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REGULARIZED MEDIANS ON SYMMETRIC CONES

Sangho Kum' and Jen-Chih Yao?

We are concerned with an extension of main results of [6] into a general sym-
metric cone 0 from the convexr cone of positive definite matrices P. To be more spe-
cific, two regularized median optimization problems are introduced and the existence
and uniqueness of solutions are studied on 2. Moreover the Lipschitz continuity of the
gradient of objective functions of the regularized median optimizations are provided for
a possible design of gradient-based methods of finding the unique minimizer. Based on
some results of [T], we present purely Jordan-algebraic techniques of proof in comparison
with matriz-analytic ones in [6].
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1. Introduction

Recently, Kum et al. [7] studied divergences on a symmetric cone €2, and considered
a median optimization problem. The motivation is from the problem of finding Wasserstein
barycenter for Gaussian measures in the theory of optimal transport where the symmetric
cone {2 is the convex cone of positive definite matrices P. Indeed, for Gaussian measures p
and v with mean 0 (without loss of generality) and covariance matrices A and B respectively,
the Wasserstein distance dy is expressed by

duw (1,v) = dy (4, B) = \/tr(A + B) — 2tr(A} BAD)E, (1)

Then the problem of finding Wasserstein barycenter of Gaussian measures v; with zero mean
and with positive definite covariance matrices A;, j = 1,--- ,n respectively, is formulated
as the least squares problem minimizing the averaged sum of squared dyy :

Qw; A) = argminijdgv(X, Aj). (2)
XeP o
Here A = (Ay,---,Ay), and w = (wy,...,w,) is a positive probability vector. Hence the

problem is immediately converted to a problem of matrix analysis in the special symmetric
cone P. Then a natural question arises from a theoretical perspective: How about the general
symmetric cone case (27 That is, is it possible to extend the results in P into Q7 In this
respect, the paper [7] can be regarded as an answer to the question.
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On the other hand, very recently, Kum et al. [6] also introduced a gradient projection
method for solving regularized Wasserstein barycenter problems in some probability measure
spaces including Gaussian and g-Gaussian measures. Its mathematical analysis is based on
the identification of Gaussian and ¢-Gaussian measures with the corresponding covariance
(positive definite) matrices. This enabled them to adopt matrix analysis for dealing with
the problem. Under this circumstances, the same question can be cast in the same view as
[7]: What happens if a general symmetric cone €2 is considered instead of P? Is it possible
to generalize the results in P to Q7

The present paper is a trial to give an answer to the question. It is the aim of
this work. Thus our work stands on the same line as [7]. We are concerned with an
extension of main results of [6] into the general symmetric cone €2 from the convex cone
of positive definite matrices P. To be more specific, two regularized median optimization
problems are introduced and the existence and uniqueness of solutions are studied on €.
Moreover the Lipschitz continuity of the gradient of objective functions of the regularized
median optimizations are provided for a possible design of gradient-based methods of finding
the unique minimizer. Based on some results of [7], we present a purely Jordan-algebraic
framework in comparison with the matrix-analytic one in [6]. This may be thought of as a
main contribution of our paper.

This work is organized as follows. In Section 2, we take a brief look at basic facts
regarding Euclidean Jordan algebras and symmetric cones. In section 3, we give a description
of the regularized median optimizations and show the existence and uniqueness of solutions
of the optimization problems. In section 4, the Lipschitz continuity of the gradients of
objective functions is provided.

2. Euclidean Jordan algebras and symmetric cones

As in [7], in this section, we briefly describe (following mostly [4]) some Jordan-
algebraic concepts pertinent to our purpose. A Jordan algebra V over R is a commutative
algebra satisfying 22 (zy) = 2(2%y) for all z,y € V. For « € V, let L(z) be the linear operator
defined by L(z)y = zy, and let P(z) = 2L(z)?> — L(x?). The map P is called the quadratic
representation of V. An element z € V is said to be invertible if there exists an element y
(denoted by y = 27!) in the subalgebra generated by z and e (the Jordan identity) such
that zy = e.

