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ANT COLONY CORRELATION OPTIMISATION OVER
BAYESIAN NETWORKS

Catalin-Mihail CHIRU?, David Traian IANCU?

We propose a novel way of combining two canonical models used in Artificial
Intelligence (Al): Bayesian Networks (BN) and Ant Colony Optimisation (ACO) in
order to obtain a fast graph-traversal algorithm that establishes the highest
correlation path between the nodes of a BN and the target node, similarly to a variable
independence test.
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1. Introduction

Bayesian networks are probabilistic graph models used to represent
problems with a degree of uncertainty through directed acyclic graphs (DAGS) that
capture the probabilistic events (the nodes) and their structure and conditional
dependency (the edges). Before the emergence of Deep Learning (DL) and
Artificial Neural Networks (ANNs), Bayesian Networks were among the
predominant models in research and IT production for tasks in multiple fields, such
as classification in car assurances and creditor analysis [1], modelling crime linkage
[2], clinical decisions - diagnosis and treatment planning [3]. The main benefits of
those models were their speed of inference and clear explainability: the user can see
that changing the probabilities of one node affects the other dependent nodes.
However, the time complexity for exact inferences scales exponentially with the
number of nodes in the network: 0 (k™), where k is the number of possible valuables
for categorical nodes (k = 2 for boolean variables).

The Ant Colony Optimisation (ACO) is an optimization algorithm part of
the swarm intelligence family, used to alleviate the exponential complexity of
pathfinding to a polynomial one through heuristic exploration of the solutions'
space using multiple agents (ants) and converging to an optimal solution using the
pheromones of the ancestors from previous iterations. The algorithm mimics the
way in which ants guide each other from the nest as the starting point towards the
food, representing the end point.
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In the literature, the only way in which ACO was used over Bayesian
Networks [4 - 6] was to determine the structure of the graph by pruning nodes and
edges that were redundant. Our approach initially differed from this idea: Based on
the inputs necessary to run ACO; we set up the algorithm to obtain fast queries from
a source node to an effect, finding the highest correlation path along the way.
However, through the behaviour of the algorithm and the assumptions made, the
algorithm functioned much more similarly to the canonical approaches mentioned
above. Through their walk on the graph, the ants discover high correlation paths
from source to leaves, which can be interpreted as non-removable components
when pruning down the network.

2. State-of-the-art

As expert systems, Bayesian Networks need a proper configuration of their
graph topology when this structure is not already given, and it is known that the
deterministic exploration of this procedure is NP-Hard [10, 11]. Self-organising
algorithms represent an unsupervised heuristic way of reducing the exploration
space, such that solvers of NP-hard problems take polynomial time at the cost of
obtaining approximate solutions (local optima).

The first article in which ACO was employed to determine the Bayesian
graph's form automatically was De Campos' "Ant colony optimization for learning
Bayesian networks" [4]. In this paper, the authors introduce an alternative to greedy
hill climbing when learning a Bayesian Network's structure: ACO-B, an ACO-
based metaheuristic scoring-based learning algorithm for BNs.

1. Initialization:

(a) Obtain Grasw
o |
(b) 0= ST Crasn:D))|

(e) for all arc (i,j) do: 7y = 79
(d) G =Grasn
(e) Set tusep /7 number of iterations for doing local search */

2. Loop: /* tyar iferations, m anis */

(a) For t =1 to t,,,, do:
i. for k=1 tom do:
A. Gy = Ant — B() /* see Figure 3 %/
B. If (t mod tee, = 0) then Gg = HillClimbing(Gy)
i Gy = argmaxg. o, f(Gr 1 D)
iti. If f(Gy: D) = f(GF: D) then Gt =G,
v, Perform global pheromone update, eg. (7), using f{GT : D)

3. Local optimization:

(a) for k=1 to m do: G} = HillClimbing(Gy)
(b) Gy = argmaxy., ., f(GL: D)
() If f{Gy: D)= f(GT: D) then GT =G,
4. Return GT
Fig. 1. ACO-B Algorithm [4]
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The algorithm starts from an empty graph for each ant and the 'B'-part
constructs the edges in a greedy manner to maximise a decomposable scoring
metric while avoiding creating cycles in the graph. The 'B'-part converges when no
possible edge-addition improves the scoring metric. For the scoring metric, K2 was
chosen, as it is also a performance evaluation metric. K2 measures the joint
probability between a BN and the database on which it was generated.

