
U.P.B. Sci. Bull., Series C, Vol. 83, Iss. 4, 2021 ISSN 2286-3540

EFFICIENCY OF APPLICATION MONITORING IN

IMPROVING MOBILE COMMUNICATION NETWORKS’

RESILIENCE – A CASE STUDY

Viviana Laetitia MINEA1, Marius MINEA2, Augustin SEMENESCU3

The increasing importance of communications in the era of Internet of Things

needs to be supported by robust, efficient, and fully operational communication

networks and associated services. This paper presents a comparative study on

operational efficiency, resources management and speed of recovery after a failure

between two cases, namely running network applications on virtual machines,

versus employing Docker containers. Four instances of one application installed

virtually on these supports are tested for 48 hours and the results analyzed. Finally,

a future development solution with over-imposed artificial intelligence for improved

resilience is proposed.

Keywords: Application monitoring, Virtual machines, Docker, software

containers, preventive automated maintenance

1. Introduction

Presently, the rapid evolution of smart devices, Internet of Things, smart

mobility, smart cities, or other modern intelligent appliances involve increasing

mobile communications demand, with special requirements on data exchange

speed and connection reliability. Improved security measures in mobile banking

put also more pressure on the mobile networks’ response time and trust in

delivering data. There are several technologies to support the increasing presence

of different objects connected to Internet, such as LoRaWAN, ZigBee, Bluetooth,

and others, but when discussing about applications developed on smart devices

(smart phones, tablets, smartwatches etc.), most of these employ GSM networks

and associated services to exchange data. Therefore, increased demand for

robustness, rapid recovery and reliability are required for the mobile

communication networks and their associated services. In its document [1], ITU-T

Focus Group on Disaster Relief Systems, Network Resilience and Recovery

describes ways to improve network resilience and recovery time against disasters.

1 Ph.D. Stud., Orange Services Romania S.A., Romania, e-mail: viviana.minea@orange.ro
2 Assoc. prof., Dept. of Telematics and Electronics for Transports, Transports Faculty, University

POLITEHNICA of Bucharest, Romania, e-mail: marius.minea@upb.ro
3 Prof., Dept. of Engineering and Management for Transports, University POLITEHNICA of

Bucharest, Romania; augustin.semenescu@upb.ro

mailto:viviana.minea@orange.ro
mailto:marius.minea@upb.ro
mailto:augustin.semenescu@upb.ro

150 Viviana Laetitia Minea, Marius Minea, Augustin Semenescu

Based on a layered structure, communication networks can improve robustness

against disasters from two aspects: service/application and infrastructure. The

document states that “Network resilience is the robustness of the network

infrastructure and should ensure the continuity of telecommunication services

against any damage caused by the disaster”. However, we consider that in the

above-mentioned conditions of development, resilience should be an attribute of

networks even in normal operating conditions, to cope with abnormal behavior of

client applications, variable demands, variable data flowing and so on. As a

definition, resilience of a communication network means the ability to provide

and maintain an acceptable level of service in conditions of faults and challenges

to normal operation. In this paper only the efficiency of application deployment

and monitoring activities are analyzed. In the final part of the paper, a solution to

improve operational activities is proposed, in order to maintain the Network

Resiliency and Recovery (NRR) at high levels. Presently, a rich scientific

literature on this subject is being developed. The authors of [2] present definition

and storage of fault isolation specific rules, a layered stack of rules, and a network

configuration database, for reconfiguring alternate routes with level of service

monitoring, followed by decision regarding the healing methods. These are

described in a comparatively manner, with both centralized and decentralized

approaches for the fault management. The fault management is a complex task

that is considered in [3] for the mobile communication networks. Here, the

authors present opinions regarding the difficulty of introducing artificial

intelligence in 5G and next generation networks, with the purpose of surmounting

significant technical barriers in terms of robustness, performance, and complexity.

