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PATH OPTIMIZATION FOR DYNAMIC OBSTACLE 
AVOIDANCE OF PIONEER ROBOT BASED ON DDPG 

SMART AGENT 

Qingchun ZHENG1,2, Zhi PENG1,2,3, Peihao ZHU1,2*, Yangyang ZHAO4, 
Wenpeng MA1,2 

To improve the path efficiency for dynamic obstacle avoidance algorithms of 
Pioneer robots, this paper proposes an approach to create deep deterministic policy 
gradient (DDPG) smart agents with recurrent neural networks (RNN) to optimize 
the path strategy. This approach is realized by training RNN with the 
backpropagation (BP) algorithm to train the agent. First, the SolidWorks model and 
obstacle avoidance model of the Pioneer robot is established. The LIDAR sensor is 
used to obtain environmental information. Further, deep reinforcement learning 
obstacle avoidance algorithm based on RNN is presented. The dynamic obstacle 
avoidance path of the Pioneer robot is further simulated in two different virtual 
robot experiment platform (V-REP) scenarios. The simulation results show that the 
proposed algorithm shortens the training time by 26.3% compared with the DDPG 
algorithm. Our proposed scheme can improve the path efficiency for dynamic 
obstacle avoidance of the Pioneer robot. 

Keywords: recurrent neural network, deep deterministic policy gradient, mobile 
robot, pioneer, deep reinforcement learning 

1. Introduction 

With the continuous development of science and technology in the world, 
mobile robot (MR) [1] technology is widely used in the robot industry, which is 
one of the key research contents in the field of robotics. Navigation and obstacle 
avoidance have become key technologies for mobile robots to deal with complex 
working environments. However, in dynamic environments with more complex 
requirements, obstacle avoidance alone is no longer sufficient for the work of 
mobile robots. 
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In complex obstacle environments, mobile robot faces a large number of 
external obstacles and disturbances. It is crucial to identify these disturbances, 
quickly determine the obstacle location, and adopt an optimal obstacle avoidance 
strategy. Mobile robots need to optimize the obstacle avoidance algorithm and 
obstacle avoidance strategy when avoiding obstacles in front of them [2]. In 
addition, the highly dynamic environment is prone to incorrect data correlation, 
which leads to robot positioning errors or positioning failures [3] and affects the 
normal operation of mobile robots. Therefore, improving the accuracy and 
localization robustness of the mobile robot obstacle avoidance algorithm is the 
most important task to improve the obstacle avoidance capability of mobile 
robots. 

Traditional path optimization obstacle avoidance algorithms include A-
star, rapidly exploring random trees (RRT), and artificial potential field (APF). 
Liu et al. [4] proposed a dynamic fusion pathfinding algorithm based on the 
Delaunay triangulation algorithm and improved A-star, which improves the 
success rate of path planning for mobile robots under complex obstacles. This 
method applies to simple maps and increases consumption when the number of 
path nodes increases. Song et al. [5] proposed an improved smooth rapidly 
exploring random tree algorithm to remove redundant nodes and generate smooth 
paths, which can effectively shorten the path length of global path planning. This 
method is suitable for simple path planning, while complex path needs to combine 
with other algorithms to train the dataset. Rostami et al. [6] proposed an improved 
artificial potential field method to avoid collision between mobile robots and fixed 
obstacles. This method is at the local minimum value and the target is inaccessible 
when the obstacle is near the target. Wu et al. [7] proposed an algorithm based on 
beetle antennae search and the APF algorithm, which accelerates the convergence 
speed and avoids the local minimum problem of the APF algorithm. 

In addition to traditional obstacle avoidance algorithms, reinforcement 
learning methods are also the focus of research. Not only improve the accuracy of 
mobile robot obstacle avoidance algorithms but also advance the current mobile 
robot obstacle avoidance technology. Choi et al. [8] proposed a framework for 
reinforcement learning in decentralized collision avoidance where each agent 
independently makes its decision without communication with others. Peng et al. 
[9] proposed a novel method based on the multistep update method and double 
deep Q-network to improve autonomous navigation. This method adopts terminal 
and non-terminal rewards to train the mobile robot navigation, which improves 
the learning speed and reduces the learning time. Cheng et al. [10] trained 
nonholonomic wheeled mobile robots to reach the followed path and avoid 
obstacles based on a deep deterministic policy gradient. This method needs to 
optimize the strategy and design the reward function.  
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As can be seen from the above research, the performance of path 
optimization obstacle avoidance algorithms based on deep reinforcement learning 
outperforms the traditional method. DDPG algorithm is a deterministic strategy 
with limited exploration ability. Therefore, this paper proposes a method to create 
DDPG smart agents with recurrent neural networks to optimize the path strategy. 
The RNN is trained with a BP algorithm to minimize the loss to solve the gradient 
disappearance before the RNN update. The main contributions of this paper can 
be described as follows: 