An element ¢ € V is called an idempotent if ¢> = ¢ # 0. We say that cy,...,cx is a
complete system of orthogonal idempotents if ¢? = ¢;,cic; = 0,1 # j,c1 + -+ + ¢, =e. An
idempotent is primitive if it is non-zero and cannot be written as the sum of two non-zero
idempotents. A Jordan frame is a complete system of orthogonal primitive idempotents.

A finite-dimensional Jordan algebra V with an identity element e is said to be Fu-
clidean if there exists an inner product (-,-) such that (zy,z) = (y,zz) for all z,y,z € V.

Theorem 2.1. (Spectral theorem, first version [4, Theorem II1.1.1]) Let V' be a Fuclidean
Jordan algebra. Given x € V, there exist real numbers A1, ..., A\, all distinct and a unique
complete system of orthogonal idempotents cy, ..., cr such that

k
T = Z NG (3)
i=1

The numbers \; are called the eigenvalues and (3) is called the spectral decomposition of x.
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Theorem 2.2. (Spectral theorem, second version [4, Theorem II1.1.2]) Any two Jordan
frames in a Euclidean Jordan algebra V' have the same number of elements (called the rank
of V, denoted by rank(V)). Given x € V, there exists a Jordan frame ci,...,c. and real
numbers A1, ..., A, such that x =Y .._; N\ic;. The numbers \; (with their multiplicities) are
uniquely determined by x.

Definition 2.1. Let V be a Euclidean Jordan algebra of rank(V') = r. The spectral mapping
AV = R" is defined by AM(x) = (A (x),..., A\ (), where \j(z)’s are eigenvalues of x (with
multiplicities) as in Theorem 2.2 in non-increasing order Amax(x) = A (z) > Aa(z) > -+ >
A () = Amin(2). Furthermore, det(z) = [[;_; Ni(z) and tr(z) = >, Xi(x).

Let @ be the set of all square elements of V. It turns out that @ has non-empty interior
Q= int(Q), and Q is a symmetric cone, that is, the group G(2) = {g € GL(V) | ¢(Q) = Q}
acts transitively on it and  is a self-dual cone with respect to the inner product (-, -) where
GL(V) is the Lie group of the invertible linear operators on V' (see [4]). Furthermore, for
any a € Q, P(a) € G(Q) and is positive definite so that its operator norm

P(a)|| = max{\;\; | \;, A; are eigenvalues of a 4
j j

because the eigenvalues of P(a) are of the form A\;A; [12, Theorem 3.1].
Note that Q = {z € V | \i(z) > 0,i =1,...,7}. For x,y € V, we define

r<y if y—2€Q

andz<yify—axe€eQ Clearly Q={z €V |2z>0}and Q={z €V |z > 0}.
On the other hand, the symmetric cone {2 is a Riemannian manifold [4]. In this case,
the unique geodesic curve joining a and b [10, Proposition 2.6] is

t— a#tb == P(a'/?)(P(a™/?)b)t

where a* = 377_, \j(a)’c; for the spectral decomposition a = >77_, Aj(a)c; in Theorem 2.2.
Moreover, the geometric mean a#b := a#1,2b is a unique geodesic middle between a and b.

Basically the trace is an inner product on V, and the Jordan algebra V' endowed
with the trace inner product (x,y) = tr(xy) is still Euclidean [4]. Every Euclidean Jordan
algebra admits a unique direct sum decompositions with irreducible (simple) Euclidean
Jordan algebras. Since the trace of a product of Euclidean Jordan algebras is the sum of
their trace functionals, from now on, we assume that V' is a simple Euclidean Jordan algebra
of rank r equipped with the trace inner product.

