligent algorithm that
combines deep learning (DL) and reinforcement learning (RL). In this paper, we
use recurrent neural networks to create DDPG smart agents approach to optimize
path strategy. Our work includes the use of RNN-based DDPG, which is used to
learn how to avoid obstacles and reach the target point efficiently. The main
structure of the smart agent is shown in Figure 3. The agent is used to receive
observations and rewards from the environment, and then send actions to the
environment. The actor is a policy network in the agent. The reward function is to
maximize the cumulative reward to improve path efficiency and obstacle
avoidance efficiency.

4 Smart agent N\

» Policy >
L_J Action
7 a
Policy &
update

N
>
Observation

Our proposed
algorithm

_ 1 J

A

Reward
Tt

Environment

Fig. 3. Smart agent structure

34 Q. Zheng, Z. Peng, P. Zhu, Y. Zhao, W. Ma

The recurrent neural network is a kind of neural network to process
sequence data, which can process serial data at multiple time steps. As shown in
Figure 4(a), RNN consists of an input layer, a hidden layer, and an output layer
[13]. The RNN cycle layer has a memory function and can extract time series
information through parameter sharing at different moments. Therefore, the BP
algorithm is used to train the RNN to minimize the loss to solve the gradient
disappearance before the RNN update. The loss function is shown in Equation (7).
Gradient disappearance means that the gradient in the hidden layer of the RNN is
updated without using the previous information, and the previous gradient
disappears due to the long distance. The RNN cycle structure is shown in Figure
4(b), where multiple RNN layers are the same layer and the same output is copied
as its input.

Hidden layer \Y
x T K

b,

Input layer
(a) RNN cycle layer

h.

bkt

Xy

(b) RNN cycle structure
Fig. 4. Recurrent neural network

v; =softmax(h W +b) (5)

hy = tanh(x, W + h,_{W +b) (6)

Where, 5, is the state information stored in the memory at the current
moment, and /,_; is the state information stored in the memory at the last
moment. x; is the input feature at the current moment, y, is the output feature at

the current moment, ' is the weight matrix, ¢ is the time step, and b is the bias.
tanh is the activation function, and softmax is the normalized exponential
function of the fully connected network.

2
E(9)=%Z(y,~ 5)
i=1

Path optimization for dynamic obstacle avoidance of pioneer robot based on DDPG smart agent 35

where, E is the expected value of the loss function. € is the set of
parameters. y is the actual value, and y is the predicted value.

3.2 Our proposed algorithm

The structure of our proposed algorithm is shown in Figure 5, which first
initializes actor network parameters and critic network parameters. Then select the
action according to the strategy in the current state. The action is performed in the
environment and transfers the state to obtain rewards [14]. Finally, the DDPG
agent is created with recurrent neural networks. The Q-value function and actor
network are approximated by RNN. The actor and critic networks are updated
according to the formula. The DDPG algorithm can solve the continuous action
control problem well [15]. When the action is continuous, the maximum gain is
obtained while the specific action value can be output to obtain a deterministic
strategy.

a; = pu(s;|60%) (8)
R =Y 7" 9)
i=t

Where R is the reward function, y is the discount rate, and r is the
reward.

V-REP = o> &
/ \ e(\;'b » ‘70}'
= o &, R
Conv ap u(s,) Actor ! oo o Critic
|
(SL,T‘“SH 1)

Policy Network 4% o Q-Value
Pioneer3-DX

e .
Observatlon‘ (parameter: §) | “(s) . d| (parameter:9<)
\ Y, 5

Fig. 5. Our proposed algorithm structure

First, a random batch is sampled from the replay buffer. The sampled data
is (s,a,r,s"), and the action in the state s’ is calculated using the target actor

network as shown in Equation (10). The target value y is calculated using the
target Critic network shown in Equation (11). The evaluation value ¢ is

calculated by using the Critic network shown in Equation (12). Minimize the
difference between the evaluated value and the expected value by using the
gradient descent method as shown in Equation (13).

36 Q. Zheng, Z. Peng, P. Zhu, Y. Zhao, W. Ma

a':y'(s'|9ﬂ') (10)
y=r+70(s.a]6¢) (11)
q=0(s.a¢°) (12)
L=(y-q) (13)

Second, the soft target is used to update the target function and a learning
rate is introduced. The old and new target network parameters are weighted mean.
Then assign the value to the target network. The target actor network is obtained
in Equation (14), and the target Critic network is obtained in Equation (15).

o1 =10t +(1-7)0~ (14)

09 =162 +(1-7)6< (15)

Finally, due to the low exploration ability of the DDPG algorithm. The

Ornstein Uhlenbeck (OU) noise is introduced to the output action. So that the

Pioneer robot can explore the environment better. The stochastic differential
equation of the OU process is shown in Equation (16).

dN,; =6(u—N,)dt+cdB; (16)

Where, p is the mean value, o and € are parameters and both are greater

than 0. B, is the standard Brownian motion. N is the status. When @ is larger,

the N, larger and faster to approach the mean value. The covariance of the OU
noise with Gaussian distribution is shown in equation (18).