To ensure that the ants don't get stuck in local optima, the authors
periodically change the graphs on which ants operate with ones obtained with Hill
Climbing. The ant that receives the best score reinforces and propagates the
pheromones for its graph construction. The pheromone production is also
controlled by a sub unitary evaporation factor - p

Based on the last iteration ants, another optimization rounds proceeds. Each
ant is enhanced using hill climbing to try to outscore the current maximum. The
final graph returned by ACO-B is the one that maximizes the scoring metric.

After ACO-B, numerous variations improved over it [5 - 9]. Out of those,
we mention HACO-B [5] and ABC-Miner [6]. The first uses another self-
organising principle (simulated annealing), while the latter represents the most
recent progress in terms of Bayesian Learning with Ant Colony optimisation, and
it is also used in classification tasks as it can build Bayesian Classifiers (BNCs).

In the HACO-B paper [5], the authors’ main optimizations over the original
ACO-B are:

e Reducing the search space in which edges are considered by the ants
when constructing the graph by computing a relaxed conditional
independence test between two variables given a set of fixed conditions.
The authors use the order-0 independence test to reduce the
computational complexity, meaning that the conditional set is empty.
This change corresponds to calculating the mutual information for each
edge of the fully connected graph. The constraints are relaxed through
iterations by a factor y so ants don't get stuck in local optima.

e Adapting the heuristic function on which ACO-B builds an ant's graph.
The HACO-B algorithm introduces a multiplicative factor,
w =1+ Inf(X;X;), that shows the intensity of adding an arc by
considering the conditional dependency introduced in the structure by
it.

e Simulated annealing scheduling of the optimisation strategy: HACO-B
compares the current best graph with the last iteration's best (AF), and
there are two possibilities: If the previous best outperforms the current
one, the current graph requires the optimisation stage, otherwise, the

optimisation stage is probabilistically triggered, based on simulated
AF

annealing procedure of temperaturet: P =e ¢t
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Algorithm: HACO-B
1. Imitialization:
Initialize a, NC, G(0), latep, £, ¥, g0, 7(0), A, tp, Gt = G(0), and 3; = 1/n - | F(G(D) : D)|;
2. Condition Independent Test Phase:
For every pair of nodes (X;, X;) € X do:
Perform order-0 CI tests;
Store the t-value in the matrix Py;
3. Search Phase by Ant Colony Optimization Algorithm:
For 1=1 to NC do:
3.1 Obtain a initial search space for the current iteration:
) =71 -1) - Ay
tr=A-ti_y;
Refine the search space by checking the () against the Py;
For every pair of nodes (X;, X;) € FCS do:
Mij = —00, 7 = —00;
3.2 Construct a solution in the reduced search space:
For k=1 to a do:
Gy = AntConstructGraph();
3.3 Perform the solution optimization based on the simulated annealing strategy:
If (1 mod lstep=0) then
{ i (F(G},:D)< F(GF :D) or random < ezp(—(F(GF,:D)-F(GF D))/t))

() (I=lstep) () (I=lstep)

then

{ For k=1 to a do:
G). = Optimization(Gi) } };
G(n = argmaz f(Gy : D);
if (_f(G:E) : D) = f(G* : D)) then
Gt =G

3.4 Perform global pheromone updating by Eq.(9);
4. Return G;

Fig. 2. HACO-B Algorithm [5]

By looking at the quantitative results of HACO-B, in terms of K2, the
algorithm obtains similar optima to ACO-B, but it outperforms it in terms of
stability and speed. HACO-B has less variance by at least a factor of 5, and it also
at least halves the computation time for the Bayesian networks, no matter their size.

The ABC-Miner article [6] enhances ACO-B by:

Building upon HACO-B, using the mutual information of two nodes that
will be linked as the heuristic function.

Automatically computing the maximum number of parent dependencies
a node can have by looking at each node independently.