3. Regularized Medians

Let A = (ay, -+ ,a,) € Q" and w = (wy,...,w,) be a positive probability vector.
Then we first consider the following minimization problem:
Qw; A) := arg minz w;Ps(a;,x) +vF(x) (5)
€N =1

where

¢ t
By(a,b) = tr (1 — t)a + tb) — tr (P(ath)b) ,0<t<1, and

F(z) = —g In(2me) — %ln(det x).
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Now let us briefly describe the problem setting (5). As mentioned in [7], the real valued
function @, involves the t-weighted arithmetic mean of a and b, and the sandwiched quasi-
relative entropy

Filo.b) = tr (Pl )

which is well-known in the theory of quantum information; for positive semidefinite matrices
A and B,

1—t 1—t t
Fi(A, B) = tr (ATBAW) . te(0,1).

1

This is a parameterized version of the fidelity Fy,2(A, B) = tr (A%BA%> ’. Fidelity and
sandwiched quasi-relative entropies play an important role in quantum information theory
and quantum computation, and it has deep connections with quantum entanglement, quan-
tum chaos, and quantum phase transitions. See [5, 13, 14, 15]. Moreover, the real-valued
function F on  is originated from the Boltzmann entropy of a Gaussian measure [6]. The
definition of F is formally extended into € from P. Also v > 0 is a regularization parameter.

When the symmetric cone Q is the particular case P with ¢ = 1/2, (5) immediately
reduces to the problem (3.1) in [6], the regularized Wasserstein barycenter problem for
Gaussian measures. In this case, ®;/5(a,b) is nothing but the squared Wasserstein distance
d3 (a,b). However, <I>1/2(a,b)% may not be a distance on the general Q as noted in [7]
even though ®;/5(a,b) is a divergence (for definition, see [7]) on €. Nonetheless, without
the regularized term vF(z), the problem (5) has a unique solution [7], which is called the
w-weighted ®-median of ai,...,a,,. So we name the problem (5) as a regularized median
optimization problem.

Now we state the first main result.

Theorem 3.1. The minimization problem (5) has a unique solution and it satisfies the
following nonlinear equation:

¥ - I
tm—ge:tij (P(ac2)ajt ) . (6)
j=1
Proof. We first show that the objection function f of (5)
n
f@) =) w;j®(aj, ) +vF(x) (7)
j=1

is strictly convex. It suffices to verify that foreach0 <t < 1anda € ,themap ¢, : 2 = R

Ya.t(r) = D (a,x) =tr ((1 —t)a+tx) —tr (P(a%)x)t

and F are strictly convex. Indeed, the strict convexity of ¢, is explained in [7] using [3,
Lemma 3.1 and Theorem 3.2]. In addition, that of F' is directly from the well-known formula
[9]

V(—Indet)(z) = —2~', V?(—Indet)(z) = P(x)"' = P(z™"). (8)

Hence the hessian of F' is positive definite, so F' is strictly convex. Thus f is strictly convex
so that Vf(z) = 0 at the unique solution if it exists. From [7, Proposition 4.1] we have

Vpar(z) =t (e — (a¥ #ktx_l)) . (9)
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Hence

Vi(x)= ijV@aj7t(x) — %Jfl = tij [e — (ajl%#l_txfl)] - %afl.
j=1 j=1

So
= 71 - =t -1
Vix)=0 < te— 5% = t;wj (aj H#14T ) . (10)
Note that
a¥# 1l T pe 2 (Ple Ve ¢
i 1—tT = #ta’j = P(z ) (z )aj .
Taking P(z2) in both sides of (10) yields
gl - 12y 5\
Viz)=0 <= tm—§e:t;wj (P(x )a, ) . (11)

Thus the existence of solution of (5) is equivalent to that of a fixed point of the mapping

m 1—t\ 1t
H(z) = : (P 1/2 T) Ye. 12
(@) =3 s (P ) + 5o (12)
Now we show the existence. Let
a :=min{Anin(a;) | j=1,...,n}, B = max{Amax(a;) | j=1,...,n}

where Amin(a;) and Ayax(a;) denote the minimum and maximum eigenvalue of a;, respec-
tively. So Vj, a; € [ae, fe] := {z | ae < x < Pe}. Consider the elementary equation for a
positive real variable y

- Y
ot tyt—y:—ﬂ. (13)
Then it is easily checked that the function f(y) = a'~ty* — y is decreasing on [a, +00) and

f(y) = —oo0 as y — +oo. Thus the equation (13) has a unique solution a, € [a,+00).