N =o N as, (17)

2
Cov(N,,Ny) :(27_9(8—9|t—s| —e_0|t+s|) (18)

4. Simulation results and analysis

4.1 Simulation environment configuration

This simulation experiment is based on Python and virtual robot
experimentation platforms (V-REP) to establish the simulation environment. The
specific experimental configuration is shown in Table 1. V-REP is a dynamic
simulation software, which is mainly used in the field of robot simulation
modeling. A distributed control structure can be implemented using robot
operating system (ROS) nodes and a remote application programming interface
(APD).

Path optimization for dynamic obstacle avoidance of pioneer robot based on DDPG smart agent 37

Table 1
Experimental configuration parameter
Name Configuration
system Windows 10
CPU Interl(R) Core i7-11800H
GPU NVIDIA GeForce RTX 3090
mobile robot Pioneer3-DX
simulation platform V-REP
algorithm environment Python 3.9

4.2 Analysis of simulation result

In this paper, we build a simulation environment based on V-REP and
simulate it interactively with Python through API. Two different V-REP obstacle
avoidance scenarios are shown in Figure 6. As shown in Figure 6(a), V-REP
scenario 1 is a maze map we built. As shown in Figure 6(b), V-REP scenario 2 is
a fixed obstacle scene built with eight cuboids. Our proposed algorithm is applied
to these two V-REP simulation environments to train the Pioneer robot for
dynamic obstacle avoidance.

e

5
b

L2

.
]
Ll

| \”7‘
o 21 8
LB 4 :

(a) V-REP scenario 1 (b) V-REP scenario 2
Fig. 6. Two different V-REP scenarios

We build the three-dimensional model of the Pioneer mobile robot in
SolidWorks. The unified robot description format (URDF) file is exported and the
URDF model is imported into V-REP software. In Figure 6(a), the pink part
around the robot is the set sensor module, and the white part is the maze map built
with a 200cmx80cm wall. The joints of the robot are set for torque transmission.
The blue part in Figure 6(b) is an obstacle built with eight cuboids. We combined
V-REP with Python to train the mobile robot in two scenarios with our proposed
algorithm. Set the learning gain of scene 1 to 0.5 and the robot moving speed to
0.7mm/s. Set the learning gain of scene 2 to 1 and the robot moving speed to 0.7
mm/s. When the robot's left wheel speed is greater than the right wheel speed, the
robot turns right. Instead, the robot turns left.

38 Q. Zheng, Z. Peng, P. Zhu, Y. Zhao, W. Ma

The simulation results are shown in Figure 7. Figure 7(a) shows the binary
grid map of V-REP scenario 1. We build the binary map of V-REP scenario 1 in
MATLAB and set the sensor scanning parameters. We set the binary code of the
solid black line in Figure 7(a) to 1 and the rest set code to 0. Figure 7(b) shows the
visualization of path tracking for V-REP scenario 2. The mobile robot is equipped
with a LIDAR, which enables it to scan for obstacles in front of it while it is
working. The blue part in Figure 7(b) shows the LIDAR scanning state, where we
can visualize the mobile robot path tracking.

Figure 7(c) shows the two-dimensional grid map of V-REP scenario 2.
Figure 7(d) shows the two-dimensional simultaneous localization and mapping
(SLAM) map of V-REP scenario 2. We use the SLAM Map Builder application in
MATLAB to create the SLAM map of V-REP scenario 2. We import the LIDAR
scanned data and set the downsample to 100%. The data is sampled uniformly to
reduce the computation time of the SLAM algorithm. To decrease the likelihood
of accepting and using the detected loop closure, we set the loop closure threshold
to 300. The optimization interval is set to 10 to optimize the pose graph. After
filtering the data and setting SLAM parameters, the application begins to process
the scanned data and finally builds the SLAM map as shown in Figure 7(d).