Starting the graph from a Naive-Bayes structure - parent to all its
children and expands to a Bayesian Augmented Naive-Bayes structure.
Building the graph using ants with personality: each ant has its own o
and 3 parameters from the original ACO algorithm.

Calculating the pheromone update on two complementary terms:
initially predominates the update given by the iteration-best, and over
time, the update corresponding to the best network becomes more
impactful. Evaporation of the pheromones is obtained through
normalization.
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Algorithm 1 Pseudocode of ABC-Miner

1: Begin

2: BNCr=¢p;: t =1;

3: InitializePheromones();

4: InitializeHeuristicValues();
5: repeat
6
7
8

BNCipest = ¢ Qrbest =05

fori =1 — colony_sizedo
BNC; = CreateSolution(ant;);

9: Q; = ComputeQuality(BNC;);
10: if O; = Opey then
11: BNCipest = BNC;
12: Q.rbcsl = QI:
13: end if
14:  end for

15:  PerformLocalSearch(BNCipes);
16:  UpdatePheromone();
17: if O pest = Ohsr then

18: BNCpsf = BNC s s
19: thl’ - thcsl:

20:  end if

21 t=t+1;

22: until t =max_iterations or Convergence(conv_ iterations);
23: return BNCyg:
24: End

Fig. 3. ABC-Miner Algorithm [6]

Other approaches presented in the literature are: ChainACO [11], where the
authors propose a trade-off from the K2-based ACO by reducing the computational
time, at the expense of less exploration in the BN structure space and higher chance
to get stuck in a local best.. MMACO [12] claims state-of-the-art results in
determining BN’s structure, by applying max-min parent-child (MMPC) to
establish the backbone of the Bayesian network and ACO to determine the direction
in which the edges point. Both mentioned articles find their source of inspiration
from other self-organising methodologies; ChainACO [11] builds upon an idea
derived from genetic algorithms (GA), whereas MMACQO’s [12] idea starts from
gradient hill climbing (GHC).

3. Methodology

3.1. Datasets - Bayesian Networks

As presented in the previous chapter, the networks from BNIlearn [13] have
been used as benchmarks in the field of Bayesian Networks, with the majority of
studies reporting their findings on those open-source data.
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As a result, the studies done in this work were done using three datasets and
Bayesian nets from BNlearn [13]: CANCER (small - 5 nodes, 4 arcs), ASIA (small
- 8 nodes, 8 arcs), ALARM (medium - 37 nodes, 46 arcs).

Pollution Smoker
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Fig. 4. Explored Bayesian Networks (CANCER, ASIA and ALARM)

The general observations and walkthrough of the algorithm will be
discussed on the ASIA dataset in order to keep the article compact while still
maintaining visual coherence and intuition.

3.2. Datasets - Exploratory Analysis

Based on the state-of-the-art and Taskensen's Github implementation [13],
we have computed BN graphs using structure learning from the dataset, with Hill
Climbing and K2 as a scoring type. Afterwards, we computed the chi-square test of
variable independence for the obtained graph and plotted with highlights the nodes
with significant dependencies between them (Figure 5).
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Our ACO algorithm aims to determine this sub-graph without the explicit
probabilistic apparatus but implicitly through the pheromone trails left by the ants
(Section: 3.3. ACO-Corr). The novelty of our approach is represented by
overlapping ACO over Bayesian Networks trying to obtain the highest correlation
route, similarly to the concept of stigmergy [14] and drastically shifting from the
way the literature’s paradigm of establishing Bayesian Network’s structure using
ACO variants.

bnleam Directed Acyclic Graph (DAG)

Fig. 5. chi-square test on ASIA BN

3.3. ACO-Corr

We start our algorithm by applying a step of Variable Elimination (VE) to
obtain the cumulative probabilities for each node.

We introduce the following changes in the original ACO algorithm [15]:

We assume only binary variables in the Bayesian Network and assign
the "True" value obtained after VVariable Elimination to each graph node.
In the case of a categorical variable, our algorithm makes the assumption
"One versus all" we will further discuss this assumption in the
Limitations chapter.

We instantiate the pheromones on the edges as the product between each
node's "True" probabilities. The mn; factor used in updating the
pheromones is static and corresponds to cost;;* where cost;;* denotes
the initial cost associated with that edge.