Similarly we can obtain a positive real 8, (> a.) on [3,+00) satisfying 1~ tyt —y = —5
So we have
1—t t 1—tqt .
a7 — G * or  Px- 14
a ta, + 5, = @ BB+ 5 (14)

Then the mapping H in (12) is a self-map on [a.e, S.e]. To see this, let x € [a.e, Biel.
From ae < a; < fe,

and hence

ae=a"tale+ Je< (P(a:l/z)a%y + Je< prtple + Je— Bye.
* 2t 2t~ * 2t
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Therefore

tt
e < H(x ( (z1/?)a ) Yo < Be.
e Zw +2te I}

By Brouwer’s fixed point theorem, there exists a point x € [a.e, S«e] such that © = H(x).

This completes the proof.

Remark 3.1. Theorem 3.1 is a generalization of [6, Theorem 3.1] in .

O

In fact, when

t =1/2 and 2 = P the cone of positive definite matrices, Theorem 3.1 immediately reduces

to [6, Theorem 3.

1.

For the second minimization problem, the following coefficients [7] are necessary: For

r the rank of V' (replacing d in [7]), Co(q,r),C1(g,r) are given by

2
Ci(g,r) = ’
1(q ) 2+(T+2)(1_q)
2—q i 5
F(ﬁ+2 (1- q)Cl(W))2 if0<g<1
I 2=« |
C % 5
a— ( 10 DR =
1 r - lq ) 1f1<(1<r12'
a—1 2

We set the second optimization problem. For simplicity, only the standard case ¢t = 1/2 is

considered as follow:

where

l
2

Fy(z) = —gC’l(q,r) + [1 —(1- q)%Cl(q,T)} Ing ———F and

CO((LT) _ 1

Qw; A) —argmme i®1(a;,z) +vFy(x)
€N J=1

(a,b) = %tr(a £0) i (Pladp)”
CO(an')
(det )z

“(detz)z  1—g¢q

[co(q,r)H(det z) 1} :

(15)

The functional F, on 2 is deduced from the Tsallis entropy of a g-Gaussian measure [6,

Lemma 2.2]. Under these circumstances, the minimization problem (15) can be written as

where

1

1%5129( )

sztraz‘FZthr (x_2< (a%)x %>
+7[2- - aprCilan)] o, (i1e

= fi(z) + 7[2 - (1- Q)Tcl(q,r)] Ing ——

(16)



Regularized medians on symmetric cones 55

with fi(z) = >0, witra; + Y, witr (x -2 (P( ?)x)é ) Using explicit formula of
Ci(q,r) we get

2- (1 - q)rcl(q7r) =2- (1 - q)T2_|_ (T‘ _|_22)(1 — q)

42 -4q)
2+ (r+2)(1—gq)°
Substituting these expressions into (17) we obtain
_ 4y(2 = q)Co(g, 7)™ *

A= HO G- )0~
N 42—-q) N
(R ) () R "

Now we state the second main result.

(detx)™ =

Theorem 3.2. Suppose that ae < a; < fe (0 < a < B) foralli=1,...,n. The reqularized
median optimization problem (15) has a unique solutz’on x for all v > 0 if either 0 < g <1

orl<qg<1+42 52 and for v sufficiently small if 1 + <g< :ig The solution x solves
the following nonlinear equation

r,6’2

x —ym(q,r)(det z) Te=

n
=

wi(P(at)a;)”, (19)
1
where m(q,r) is defined by
2(2 - q)Co(g,m)' 1
24+ (r+2)(1—-¢q)

Proposition 3.1. The nonlinear equation (19) has a solution.