(1) We propose an approach to create DDPG smart agents with recurrent 
neural networks, which is based on a backpropagation algorithm to train RNN to 
train the agent. In dynamic and complex environments, the smart agent is used to 
learn how to avoid obstacles and reach the target point efficiently. 

(2) Our proposed algorithm reduces the training time by 26.3% compared 
with the DDPG algorithm.  

(3) Path optimization is integrated with reinforcement learning-based 
obstacle avoidance to solve the problem of not finding paths in dynamic 
environments, thus improving path efficiency. 

The main content of the work is described as follows. Section 2 presents 
the Pioneer robot model and obstacle avoidance model. Section 3 depicts the 
dynamic obstacle avoidance algorithm based on deep reinforcement learning. In 
Section 4, the dynamic obstacle avoidance path of the Pioneer robot is simulated. 
In Section 5, we summarize our research progress. 

2. Pioneer robot modeling 

2.1 Pioneer robot model 
The research object of mobile robots in this paper is the Pioneer3-DX 

robot. Its SolidWorks model is shown in Figure 1. Pioneer3-DX is a two-wheel 
differential drive mobile robot, which is suitable for all-terrain operation and 
experiments. The robot has a total weight of 12kg and can carry 12kg on tiles and 
floors. It can easily work on grass, dirt, asphalt, and other complex terrains. The 
Pioneer3-DX is equipped with batteries, wheel encoders, 19cm tires, 16 anti-
collision sonars, a microcontroller with ARCOS firmware, and a mobile robot 
software development kit. Its versatility and reliability make it the research 
platform of choice for advanced intelligent robots. 



32                                    Q. Zheng, Z. Peng, P. Zhu, Y. Zhao, W. Ma 

 
Fig. 1. Pioneer robot model 

2.2 Pioneer robot obstacle avoidance model 
The purpose of obstacle avoidance [11] is to enable the Pioneer robot to 

detect obstacles in the known environment map, avoid obstacles in time, and 
finally reach the target destination. The regular curve of the mobile robot path 
tracking is shown in Equation (1). 

{ }n( ) ( ) ( ( ))r r rPath X k X k p k= ∈ = θ       (1) 

Where, ( )rX k  is the reference position of the mobile robot at k  time, 
( ( ))rp kθ  is the path at k  time, and ( )r kθ  is the path parameter at k  time. 

The necessary condition of obstacle avoidance is environment perception. 
Obstacle avoidance in an unknown environment requires sensors to obtain the 
surrounding environment information, including the shape and position of 
obstacles. Therefore, sensor technology plays a key role in obstacle avoidance of 
mobile robots. In this paper, the LIDAR sensor is used to obtain environmental 
information, and the laser is used to measure the distance between Pioneer robots 
and obstacles [12]. 

2
ctd =                                           (2) 

Where d  is the distance, c  is the speed of light, and t  is the time interval 
from the transmission to reception. 

The obstacle avoidance diagram of the Pioneer robot is shown in Figure 
2(a). When the mobile robot moves on the path and recognizes obstacles ahead, it 
would judge whether the next action is to stop or turn to stay away from obstacles. 
The composition of the obstacle avoidance area of the Pioneer robot is shown in 
Figure 2(b). When the robot is away from obstacles, the robot's state is safe. When 
the mobile robot approaches the obstacle and enters the reward area, the robot's 
state is considered relatively safe. When the robot enters the punishment area, the 
robot would impact the obstacle. The obstacle avoidance model of the Pioneer 
robot is defined as follows: 

 ,       
  0,        { o o r

o r

d if d r
obs if d r

d
<

≥
=                                            (3) 



Path optimization for dynamic obstacle avoidance of pioneer robot based on DDPG smart agent 33 

 ,       
      0,            { obs o e

o e

if d
obs if d

θ θ θ
θ

θ
− <

≥
=                                            (4) 

Where, obsd  and obsθ  are the state parameters for obstacle avoidance, 

obsd  represent the distance between the obstacle center and the Pioneer robot 
center. 