A study on the artificial intelligence algorithms used in smart machine tools’ fault

management is presented in [4], referring to classifying and presenting

conclusions of over 160 scientific works in this domain. The authors of [5] present

a proactive fault detection process and suggest that it should be possible to

employ adaptive statistical procedures to detect network faults without the

necessity of having a priori models of specific faults. Heterogeneous network’s

fault management is augmented with a new service in [6] employing intelligent

solutions. A.J. Garcia & others [7] propose a solution based on data mining for

alarm prioritization in fault management of complex cellular networks, for

increasing network resilience. M. Awad is proposing some models based on

intelligent fault management, applied to mobile radio access networks [8]. Also,

for the domain of smart wireless sensors networks, R. Sokollu and others are

describing a novel model for fault management [9], and in [10], [11] the authors

discuss about fault management in software-defined networking and fault

tolerance. The subject of application management influence on network resilience,

however, is not much approached in the literature, while still representing, in our

opinion, a very typical case of network level of service decrease, in case of

Efficiency of application monitoring in improving mobile communication networks’ (…) 151

malfunctioning. Also, it is a frequent case of prolonged recovery time, therefore

also reducing network resiliency. In this paper, a case study is analyzed for a

typical communications network with many applications that have to be both

manually and automatically monitored and recovered in case of a failure.

The rest of the paper is organized as following: Section 2 provides a brief

description of the software instruments used for application monitoring and

management. In Section 3, a practical comparison between containers and virtual

machines efficiency is analyzed in a case study considered for a virtual

communications network. Section 4 proposes a solution to be developed for

improving the quality-of-service management, and final conclusions in Section 5.

2. Instruments for application monitoring and ensuring quality of

services

Presently, mobile communication networks encompass many hardware

and associated software applications and services. The management of these

functional components is a complex task, therefore specific artificial intelligence-

driven over-imposed services are installed and assist human operators in

delivering good level of service in monitoring applications and hardware devices.

For obtaining a high level of NRR, some objectives must be taken into

consideration:

- Ensuring essential hardware redundancy – “graceful degradation”.

- Monitoring and ensuring congestion control – preventive maintenance.

- Procedures for rapid recovery of failed, or slow responding

applications involving reduced level of service – operational

reliability.

- Adequate procedures for deployment of new features, with minimum

impact over other applications and services.

- AI-driven assistance on applications and hardware monitoring, able of

producing correlations and recommendations for rapid recovery after

major failures – fast, assisted post-event response and recovery

processes.

However, today large mobile communication networks with over one

million subscribers employ different over-imposed AI applications to support

operators in ensuring a reliable quality of service and monitoring applications and

services for good operation. Such an instrument for monitoring mixed hardware /

service availability is the Application Performance Index (or Apdex), which is

expressed by:

152 Viviana Laetitia Minea, Marius Minea, Augustin Semenescu

 (1)

 (2)

In the equations (1) and (2), represents the Application Performance

Index of the respective application. This index is ranging from 0 to 1. The other

terms are as following: the number of satisfactory service level counts, the

number of tolerable service level counts, and the number of unsatisfactory

service level counts. N is the total number of samples.

Considering how fast technologies develop and platforms upgrade to

newer versions, the compatibility will always be a vital problem that needs to be

taken into consideration.

Security is also a big concern, mainly for those applications that operate

with delicate personal user’s information. In today’s immersive technologies

world, an important place when it comes to running applications is represented by

Docker. Docker primarily uses the so-called container technique, which is

presently gaining increasing attention and has become the preferred alternative to

traditional virtual machines.

Software as a service (SaaS) is a software delivery model where both the

software and the associated data are centrally hosted in a cloud. According to a

study conducted by North Bridge Venture Partners, “45% of businesses say they

already, or plan to run their company from the cloud – showing how integral the

cloud is to business”. Docker is a tool that makes use of isolated resources that

allow applications to be packaged in containers with all the dependencies installed

and ran wherever is needed, completely independent of the rest of the host

resources. This procedure frees local processing resources and delivers more

flexibility. Docker containers are implemented by using virtualization, but the

biggest differences between this solution and the alternative of deploying

applications on separate virtual machines are the efficiency of resource sharing,

flexibility, convenience, lightweight operations, and maintenance. Instead of

installing the operating system as well as all the necessary software in a virtual

machine, docker images can be easily built with a Dockerfile, which specifies the

initial tasks when the docker image starts to run. A container is very similar to an

application, which runs as an isolated process on top of the operating system (OS)

in its own address space. More than a normal process, a container not only

includes the application executable (for example the jar file), but also packs

together all the necessary software that the application needs to run with such as

the libraries and the other dependencies. The resources allocated to each container

can be adjusted dynamically, and the container cannot use more resources than

being specified in a control-group mechanism.