m(q,r) =

Proof. The argument in the proof of [6, Proposition 4.2] is available. We will show that

1/2 41
w; (P(x%)ai) +ym(q,r)(detz) = e

M=

P(x) =

i=1
has a fixed point. Since ae < a; < fe, for aye < x < fBie (with a., B« chosen later as in
[6]), we have

Hence
f@e<fx2<< (zY?)a Z)%gféngBTe and
¢y7<zw(%zf2¢m@&
Thus

a— i 1 1/2 a—
Vay/age +ym(q,r)(det x)Tle < Zwl (P(mf)aZ) + ym(q, d)(det :E)Tle
i=1

< BV Bee 4+ ymlq,r)(det x)%le. (20)
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Case 1. 1<g< T’+4 From (20) and the inequalities

a,” = det(a.e) < detx < det(B.e) = B,"

we obtain

1)

r(a— - 1 1/2 g—1
Vay/ace +ym(g,r)a. 2z e <z Zm( x?) ai) +ym(q,d)(detz) = e

=1
< VBV Bie +ym(g,r B*

For the existence of a fixed point of v, it suffices to check that v is a self-map on [a.e, B.€]

so that we can use Brouwer’s fixed point theorem again. Thus we have only to show that
there exist 0 < a, < (B4 such that

T(q 1)

r(g—1)
. = Jagy/ax +ym(g,r)ax *  and B. = /Bo/ B +ymiq,T :

But this is straightforward from the argument of [6]. So we omit it.

Case 2. 0 < ¢ < 1. The same argument of [6] is available, too. Therefore, (19) has
a solution. This completes the proof of the proposition. O

Proposition 3.2. Suppose that ae < a;, x < Be for alli =1,...,n. The functional g given
in (18) is strictly convex for all v > 0 when one of the following condition holds

(1) 0<g<1,

(2) 1<q<1+r52.

In addition, if 1 + TBQ <g< :ig, then g is strictly convex for 0 < v <~y where

1a? 1 1 1
Y0 =553 .
2 ﬁ3 (q2—(112)d _ é m(q,d) Bd(q—l)/Q

Proof. We follow the argument in [6].

+4
Case 1. 1 <¢< 73

Let k(x) := (;lgflgg(cl‘)fgsr))(lliqq) (detz)*= . Let h(z) := (detz)*= . By (8) and the
chain rule, we get

V det(x) = det(z)z . (21)
Using the definition of m(q,r), we have
Vk(z) = —ym(q,r)(det x)q%la;_l = —ym(q,r)h(z)z~". (22)
By the Leibniz rule and (8), we obtain
VZk(z)(h) = D(Vk)(z)(h)
= —ym(q,r)[Dh(z)(h)z™" + h(z)(—=P(z™"))(h)]
= —ym(q,r)[(Vh(z), h)z™" — h(z)P(z~")(h)]

= —ym(q,r) [<q . =1 et ) 5 0! h> (detx)q;lP(:cl)h]
— —ym(g,r)(det )T Kq;lx—l, h> a1 - P(m_l)h} .
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Thus
1

(V2k(z)(h), h) = —ym(q, 7)(det z) = {q; (x7,h)? - <P(x—1>h,h>}

1

= vm(q,r)(det z) T {(P(xl)h, By — L2t h)ﬂ .

Furthermore, according to [7, Corollary 6.3], for ae < a;,z < e, we obtain from (17)
2 2
(VA0 > 55l

Thus we get
(V2g(x)(h), k) = (V2 fr(x)(h), h) + (VZk(x)(h), h)

_ ~1
> ym(g, r)(det z) T [<P<x1>h,h> IS ] 5 27 e
g=1 _
> g r)dena) 7 [P — L e A + 3 S
(g, neta) T [ = L) + Lo e
’ ﬂQ 2 2 ﬁ3
g1 | 1 —1r 1a 9
> omianaen’s [ - L]+ 15 bl
From this estimate, we deduce the following cases
(i) If
2
1 <l4+ —=
<g<l1l+ B
thIlb 25 — 5="L > 0, which implies that the Hessian of g is positive for all v. Note that the
above condltlon is fulfilled if a and 3 satisfy 82 < “:2 2. In fact, we have
<1+ L <1+ 20
1 +2 - rp?’
(ii) If
202 r+4
14—
732 r+2
then for
1a? 1 1 1