  
(a) Obstacle avoidance diagram (b) Obstacle avoidance area composition diagram 

Fig. 2. Pioneer robot obstacle avoidance diagram 

3. Obstacle avoidance algorithm based on DRL 

3.1 Smart agent 
Deep reinforcement learning (DRL) is an intelligent algorithm that 

combines deep learning (DL) and reinforcement learning (RL). In this paper, we 
use recurrent neural networks to create DDPG smart agents approach to optimize 
path strategy. Our work includes the use of RNN-based DDPG, which is used to 
learn how to avoid obstacles and reach the target point efficiently. The main 
structure of the smart agent is shown in Figure 3. The agent is used to receive 
observations and rewards from the environment, and then send actions to the 
environment. The actor is a policy network in the agent. The reward function is to 
maximize the cumulative reward to improve path efficiency and obstacle 
avoidance efficiency. 

 

 
Fig. 3. Smart agent structure 
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The recurrent neural network is a kind of neural network to process 
sequence data, which can process serial data at multiple time steps. As shown in 
Figure 4(a), RNN consists of an input layer, a hidden layer, and an output layer 
[13]. The RNN cycle layer has a memory function and can extract time series 
information through parameter sharing at different moments. Therefore, the BP 
algorithm is used to train the RNN to minimize the loss to solve the gradient 
disappearance before the RNN update. The loss function is shown in Equation (7). 
Gradient disappearance means that the gradient in the hidden layer of the RNN is 
updated without using the previous information, and the previous gradient 
disappears due to the long distance. The RNN cycle structure is shown in Figure 
4(b), where multiple RNN layers are the same layer and the same output is copied 
as its input. 

 
(a) RNN cycle layer 

 
(b) RNN cycle structure 

Fig. 4. Recurrent neural network 
 

softmax( )t ty h W b= +                                            (5) 

1tanh( )t t th x W h W b−= + +                                            (6) 
Where, th  is the state information stored in the memory at the current 

moment, and 1th −  is the state information stored in the memory at the last 
moment. tx  is the input feature at the current moment, ty  is the output feature at 
the current moment, W  is the weight matrix, t  is the time step, and b  is the bias. 
tanh  is the activation function, and softmax is the normalized exponential 
function of the fully connected network. 
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where, E  is the expected value of the loss function. θ  is the set of 
parameters. y  is the actual value, and ŷ  is the predicted value. 

 
3.2 Our proposed algorithm 
The structure of our proposed algorithm is shown in Figure 5, which first 

initializes actor network parameters and critic network parameters. Then select the 
action according to the strategy in the current state. The action is performed in the 
environment and transfers the state to obtain rewards [14]. Finally, the DDPG 
agent is created with recurrent neural networks. The Q-value function and actor 
network are approximated by RNN. The actor and critic networks are updated 
according to the formula. The DDPG algorithm can solve the continuous action 
control problem well [15]. When the action is continuous, the maximum gain is 
obtained while the specific action value can be output to obtain a deterministic 
strategy. 

( )t ta s µµ θ=                                            (8) 
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∞
−

=
=∑                                            (9) 

Where R  is the reward function, γ  is the discount rate, and r  is the 
reward. 
 

 
Fig. 5. Our proposed algorithm structure 

 
First, a random batch is sampled from the replay buffer. The sampled data 

is ( , , , )s a r s′ , and the action in the state s′  is calculated using the target actor 
network as shown in Equation (10). The target value y  is calculated using the 
target Critic network shown in Equation (11). The evaluation value q  is 
calculated by using the Critic network shown in Equation (12). Minimize the 
difference between the evaluated value and the expected value by using the 
gradient descent method as shown in Equation (13). 
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( )a s µµ θ ′′ ′ ′=                                            (10) 

( ), Qy r Q s aγ θ ′′ ′ ′= +                                            (11) 

( ), Qq Q s a θ=                                            (12) 

( )2L y q= −                                            (13) 
Second, the soft target is used to update the target function and a learning 

rate is introduced. The old and new target network parameters are weighted mean. 
Then assign the value to the target network. The target actor network is obtained 
in Equation (14), and the target Critic network is obtained in Equation (15).  

( )1µ µ µθ τθ τ θ′ ′= + −                                            (14) 

( )1Q Q Qθ τθ τ θ′ ′= + −                                            (15) 
Finally, due to the low exploration ability of the DDPG algorithm. The 

Ornstein Uhlenbeck (OU) noise is introduced to the output action. So that the 
Pioneer robot can explore the environment better. The stochastic differential 
equation of the OU process is shown in Equation (16). 