Performance comparison between containers and virtual machines has

attracted research [12-16]. Rapid recovery of failed applications can be much

https://www.business2community.com/strategy/saas-market-trends-for-2019-and-how-to-align-your-growth-strategy-02128313
https://www.business2community.com/strategy/saas-market-trends-for-2019-and-how-to-align-your-growth-strategy-02128313

Efficiency of application monitoring in improving mobile communication networks’ (…) 153

easier performed and would require a reduced level of service when using a

dynamic environment based on Docker orchestration.

3. Comparation between Containers and Virtual Machines Efficiency

– a Case Study

3.1 Test conditions

A comparative study of containers efficiency over virtual machines has

been performed for a virtual communications network environment.

Two critical services were considered, namely A and B, with a high target

availability, that need to be restored as soon as possible. Service A was deployed

via Linux virtual machines in a classical manner (by running a process in the

background of the servers – Fig. 1), while Service B is a multi-container Docker

application (as shown in Fig. 2).

Libraries Dependencies

Operation System

Hardware Infrastructure

Web

Server
Data Base

Messaging

Service
Management

Fig. 1 Deployment of a Jawa application in a classical architecture

MANAGEMENT

CONTAINER

MESSAGING

CONTAINER
DATA BASE CONTAINER

WEB SERVER

CONTAINER

Libraries

Dependencies

Libraries

Dependencies

Libraries

Dependencies

Libraries

Dependencies

DOCKER

OPERATING SYSTEM

HARDWARE INFRASTRUCTURE

Fig. 2 Deployment of an application employing Docker architecture.

154 Viviana Laetitia Minea, Marius Minea, Augustin Semenescu

The need of securing a disaster-recovery environment for service A

involves the need of having an independent machine where the administrator shall

install all the services’ prerequisites and then run the process. For service B, the

administrator is capable to program the application for running multiple

workloads on the same OS, these being independent instances of the same service

that do not interfere with each other. If an auto-restart mechanism for these two

services is to be implemented, in case of A the administrator has to transform the

application in a Linux service using systemd4 software. Ubuntu has a built-in

mechanism to create custom services, enabling them to get started at system boot

time or when their process is terminated, and start/stop them as a service. This

means a bash script5 must be written to control the application’s state, and this

script then needs to be configured as a service using Ubuntu’s system and service

manager (systemd). All these actions must to be performed manually by the

service administrator, because systemd is configured exclusively via plain-text

files.

In the case of service B, the Docker orchestration tool is always aware of

the state of the application-containers, due to the embedded health monitors. To

perform an automatic restart of a Docker container at a crash or system reboot, the

only step required is to use a special Docker command. Docker provides restart

policies to control whether containers start automatically when they exit, or when

Docker restarts. It is a very common use case to add the restart policy on an

existing container, involving a very reduced level of service from the

administrator’s part.

3.2 Test results

Let us consider a generic Java test application called app.jar. This

application is then started and checked over performance in a container

environment versus a virtual machine environment. Both the experimental virtual

machine environment and the container environment consist of Linux virtual

servers with 16GB RAM memory and 6 CPU cores of x86_64 architecture, model

name Intel(R) Xeon(R) 2.20GHz. The traditional environment runs Java

openjdk1.8 and the container environment run Docker version 17.03. The

containers are configured to use 100% from the hardware resources.

Aspects of interest for this case study include the following:

- How much resources (in terms of memory usage and CPU power)

imply the different implementations.

4 “Systemd” is a software suite that provides an array of system components for Linux operating

systems.
5 A Bash script is a plain text file which contains a series of commands.