<35 "D yoro
2/83 (q2012) _ #m(q’f/‘)ﬂ (g—1)/2

the Hessian of ¢ is positive since

yote 1 1 1
2% e — 4 m(g,r) pria-
< 10472 1 1 1 ]
26 (q2a12 - ﬁ m(q,r) (det z)(a—1)/2
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Case 2. 0 < ¢ < 1. Similarly, we obtain

(Vk() (), ) = 7mg, r)(deta)'T" |20 (=t m)? 4 (Pl )h )
> ymfg, r)(det ) "5 fnhn?

Hence the Hessian of g is always positive definite in this case. O

Remark 3.2. Proposition 3.2 may be regarded as an extension of [6, Proposition 4.3] in 2
with a slight change of the coefficient g;—g by g—z This minor difference is due to the fact
that we adopt the Jordan-algebraic technique in [7] instead of the matrix-analytic one in [2].
Actually, the matrix-analytic method in [2] is only available to the special case of Q@ = PP the
cone of positive definite matrices.

We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2. Suppose that the hypothesis of the statement of Theorem 3.2 is sat-

isfied, that is, either (1) 0 < ¢ < Tor (ii) 1 < ¢ < 1+ 2% 52 or (iii) 14 2 ﬁz <g< :ig Suppose

that ~ is sufficiently small in the last case; in the other cases v can be arbitrarily positive.
Recall that g(z) is given in (18)

4(2 —q)
1-92+(r+2)1—g¢

By Proposition 3.2, x — g(x) is strictly convex. Now we compute the derivative of g(z).

9(x) = fi(z) + k(z) -

) —yrCi(q,r).

Obviously
Vyg(x) =V fi(z) + Vk(z). (23)
From (9) and (17) we get

Vii(z)=e— Zwl al#x . (24)

By (22), we have
Vik(z) = —ym(q, r)(det ac)qTilnc_1

Substituting these computations into (23) we obtain
2) = (e = Y wilastta™)) = ym(g,r)(deta) T a7, (25)
i=1
Thus Vg(z) = 0 if and only if

e —ym(q,r)(det x) T Zwl a;#a!

= Zwi(xfl#al Zw P(z~1/?) (P(ml/z)ai)
i=1

Taking P(m%) in both sides of the above equation yields

m—Vm(% )(deta: R e—zw ( 1/2 )%7

W=
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which is precisely equation (19). By Proposition 3.1, it has a solution. This, together with
the strict convexity of g, guarantees the existence and uniqueness of a minimizer of g. So
the proof of the theorem is completed. O

Remark 3.3. Theorem 3.2 is a purely Euclidean Jordan algebraic version of [6, Theorem
4.1] in Q. Indeed, [6, Theorem 4.1] is the particular case of Theorem 3.2 when Q = P the
cone of positive definite matrices with the minor change mentioned in the previous Remark
3.6.

4. Lipschitz continuity of the gradient maps

We establish the Lipschitz continuity of the gradients of the objective functions of
(5) and (15). For the first regularized median optimization problem (5), the standard case
t = 1/2 is considered for simplicity. In this case, we may regard f(z) = 2f(z) as the
objective function. Indeed, from (7) we have

f(z) = zn:wi tra; + zn:wi tr (x - 2(P(ai%)x)%> — ylndet(z) — yrln(27we)
i=1 i=1

— fi(2) + 1 fala), (26)

where

n n
11
filz) = Zwitrai + Zwl tr (a: — 2(P(a})a:) 2)7
i=1 i=1
fa(x) = —Indet(z) — rln(27e).
Before going to main results, we need the following:

Proposition 4.1. Let us consider two functions G and H where 0 < a < 8 and

G : [ae, Be] = [Vae,\/Be], G(z) =x2, H :|ae,Be] — [l

66,&6}, H(z)=2"".