 
( )t t tdN N dt dBθ µ σ= − +                                            (16) 

Where, µ  is the mean value, σ  and θ  are parameters and both are greater 
than 0. tB  is the standard Brownian motion. N  is the status. When θ  is larger, 
the tN  larger and faster to approach the mean value. The covariance of the OU 
noise with Gaussian distribution is shown in equation (18). 
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4. Simulation results and analysis 

4.1 Simulation environment configuration 
This simulation experiment is based on Python and virtual robot 

experimentation platforms (V-REP) to establish the simulation environment. The 
specific experimental configuration is shown in Table 1. V-REP is a dynamic 
simulation software, which is mainly used in the field of robot simulation 
modeling. A distributed control structure can be implemented using robot 
operating system (ROS) nodes and a remote application programming interface 
(API). 
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Table 1 
Experimental configuration parameter 
Name Configuration 

system 
CPU 
GPU 

mobile robot 
simulation platform 

algorithm environment 

Windows 10 
Interl(R) Core i7-11800H 

NVIDIA GeForce RTX 3090 
Pioneer3-DX 

V-REP 
Python 3.9 

 
4.2 Analysis of simulation result 
In this paper, we build a simulation environment based on V-REP and 

simulate it interactively with Python through API. Two different V-REP obstacle 
avoidance scenarios are shown in Figure 6. As shown in Figure 6(a), V-REP 
scenario 1 is a maze map we built. As shown in Figure 6(b), V-REP scenario 2 is 
a fixed obstacle scene built with eight cuboids. Our proposed algorithm is applied 
to these two V-REP simulation environments to train the Pioneer robot for 
dynamic obstacle avoidance. 
 

  
(a) V-REP scenario 1 (b) V-REP scenario 2 

Fig. 6. Two different V-REP scenarios 
 

We build the three-dimensional model of the Pioneer mobile robot in 
SolidWorks. The unified robot description format (URDF) file is exported and the 
URDF model is imported into V-REP software. In Figure 6(a), the pink part 
around the robot is the set sensor module, and the white part is the maze map built 
with a 200cm×80cm wall. The joints of the robot are set for torque transmission. 
The blue part in Figure 6(b) is an obstacle built with eight cuboids. We combined 
V-REP with Python to train the mobile robot in two scenarios with our proposed 
algorithm. Set the learning gain of scene 1 to 0.5 and the robot moving speed to 
0.7mm/s. Set the learning gain of scene 2 to 1 and the robot moving speed to 0.7 
mm/s. When the robot's left wheel speed is greater than the right wheel speed, the 
robot turns right. Instead, the robot turns left. 
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The simulation results are shown in Figure 7. Figure 7(a) shows the binary 
grid map of V-REP scenario 1. We build the binary map of V-REP scenario 1 in 
MATLAB and set the sensor scanning parameters. We set the binary code of the 
solid black line in Figure 7(a) to 1 and the rest set code to 0. Figure 7(b) shows the 
visualization of path tracking for V-REP scenario 2. The mobile robot is equipped 
with a LIDAR, which enables it to scan for obstacles in front of it while it is 
working. The blue part in Figure 7(b) shows the LIDAR scanning state, where we 
can visualize the mobile robot path tracking. 

Figure 7(c) shows the two-dimensional grid map of V-REP scenario 2. 
Figure 7(d) shows the two-dimensional simultaneous localization and mapping 
(SLAM) map of V-REP scenario 2. We use the SLAM Map Builder application in 
MATLAB to create the SLAM map of V-REP scenario 2. We import the LIDAR 
scanned data and set the downsample to 100%. The data is sampled uniformly to 
reduce the computation time of the SLAM algorithm. To decrease the likelihood 
of accepting and using the detected loop closure, we set the loop closure threshold 
to 300. The optimization interval is set to 10 to optimize the pose graph. After 
filtering the data and setting SLAM parameters, the application begins to process 
the scanned data and finally builds the SLAM map as shown in Figure 7(d). 
 

  
(a) Binary grid map of V-REP scenario 1 (b) Visual path of V-REP scenario 2 

  
(c) 2D grid map of V-REP scenario 2 (d) 2D SLAM map of V-REP scenario 2 

Fig. 7. Simulation results 
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4.3 Our proposed algorithm training results 
To make the model training more effective and converge faster, we pre-set 

the tuning parameters before starting the learning process. After several 
simulations, the hyperparameters of our proposed algorithm are set as shown in 
Table 2. These hyperparameters are chosen to ensure stable training of the neural 
network model and faster learning of data features. The maximum training set of 
our proposed algorithm is 3000, the maximum length of each set is 500, and the 
average length is 50. 