For computing the cost, we must remember that ACO solves shortest
path problems. In order to transform the probabilities accordingly, we
use the logarithm function to scatter those from the unit segment and
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inverse the results to obtain positive costs, as the logarithm of a
subunitary value is negative. This setup has a clear concordance
between high probability and low cost/resistance path.

Evaporation is controlled using a subunitary multiplicative factor. Based
on a hyperparameter search, we set the pheromone factor value to 0.99.
The structure of BNs imposes another constraint to the original use of
ACO: An ant cannot visit a node from every other node of the graph, as
the BN has a Directed Acyclic Graph (DAG) structure, and the order of
traversal is important and asymmetrical. As a result, we have forced the
following constraints: Ants' building paths start from a clause node (in-
degree of the node= 0) and end with an effect (out-degree of the node =
0), similarly to Wu’s approach [11]. An ant can only traverse the BN
downwards, and when calculating the next step, an ant only looks at the
viable options from the current node it is sitting in (allow_k function),
similarly to HACO-B [5].

Based on the above-mentioned behaviour, the ants learn to cheat the
maze and find unbalanced walk paths, going from a clause to an effect
by visiting as few nodes as possible. In small, balanced networks, such
as CANCER or ASIA, this type of walk correctly finds the most
important connections. Still, in larger settings (ALARM), the ants
misidentify good clauses and converge too soon (Figure 6). To solve
this problem, we tried the alternative of Softmax Normalization instead
of simple summation when computing the next step probabilities, to
force ants to choose longer, highly-correlated paths in contrast to single-
edge, not as correlated routes. The ants still get stuck in local optima,
choosing at most length 3 chains of nodes instead of one edge, but still
not exploring enough interesting parts of the graph.
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3.4. Example on CANCER BN

We will take a small example to clarify how ACO-Corr derives its best paths
in-place, without working with dataset splits:
For the Cancer Bayesian:

CANCER
Original -> ACO

Pollution Poliution

Dyspnoea Dyspnoea

Fig. 7. ACO-Corr completion of “CANCER” Bayesian Network

We rename the binary attributes to 0 and 1 to have an unitary representation

After using variable Elimination, we get the complete probability
distributions for all the nodes: (p(Cancer = 1) = 0.9884, p(Xray = 1) = 0.7919,
p(Dyspnoae = 1) = 0.6959), besides Polution and Smoker, which are root nodes,
and their total probabilities are already determined.

We consider the pheromones equal in both directions, the source and the
destination receiving pheromones equal to the product of p(Node = 1), for example:
f(Cancer, Dyspnoea) = f(Dyspnoea, Cancer) =

p(Cancer = 1) * p(Dyspnoea = 1) = 0.9884 % 0.6959 = 0.6878.

The cost for this route would then be equal to
—log(f (Cancer, Dyspnoea)) = 0.3742 on both directions, and similarly n of
the route would be:

1
= = 2.672
1 —log(f (Cancer, Dyspnoea))

After finishing those initializations, we begin the ACO algorithm: Each ant
starts from a root node, in this example's case, Pollution and Smoker. Move to next
state with a transition probability, first in Cancer, as it is the only child, and then on
either Dyspnoea or Xray based on a probability distribution given by the probability
formula in the original ACO:
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o 7(source, destination)® - n(source, destination)”
p(source, destination) = Z

“ 7(source, destination)@n(source, destination)#

If we want to apply softmax, for faster convergence towards the current
most promising nodes, we exponentiate the numerator and sum up those
exponentiation in the denominator. Based on this, more ants will favour Dyspnoea
as it has bigger pheromone factor and 7.

We compute all ants’ costs by summing all the routes from source to
destination and updating our current best ant and its cost. If later iterations have a
worse cost or identify the same path, we stop, as the algorithm has converged to
this local optimum ant.

Following the given example, the convergence path and cost: (Smoker ->
Cancer -> Dyspnoea, 0.7425)

In Figure 7, we have coloured this path red.

For Bayesian networks with more nodes, we have sorted the ants based on
the cost and the length of the path from a root node to a leaf for hyperparameter
tuning purposes and to highlight the trade-off between the best cost and the length
of an ant's route.