Efficiency of application monitoring in improving mobile communication networks’ (…) 155

- How convenient the execution environment can be set up, different

workloads running in each setup.

- How well each environment can scale. A shorter setup time not only

indicates an easier job for the system administrators, but also brings

shorter latency, thus better experience to the users.

Runtime system level metrics, such as resources utilization, were collected

and compared, along with the average CPU utilization on both environments. This

was calculated by averaging values from 4 VMs on which the Java app.jar process

has been run and averaging the values from 4VMs on which the Java app.jar was

run from containers. Memory usage was sampled every 2 hours during a day and

CPU usage every 30 minutes over the same day. The measured values represent

the total CPU processing power consumed, composed of user-level CPU, system-

level CPU and CPU wait-time. Table 1 below represent a sample of the recorded

data during testing period, with memory usage for the Java running server and

Docker.

Table 1

Utilization of memory in the studied cases (sample data)

Time 00:00 02:00 04:00 06:00 08:00 10:00 12:00

(Idle RAM usage, Java running

server: 850 MB, 6% CPU.)

Used RAM Memory [GB]: 11.14 11.11 11.12 11.14 11.13 11.13 12.91

(Idle RAM usage, Docker

running: 1.5 GB, 2.6% CPU)

Used RAM Memory [GB]: 10.9 10.8 11 11 11 11.2 10.2

Instant fluctuations of values according to time moments that were noticed

and recorded are usually a normal behavior, being happening because the

processor usage increases or decreases according to momentary job requirements.

However, it presents interest to comparatively determine the average usage of the

processor in both situations (VM with Java vs. VM with Docker). In normal

operation, if there is no contention, any container freely uses all the host’s CPU

time. For example, if a second container is idle, a first container can make use of

all CPU cycles, even though it was configured with fewer shares.

156 Viviana Laetitia Minea, Marius Minea, Augustin Semenescu

Fig. 3 Memory consumption for the two cases analysed

From Table 1 and Fig. 3, it can be concluded that in the two studied cases

the memory usage is better for Docker use case.

Table 2

Utilization of CPU processing power in the studied cases (sample data for Java)
Cluster with 4 servers running Java

Timestamp 0:00 0:30 1:00 1:30 2:00 2:30 3:00

Server1 in test 20.5 15 40 30 27 27 11.6

Server2 in test 8.2 14.6 14.6 24 25 7.4 9.46

Server3 in test 42 42 42 50 51 51.8 41

Server4 in test 12 14.15 14 40 46 24 24

Average values

[%] CPU usage

(With stopped

app: 7% CPU)

20.675 21.437

5

27.65 36 37.25 27.55 21.515

Table 3

Utilization of CPU processing power in the studied cases (sample data for Docker)
Cluster of 4 servers running under Docker

Timestamp 0:00 0:30 1:00 1:30 2:00 2:30 3:00

Server1 in test 16.6 13.4 14.85 13.35 12.91 15.27 13.7

Server2 in test 5.4 5.46 4.86 5.53 4.86 6.45 4.87

Server3 in test 5.7 5.84 6.9 6.38 6.3 6.43 5.27

Server4 in test 11.5 11.62 11.44 10.95 10.87 10.4 10.8

Average values

[%] CPU usage

(With stopped

app: 2.6% CPU)

6.925 6.175 6.6525 6.315 6.0175 7.0375 5.96

Efficiency of application monitoring in improving mobile communication networks’ (…) 157

Fig. 4 CPU processing power consumption for the two cases analysed (with Java running server-

Series2 and with Docker containers-Series1)

Looking on the test results, it can be noticed that performance of Docker

containers and VMs in idle state, considering memory usage gives a bonus to

VMs, while considering the CPU usage, Docker containers perform much better

(Fig. 4).