 
Table 2 

The hyperparameter of our proposed algorithm 
Hyperparameter Value 

learn rate for actor 
learn rate for critic 
maximum episode 

maximum step 
average window length 

experience buffer 
discount factor 

batch size 
OU noise 

0.0001 
0.001 
3000 
500 
50 

1×106 
0.995 
128 
0.15 

 

 
(a) Episode reward curve 

 
(b) OU noise 

Fig. 8. Group 1 results of our proposed algorithm 
 

Our proposed algorithm has the shortest training time in group 1, and the 
training result is shown in Figure 8. Figure 8(a) shows the episode reward curve 
of our proposed algorithm. The solid blue line in Figure 8(a) is the episode 
reward, and the solid red line is the average reward. It can be seen from Figure 
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8(a) that the episode reward gradually goes to negative reinforcement and reaches 
the maximum set reward when the set is around 400. The average reward shows a 
stable state in general, and episode nodes are evenly distributed. The average 
reward is -272 and the average step is 130.2. Figure 8(b) shows the OU noise of 
our proposed algorithm. As can be seen from Figure 8(b), the difference between 
two adjacent steps of OU noise of our proposed algorithm is small and generally 
fluctuates around the mean value of 0.15. 

To further verify the reliability of our proposed algorithm, our proposed 
algorithm is compared with the DDPG algorithm as shown in Table 3. The DDPG 
algorithm has the shortest training time in group 3, and the training result is 
shown in Figure 9. Figure 9(a) shows the episode reward curve of the DDPG 
algorithm. As can be seen from Figure 9(a), the episode reward fluctuates a lot 
and is distributed around -72.4. The average reward is -49.2 and the average step 
is 82.3. Figure 9(b) shows the OU noise of the DDPG algorithm. As can be seen 
from Figure 9(b), the mean value of OU noise of the DDPG algorithm is small, 
and the overall fluctuation is between -0.5 and 0.5. We further analyze the 
superiority of our proposed algorithm. 
 

 
(a) Episode reward curve 

 
(b) OU noise 

Fig. 9. Group 3 results of the DDPG algorithm 
 

We use the Reinforcement Learning Designer application in MATLAB to 
train the hyperparameters of our proposed algorithm. We import the created smart 
agent and the defined environment. As can be seen from Table 3, there are three 
groups for each algorithm. We select three optimal training results in each of the 
multiple simulations. The differences between our proposed algorithm and the 
DDPG algorithm are compared and analyzed. Our proposed algorithm has the 
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shortest training time in group 1, which takes 8630s. The DDPG algorithm has the 
shortest training time in group 3, which takes 11717s. Our proposed algorithm 
reduces the training time by 26.3% compared with the DDPG algorithm. The 
different training time in Table 3 is due to the randomness of the neural network 
algorithm, in which weights and thresholds are initialized randomly. Therefore, 
training the same network under the same conditions would get different results. 

 
Table 3 

Comparison between our proposed algorithm and the DDPG algorithm 

Algorithm Group Episode reward Average reward Average step Time 

Our proposed 
1 
2 
3 

-136.5 
-149.5 
-222.5 

-272 
-164.6 
-169.2 

130.2 
73.8 
80 

8630s 
10349s 
9596s 

DDPG 
1 
2 
3 

-23.7 
-56.8 
-72.4 

-63.2 
-60.5 
-49.2 

74.1 
82.6 
82.3 

12138s 
13449s 
11717s 

 

5. Conclusions 

In this paper, a method is proposed to create DDPG smart agents with 
recurrent neural networks to optimize the path strategy, which is based on a 
backpropagation algorithm to train RNN to train the agent. In dynamic and 
complex environments, the smart agent is used to learn how to avoid obstacles 
and reach the target point efficiently. Our proposed algorithm reduces the training 
time by 26.3% compared with the DDPG algorithm. Our proposed scheme can 
solve the problem of not finding paths in dynamic environments, thus improving 
the path efficiency of the Pioneer robot. 