Binary grid map Mobile robot path-following

0 5 10 15 20 25 -4 2 0 2 4 6 8
X (meters) X (meters)

(a) Binary grid map of V-REP scenario 1

Grid map

2 0 2 4 6 8

X (meters) e s s I T T
(c) 2D grid map of V-REP scenario 2 (d) 2D SLAM map of V-REP scenario 2
Fig. 7. Simulation results

Path optimization for dynamic obstacle avoidance of pioneer robot based on DDPG smart agent 39

4.3 Our proposed algorithm training results

To make the model training more effective and converge faster, we pre-set
the tuning parameters before starting the learning process. After several
simulations, the hyperparameters of our proposed algorithm are set as shown in
Table 2. These hyperparameters are chosen to ensure stable training of the neural
network model and faster learning of data features. The maximum training set of
our proposed algorithm is 3000, the maximum length of each set is 500, and the
average length is 50.

Table 2
The hyperparameter of our proposed algorithm

Hyperparameter Value

learn rate for actor 0.0001
learn rate for critic 0.001
maximum episode 3000
maximum step 500
average window length 50

experience buffer 1x10°

discount factor 0.995
batch size 128
OU noise 0.15

(a) Episode reward curve

Ornstein L ise

200 300 400 500 600 700 800 900 1000
Steps

(b) OU noise
Fig. 8. Group 1 results of our proposed algorithm

Our proposed algorithm has the shortest training time in group 1, and the
training result is shown in Figure 8. Figure 8(a) shows the episode reward curve
of our proposed algorithm. The solid blue line in Figure 8(a) is the episode
reward, and the solid red line is the average reward. It can be seen from Figure

40 Q. Zheng, Z. Peng, P. Zhu, Y. Zhao, W. Ma

8(a) that the episode reward gradually goes to negative reinforcement and reaches
the maximum set reward when the set is around 400. The average reward shows a
stable state in general, and episode nodes are evenly distributed. The average
reward is -272 and the average step is 130.2. Figure 8(b) shows the OU noise of
our proposed algorithm. As can be seen from Figure 8(b), the difference between
two adjacent steps of OU noise of our proposed algorithm is small and generally
fluctuates around the mean value of 0.15.

To further verify the reliability of our proposed algorithm, our proposed
algorithm is compared with the DDPG algorithm as shown in Table 3. The DDPG
algorithm has the shortest training time in group 3, and the training result is
shown in Figure 9. Figure 9(a) shows the episode reward curve of the DDPG
algorithm. As can be seen from Figure 9(a), the episode reward fluctuates a lot
and is distributed around -72.4. The average reward is -49.2 and the average step
is 82.3. Figure 9(b) shows the OU noise of the DDPG algorithm. As can be seen
from Figure 9(b), the mean value of OU noise of the DDPG algorithm is small,
and the overall fluctuation is between -0.5 and 0.5. We further analyze the
superiority of our proposed algorithm.

aaaaaaaaaaaa

(a) Episode reward curve
I

Ornstein Uhlenbeck Noise

100 200 300 400 500 600 700 800 900 1000
Steps

(b) OU noise
Fig. 9. Group 3 results of the DDPG algorithm

We use the Reinforcement Learning Designer application in MATLAB to
train the hyperparameters of our proposed algorithm. We import the created smart
agent and the defined environment. As can be seen from Table 3, there are three
groups for each algorithm. We select three optimal training results in each of the
multiple simulations. The differences between our proposed algorithm and the
DDPG algorithm are compared and analyzed. Our proposed algorithm has the

Path optimization for dynamic obstacle avoidance of pioneer robot based on DDPG smart agent 41

shortest training time in group 1, which takes 8630s. The DDPG algorithm has the
shortest training time in group 3, which takes 11717s. Our proposed algorithm
reduces the training time by 26.3% compared with the DDPG algorithm. The
different training time in Table 3 is due to the randomness of the neural network
algorithm, in which weights and thresholds are initialized randomly. Therefore,
training the same network under the same conditions would get different results.

Table 3
Comparison between our proposed algorithm and the DDPG algorithm

Algorithm | Group | Episode reward | Average reward | Average step | Time

1 -136.5 =272 130.2 8630s

Our proposed 2 -149.5 -164.6 73.8 10349s
3 -222.5 -169.2 80 9596s

1 -23.7 -63.2 74.1 12138s

DDPG 2 -56.8 -60.5 82.6 13449s

3 -72.4 -49.2 82.3 11717s

5. Conclusions

In this paper, a method is proposed to create DDPG smart agents with
recurrent neural networks to optimize the path strategy, which is based on a
backpropagation algorithm to train RNN to train the agent. In dynamic and
complex environments, the smart agent is used to learn how to avoid obstacles
and reach the target point efficiently. Our proposed algorithm reduces the training
time by 26.3% compared with the DDPG algorithm. Our proposed scheme can
solve the problem of not finding paths in dynamic environments, thus improving
the path efficiency of the Pioneer robot.