When running in container mode, Docker containers perform better mostly

when CPU experiences intensive usage. The results also show that compared with

virtual machines, containers provide a more easy-to-deploy and scalable

environment and a more efficient way of resource sharing. This is a serious

remarque, as in maintenance mode that mode of operation eases the fast recovery

of failed applications. Still, based on several analysis on communications

networks’ recovery and maintenance procedures, we can consider that further

developing AI applications with machine learning features, able to improve

themselves in terms of performance, might contribute significantly to a better

network resilience. In this sense, a machine learning engine could be the bond

between the human operators and the equipment side, taking advantage of new

solutions discovered for solving more complex failures and adding them to a local

failure database.

4. Solutions for Improving the Quality-of-Service Management

The development of large communications networks involves many

hardware modules and applications deployment. These include permanent

maintenance activities, with an increasing pressure on the technical personnel.

With the introduction of AI in the maintenance process, the efficiency of

158 Viviana Laetitia Minea, Marius Minea, Augustin Semenescu

maintenance operations can be significantly improved. Davis AI6 is already

functional in many large communications networks. However, new deployments

of applications, running software updates, moving databases on different hosts, or

performing any other maintenance/development activities in such complex

functional systems might trigger unexpected chain malfunctions. From this point

of view, we consider that a structure as the one presented in Fig. 5 might help the

preventive maintenance activity. The modules drawn in grey are responsible with

the intelligent part of the maintenance process. The MLS (Machine Learning

Superstructure) shall be able to make use of both positive results from Davis AI

operations and human-performed ones, building a new database with complex

information on rapid recovery of failed applications. Presently, this solution is

under development in separate research and will be subject of a future article.

Functional

component 1

Functional

component 2

Functional

component n

Hardware / software

functional components

of the comms. network

Data

monitoring

interface

Davis AI
Human

operators

Machine learning

superstructure

Logical

connections

Dynamic maintenance

database

Software assisted

maintenance

Normal fault

management

database

Fig. 5 Proposed over-imposed AI, machine learning-driven superstructure for preventive

maintenance activities

5. Conclusions

This purpose of this paper was to investigate the benefits of employing

containers for applications deployment and maintenance instead of virtual

machines, in terms of CPU usage and memory efficiency. The study has been

performed for 4 instances of one application installed on servers in the two

different cases and run for 48 h continuously, with sampling each 30 minutes for

CPU processing power usage and every 2 hours for memory usage. From the

6 Davis AI is a complex artificial intelligence engine used for analysing millions of connections

between software components and associated data, designed to monitor level of service and

perform alarms to maintenance operators

Efficiency of application monitoring in improving mobile communication networks’ (…) 159

results the conclusions are that containers offer much better performances

especially for intense tasks which is generally recommended in highly responsive

communications networks for a better level of service. Necessary operations flow

for an application manager have also been analyzed. There has been noticed a

decrease in necessary administrator operations, which frees time for other tasks to

human operators, also in the benefit of the quality of service. This study is the

first part of a more extensive experiment of developing an over-imposed structure

for fault management, as presented in the last part of the work, in order to make

more efficient the applications administration.

R E F E R E N C E S

[1]. ITU-T, Requirements for Network Resilience and Recovery. FG-DR&NRR - Focus Group

Technical Report, Version 1.0 (05/2014)

[2]. H. Shimazaki and N. Takahashi, NEOPILOT: an integrated ISDN fault management system,

[Proceedings] GLOBECOM '90: IEEE Global Telecommunications Conference and

Exhibition, San Diego, CA, USA, 1990, pp. 1503-1507 vol.3, doi:

10.1109/GLOCOM.1990.116742.

[3] R. Shafin, L. Liu, V. Chandrasekhar, H. Chen, J. Reed and J. C. Zhang, "Artificial Intelligence-

Enabled Cellular Networks: A Critical Path to Beyond-5G and 6G," in IEEE Wireless

Communications, vol. 27, no. 2, pp. 212-217, April 2020, doi: 10.1109/MWC.001.1900323.