In the future, we plan to deploy our proposed scheme in actual 
experiments and optimize the smart agent neural network model. There are still 
many improvements that need to be done. First, the random initialization leads to 
different training results. This paper uses gradient descent to reduce the 
difference, but there are still subtle differences. We further use the random seed to 
increase certainty. Second, the use of one noise in this paper is not enough. Our 
next work studies a multi-step exploration method to improve the exploration 
ability of the DDPG algorithm. Third, we use a neural network with better 
performance instead of RNN for optimization. 

Acknowledgement 

This work was supported by the National Natural Science Foundation of 
China (62073239). 



42                                    Q. Zheng, Z. Peng, P. Zhu, Y. Zhao, W. Ma 

R E F E R E N C E S 

[1]. Y. Huang, J. Su. “Visual servoing of nonholonomic mobile robots: A review and a novel 
perspective”. IEEE Access, vol. 7, Sept. 2019, pp. 134968-134977. 

[2]. H. Zhang, Y. Zhu, X. Liu, et al. “Analysis of obstacle avoidance strategy for dual-arm robot 
based on speed field with improved artificial potential field algorithm”. Electronics, vol. 10, 
no. 15, Jul. 2021, pp. 1-17. 

[3]. Y. Tian, W. Feng, M. Ouyang, et al. “A positioning error compensation method for multiple 
degrees of freedom robot arm based on the measured and target position error”. Advances 
in Mechanical Engineering, vol. 14, no. 5, May. 2022, pp. 1-13. 

[4]. Z. Liu, H. Liu, Z. Lu, et al. “A dynamic fusion pathfinding algorithm using Delaunay 
triangulation and improved A-star for mobile robots”. IEEE Access, vol. 9, Jan. 2021, pp. 
20602-20621. 

[5]. Q. Song, S. Li, J. Yang, et al. “Intelligent Optimization Algorithm-Based Path Planning for a 
Mobile Robot”. Computational Intelligence and Neuroscience, vol. 2021, Sept. 2021, pp. 1-
17. 

[6]. S.M.H. Rostami, A.K. Sangaiah, J. Wang, et al. “Obstacle avoidance of mobile robots using 
modified artificial potential field algorithm”. EURASIP Journal on Wireless 
Communications and Networking, vol. 2019, no. 1, Mar. 2019, pp. 1-19. 

[7]. Q. Wu, Z. Chen, L. Wang, et al. “Real-time dynamic path planning of mobile robots: a novel 
hybrid heuristic optimization algorithm”. Sensors, vol. 20, no. 1, Dec. 2019, pp. 1-18. 

[8]. J. Choi, G. Lee, C. Lee. “Reinforcement learning-based dynamic obstacle avoidance and 
integration of path planning”. Intelligent Service Robotics, vol. 14, Oct. 2021, pp. 663-677. 

[9]. X. Peng, R. Chen, J. Zhang, et al. “Enhanced Autonomous Navigation of Robots by Deep 
Reinforcement Learning Algorithm with Multistep Method”. Sensors and Materials, vol. 
33, no. 2, Nov. 2020, pp. 825-842. 

[10]. X. Cheng, S. Zhang, S. Cheng, et al. “Path-Following and Obstacle Avoidance Control of 
Nonholonomic Wheeled Mobile Robot Based on Deep Reinforcement Learning”. Applied 
Sciences, vol. 12, no. 14, Jul. 2022, pp. 1-14. 

[11]. M. Pan, J. Li, X. Yang, et al. “Collision risk assessment and automatic obstacle avoidance 
strategy for teleoperation robots”. Computers & Industrial Engineering, vol. 169, Jul. 2022, 
pp. 1-19. 

[12]. M.Á. Muñoz-Bañón, E. Velasco-Sánchez, F.A. Candelas, et al. “OpenStreetMap-Based 
Autonomous Navigation With LiDAR Naive-Valley-Path Obstacle Avoidance”. IEEE 
Transactions on Intelligent Transportation Systems, vol. 23, no. 12, Sept. 2022, pp. 24428-
24438. 

[13]. R. Coban. “A context layered locally recurrent neural network for dynamic system 
identification”. Engineering Applications of Artificial Intelligence, vol. 26, no. 1, Jan. 2013, 
pp. 241-250. 

[14]. T. Schaul, J. Quan, I. Antonoglou, et al. “Prioritized experience replay”. arXiv preprint 
arXiv:1511.05952, Feb. 2016, pp. 1-21. 

[15]. T.P. Lillicrap, J.J. Hunt, A. Pritzel, et al. “Continuous control with deep reinforcement 
learning”. arXiv preprint arXiv:1509.02971, Jul. 2015, pp. 1-14. 