In the future, we plan to deploy our proposed scheme in actual
experiments and optimize the smart agent neural network model. There are still
many improvements that need to be done. First, the random initialization leads to
different training results. This paper uses gradient descent to reduce the
difference, but there are still subtle differences. We further use the random seed to
increase certainty. Second, the use of one noise in this paper is not enough. Our
next work studies a multi-step exploration method to improve the exploration
ability of the DDPG algorithm. Third, we use a neural network with better
performance instead of RNN for optimization.

Acknowledgement

This work was supported by the National Natural Science Foundation of
China (62073239).

42 Q. Zheng, Z. Peng, P. Zhu, Y. Zhao, W. Ma

REFERENCES

[1]. Y. Huang, J. Su. “Visual servoing of nonholonomic mobile robots: A review and a novel
perspective”. IEEE Access, vol. 7, Sept. 2019, pp. 134968-134977.

[2]. H. Zhang, Y. Zhu, X. Liu, et al. “Analysis of obstacle avoidance strategy for dual-arm robot
based on speed field with improved artificial potential field algorithm”. Electronics, vol. 10,
no. 15, Jul. 2021, pp. 1-17.

[3]. Y. Tian, W. Feng, M. Ouyang, et al. “A positioning error compensation method for multiple
degrees of freedom robot arm based on the measured and target position error”. Advances
in Mechanical Engineering, vol. 14, no. 5, May. 2022, pp. 1-13.

[4]. Z Liu, H. Liu, Z. Lu, et al. “A dynamic fusion pathfinding algorithm using Delaunay
triangulation and improved A-star for mobile robots”. IEEE Access, vol. 9, Jan. 2021, pp.
20602-20621.

[5]. O. Song, S. Li, J. Yang, et al. “Intelligent Optimization Algorithm-Based Path Planning for a
Mobile Robot”. Computational Intelligence and Neuroscience, vol. 2021, Sept. 2021, pp. 1-
17.

[6]. S.M.H. Rostami, A.K. Sangaiah, J. Wang, et al. “Obstacle avoidance of mobile robots using
modified artificial potential field algorithm”. EURASIP Journal on Wireless
Communications and Networking, vol. 2019, no. 1, Mar. 2019, pp. 1-19.

[7]. O. Wu, Z. Chen, L. Wang, et al. “Real-time dynamic path planning of mobile robots: a novel
hybrid heuristic optimization algorithm”. Sensors, vol. 20, no. 1, Dec. 2019, pp. 1-18.

[8]. J. Choi, G. Lee, C. Lee. “Reinforcement learning-based dynamic obstacle avoidance and
integration of path planning”. Intelligent Service Robotics, vol. 14, Oct. 2021, pp. 663-677.

[9]. X. Peng, R. Chen, J. Zhang, et al. “Enhanced Autonomous Navigation of Robots by Deep
Reinforcement Learning Algorithm with Multistep Method”. Sensors and Materials, vol.
33, no. 2, Nov. 2020, pp. 825-842.

[10]. X. Cheng, S. Zhang, S. Cheng, et al. “Path-Following and Obstacle Avoidance Control of
Nonholonomic Wheeled Mobile Robot Based on Deep Reinforcement Learning”. Applied
Sciences, vol. 12, no. 14, Jul. 2022, pp. 1-14.

[11]. M. Pan, J. Li, X. Yang, et al. “Collision risk assessment and automatic obstacle avoidance
strategy for teleoperation robots”. Computers & Industrial Engineering, vol. 169, Jul. 2022,
pp. 1-19.

[12]. M.A. Mufioz-Baiién, E. Velasco-Sinchez, F.A. Candelas, et al. “OpenStreetMap-Based
Autonomous Navigation With LiDAR Naive-Valley-Path Obstacle Avoidance”. IEEE
Transactions on Intelligent Transportation Systems, vol. 23, no. 12, Sept. 2022, pp. 24428-
24438.

[13]. R. Coban. “A context layered locally recurrent neural network for dynamic system
identification”. Engineering Applications of Artificial Intelligence, vol. 26, no. 1, Jan. 2013,
pp- 241-250.

[14]. T. Schaul, J. Quan, 1. Antonoglou, et al. “Prioritized experience replay”. arXiv preprint
arXiv:1511.05952, Feb. 2016, pp. 1-21.

[15]. T.P. Lillicrap, J.J. Hunt, A. Pritzel, et al. “Continuous control with deep reinforcement
learning”. arXiv preprint arXiv:1509.02971, Jul. 2015, pp. 1-14.