Then for x,y € |ae, Be], we have

1G(z) = G(y)l| < I1H(z) = H(y)|| < éllx—yll-

Lz -yl
2\/&'1: y7

Proof. In fact, by Sun and Sun [12, Theorem 3.2] G, H are continuously differentiable on the
Lowner interval [ce, Be] because the corresponding real valued functions g(t) = v/t, h(t) =
1/t are continuously differentiable on the interval [, 8]. In addition, [ae, Se] is a compact
convex set so that G, H are Lipschitz continuous on [ae, Se] with the Lipschitz constants
ﬁ and - by [12, Theorem 3.2] and the mean value theorem for operators [11, Proposition

«

2, p.176). 0

Remark 4.1. Note that for the corresponding matrix case in [8], Theorem X.3.8 of [1] was
used to derive the same Lipschitz constants of G and H, which can be applied only to matrix
case. In this regard, Proposition 4.1 is a general version of [1, Theorem X.3.8].

Observe that for a, z € [ae, fe],
e <aa= P(a%)(ae) < P(a%)m < P(a%)(ﬁe) = Ba < [e.

Using Proposition 4.1 and the above observation, we directly obtain the first Lipschitz
continuity:
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Theorem 4.1. Suppose that a; € [ae, Be] for all i =1,...,n. Then for ae < z # y < Pe
we have

Vi) - Vil _ 8>

[ =yl T2 a

Proof. According to (24) and (4) we have

IV A (@) - VAW = | iwiuai#x-l) — (atty )

P(a?)

(2

n
< Zwi
i—1
n
< ﬂzwi
i=1
B n
oz 2
(3

=1

(P(a?)x) -3 _ (P(a;

K2

Sl
~—
<

~

IN

< Zf% Zwl P(a?)x — P(al%)yH
i=1
B < 1
< 55 > wi|[Pa?)|lle — vl
i=1
ﬁ2
< e

Therefore we get

IVf(x) =Vl _ IIVfi(x) = Vil +~Vix) = Viay)ll
lz =yl lz —yll
e et i WP <
~ 203 lz =yl ~ 203 a?

O

Now we are in a position to provide the Lipschitz continuity of Vg concerned with
the second regularized median optimization (15). By (25), we know

Vg(z) = (e - Zwi(ai#x_l)) —ym(q,r)(det x)%x_l =: Vfi(z) — ym(q, r)h(z),
i=1
where Vfi(z) = (e -3, wi(ai#x’1)> as in (24) and h(z) = (detz)*= =1 = h(z)z~L.

Since the method of proof of the second result below is exactly the same as that of [6,
Theorem 5.3 |, only the statement is made without proof. Readers may refer to [6].
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Theorem 4.2. Suppose that a; € [ae, fe] for alli=1,...,n. Then for ae <z #y < fe,
we have

ﬁ+0}+%gﬂ.gq?r(1+q;1r), ifl1<q<is,
[Vg(z) — Vg(y)|l
|z =y

. ]
S+3+ vm(qwa?“z”(l + ) ifo<g<l

Remark 4.2. Theorem 4.1 and Theorem 4.2 are generalizations of [6, Theorems 5.2 and
5.3] in Q, respectively.

5. Conclusions

In this paper we studied two regularized median optimization problems on a general
symmetric cone ). Basically the existence and uniqueness of solutions are treated. Moreover
the Lipschitz continuity of the gradient of objective functions of the regularized median
optimizations are provided. All of these results belong to a development of general Jordan-
algebraic frameworks beyond the usual matrix-analytic one. This is a main contribution of
our work from a theoretical perspective. However, we did not consider a numerical algorithm
to find the unique minimizer and implement it numerically. Besides, we presently do not
know of various applications of our results. So we leave them for further study.
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