[4] Chang, C.-W.; Lee, H.-W.; Liu, C.-H. A Review of Artificial Intelligence Algorithms Used for

Smart Machine Tools. Inventions 2018, 3, 41. https://doi.org/10.3390/inventions3030041

[5] Cyntia S. Hood, C. Ji. Proactive Network-Fault Detection. IEEE Transactions on Reliability,

Vol. 46, No. 3, 1997 September

[6] S. Jiang, D. Siboni, A.A. Rhissa, G. Beuchot. An Intelligent and Integrated System of Network

Fault Management: Artificial Intelligence Technologies and Hybrid Architectures. IEEE

Catalogue No. 95TH80610-7803-2579-6/95, 1995

[7] A. J. Garcia, M. Toril, P. Oliver, S. Luna-Ramirez, M. Ortiz. Automatic Alarm Prioritization

by Data Mining for Fault Management in Cellular Networks. Elsevier Science Direct,

Expert Systems with Applications, 158 (2020) 113526, 2020

[8] M. Awad, H. Hamdoun. A Framework for Modelling Mobile Radio Access Networks for

Intelligent Fault Management. 2016 Conference of Basic Sciences and Engineering Studies

(SGCAC), 978-1-5090-1812-3/16, 2016

[9] R. Sokollu, O. Karaca. Fault Management for Smart Wireless Sensor Networks. 2012 9th

International Conference on Ubiquitous Intelligence and Computing and 9th International

Conference on Autonomic and Trusted Computing, 978-0-7695-4843-2/12, 2012

[10] Y. Yu, X. Li, X. Leng, L. Song, K. Bu, Y. Chen, J. Yang, L. Zhang, K. Cheng, X. Xao. Fault

Management in Software-Defined Networking: A Survey. IEEE Communications Surveys

& Tutorials, Vol. 21, No. 1, First Qarter 2019

[11] Chen, Jue & Chen, Jinbang & Xu, Fei & Yin, Min & Zhang, Wei. When Software Defined

Networks Meet Fault Tolerance: A Survey. 351-368. 10.1007/978-3-319-27137-8_27,

2015.

[12] https://developer.ibm.com/technologies/containers/articles/containerization-docker-case-

study/

[13] A. Babu, M. Hareesh, J. P. Martin, S. Cherian, and Y. Sastri. System performance evaluation

of para virtualization, container virtualization, and full virtualization using xen, openvz, and

https://doi.org/10.3390/inventions3030041

160 Viviana Laetitia Minea, Marius Minea, Augustin Semenescu

xenserver. In Advances in Computing and Communications (ICACC), 2014 Fourth

International Conference on, pages 247–250. IEEE, 2014.

[14] J. Bhimani, Z. Yang, M. Leeser, and N. Mi. Accelerating big data applications using

lightweight virtualization framework on enterprise cloud. In High Performance Extreme

Computing Conference (HPEC), 2017 IEEE, pages 1–7. IEEE, 2017.

[15] P. R. Desai. A survey of performance comparison between virtual machines and containers.

ijcseonline. org, 2016.

[16] S. Soltesz, H. P¨otzl, M. E. Fiuczynski, A. Bavier, and L. Peterson. Container-based operating

system virtualization: a scalable, high-performance alternative to hypervisors. In ACM

SIGOPS Operating Systems Review, volume 41, pages 275–287. ACM, 2007.

[17] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio. An updated performance comparison of

virtual machines and linux containers. In Performance Analysis of Systems and Software

(ISPASS), 2015 IEEE International Symposium On, pages 171–172. IEEE, 2015.

[18] Qi Zhang, Ling Liu, Calton Pu, Qiwei Dou, Liren Wu, and Wei Zhou. A Comparative Study

of Containers and Virtual Machines in Big Data Environment IBM Thomas J. Watson

Research, New York, USA; College of Computing, Georgia Institute of Technology,

Georgia, USA; Department of Computer Science, Yunnan University, Yunnan, China

[19] https://www.business2community.com/strategy/saas-market-trends-for-2019-and-how-to-

align-your-growth-strategy-02128313

https://www.business2community.com/strategy/saas-market-trends-for-2019-and-how-to-align-your-growth-strategy-02128313
https://www.business2community.com/strategy/saas-market-trends-for-2019-and-how-to-align-your-growth-strategy-02128313