4. Results

The hyperparameter search was rather shallow, as we have started the
experiments on the small BNs where the algorithm converged without much
trouble, and when switching to larger examples, the issues came from the structural
suppositions:

The evaporation factor is set to 0.99 as mentioned in the Methodology.

a =2 and = 3 were chosen small, as each ant has to do products based on
those 2 hyperparameters, and we have considered that the pheromones may
oversaturate and B > o keeps the ants from fully discarding some initially
unpromising paths. Looking back, these choices might have been detrimental,
favoring early convergence.

Q value was set to 1 for simplicity to keep the pheromones’ update formula
coherent with the initial products with n;; = costi_jl.

At last, the results were computed for 1000 ants and 1000 epochs. The
number of ants was constantly increased to make sure they visited the larger
networks, as for fewer ants, they would overlap fast and fail to explore longer
routes. This choice was updated when operating on the ALARM dataset, because,
in the smaller settings, there were no more than tens of possible paths to explore
and less than 50 ants with randomization would be able to cover completely the
search space.
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Analyzing the qualitative results, when ordering based on their costs and
lengths, we see that the first best longer ants explore ALARM nicely (Figure 8),
although their cost is two orders of magnitude higher than the best found one (Table
1).
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Fig. 8. 35th best ant vs best ant chain walk in ALARM

A qualitative analysis justifies the choice of small values for o and B by
illustrating the fast impact in computation when adding complexity to the
algorithm: Softmax Normalization affects the running time of the algorithm by one
order of magnitude, while keeping the costs comparable and giving better
qualitative paths. However, we see that the running time does not explode with the
network size. A positive aspect that validates our hypotheses, but that might be
influenced by the early convergence of the ants.

Table 1
ACO-Corr relationship between dataset, solution’s speed and best cost
BN Normalization | Time for solution Best cost
CANCER Sum 8.11e-04 6.13e-01

Softmax 1.41e-03 7.43e-01
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ASIA Sum 7.50e-02 2.82e-01

Softmax 1.10e-01 7.38e-01

ALARM Sum 1.16e-01 1.07e-01
Softmax 1.47e-01 1.41e0

5. Conclusions

Our algorithm combines two canonical ideas in self-organising systems
(ACO) and Al (Bayesian Networks) to facilitate the rapid finding of high-
correlation vertices in a Bayesian graph without suffering the downfall of vanishing
probability. The costs presented in Table 1 have a magnitude of le-1 to 1e0,
whereas, by applying probability multiplications with Variable Elimination, for
each node, we diminish the cumulative probability with an order of magnitude lel,
thus getting to smaller values in only two nodes distance from the source.

However, our approach still has structural flows that impose applying ACO-
Corr on a niche of BNs or require coming up with variations:

Bayesian Networks can deal with categorical variables, whereas ACO-Corr
needs binary probabilities to be initialised and run. In this case, to not destroy the
meaning of information, we should modify the graph such that we create k binary
nodes with probabilities of "class k™ versus the rest and with connections between
parents and all of them, them fully connected one to another, and from them to the
following effects. This would lose the benefit of applying ACO as the spatial
complexity would become exponential: Nodes spatial complexity would rise from

O(N) to O(ZN; 2k) and, consequently it would exponentiate the number of edges
and the exploration steps.

In the current format, ACO-Corr has to start from an initial node. In contrast,
Variable Elimination, Junction Trees or Statistical Independence Tests can walk
through the BN in both directions to obtain the needed query or correlation value.

Our algorithm is well-behaved for BNs with similar lengths from root
causes to leaf effects, as seen in CANCER and ASIA, where the ants did not cheat
exploring the network because there was no incentive to bypass nodes. However,
paths’ imbalance towards a target effect contributes to ants’ greedy behavior,
resulting in them cheating the Bayesian network. In ALARM, even with the
Softmax change in place, the first ten ants are of small lengths.

As future work, we plan on improving current limitations and applying
ACO-Corr to BNs used in industry, as we presented in the introduction that they
are a well-established prediction tool in car assurances, credit analysis and clinical
decisions.
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