U.P.B. Sci. Bull., Series C, Vol. 83, Iss. 4, 2021 ISSN 2286-3540

EFFICIENCY OF APPLICATION MONITORING IN
IMPROVING MOBILE COMMUNICATION NETWORKS’
RESILIENCE - A CASE STUDY

Viviana Laetitia MINEA?, Marius MINEAZ, Augustin SEMENESCU?

The increasing importance of communications in the era of Internet of Things
needs to be supported by robust, efficient, and fully operational communication
networks and associated services. This paper presents a comparative study on
operational efficiency, resources management and speed of recovery after a failure
between two cases, namely running network applications on virtual machines,
versus employing Docker containers. Four instances of one application installed
virtually on these supports are tested for 48 hours and the results analyzed. Finally,
a future development solution with over-imposed artificial intelligence for improved
resilience is proposed.

Keywords: Application monitoring, Virtual machines, Docker, software
containers, preventive automated maintenance

1. Introduction

Presently, the rapid evolution of smart devices, Internet of Things, smart
mobility, smart cities, or other modern intelligent appliances involve increasing
mobile communications demand, with special requirements on data exchange
speed and connection reliability. Improved security measures in mobile banking
put also more pressure on the mobile networks’ response time and trust in
delivering data. There are several technologies to support the increasing presence
of different objects connected to Internet, such as LoRaWAN, ZigBee, Bluetooth,
and others, but when discussing about applications developed on smart devices
(smart phones, tablets, smartwatches etc.), most of these employ GSM networks
and associated services to exchange data. Therefore, increased demand for
robustness, rapid recovery and reliability are required for the mobile
communication networks and their associated services. In its document [1], ITU-T
Focus Group on Disaster Relief Systems, Network Resilience and Recovery
describes ways to improve network resilience and recovery time against disasters.

1 Ph.D. Stud., Orange Services Romania S.A., Romania, e-mail: viviana.minea@orange.ro

2 Assoc. prof., Dept. of Telematics and Electronics for Transports, Transports Faculty, University
POLITEHNICA of Bucharest, Romania, e-mail: marius.minea@upb.ro

3 Prof., Dept. of Engineering and Management for Transports, University POLITEHNICA of
Bucharest, Romania; augustin.semenescu@upb.ro

mailto:viviana.minea@orange.ro
mailto:marius.minea@upb.ro
mailto:augustin.semenescu@upb.ro

150 Viviana Laetitia Minea, Marius Minea, Augustin Semenescu

Based on a layered structure, communication networks can improve robustness
against disasters from two aspects: service/application and infrastructure. The
document states that “Network resilience is the robustness of the network
infrastructure and should ensure the continuity of telecommunication services
against any damage caused by the disaster”. However, we consider that in the
above-mentioned conditions of development, resilience should be an attribute of
networks even in normal operating conditions, to cope with abnormal behavior of
client applications, variable demands, variable data flowing and so on. As a
definition, resilience of a communication network means the ability to provide
and maintain an acceptable level of service in conditions of faults and challenges
to normal operation. In this paper only the efficiency of application deployment
and monitoring activities are analyzed. In the final part of the paper, a solution to
improve operational activities is proposed, in order to maintain the Network
Resiliency and Recovery (NRR) at high levels. Presently, a rich scientific
literature on this subject is being developed. The authors of [2] present definition
and storage of fault isolation specific rules, a layered stack of rules, and a network
configuration database, for reconfiguring alternate routes with level of service
monitoring, followed by decision regarding the healing methods. These are
described in a comparatively manner, with both centralized and decentralized
approaches for the fault management. The fault management is a complex task
that is considered in [3] for the mobile communication networks. Here, the
authors present opinions regarding the difficulty of introducing artificial
intelligence in 5G and next generation networks, with the purpose of surmounting
significant technical barriers in terms of robustness, performance, and complexity.
A study on the artificial intelligence algorithms used in smart machine tools’ fault
management is presented in [4], referring to classifying and presenting
conclusions of over 160 scientific works in this domain. The authors of [5] present
a proactive fault detection process and suggest that it should be possible to
employ adaptive statistical procedures to detect network faults without the
necessity of having a priori models of specific faults. Heterogeneous network’s
fault management is augmented with a new service in [6] employing intelligent
solutions. A.J. Garcia & others [7] propose a solution based on data mining for
alarm prioritization in fault management of complex cellular networks, for
increasing network resilience. M. Awad is proposing some models based on
intelligent fault management, applied to mobile radio access networks [8]. Also,
for the domain of smart wireless sensors networks, R. Sokollu and others are
describing a novel model for fault management [9], and in [10], [11] the authors
discuss about fault management in software-defined networking and fault
tolerance. The subject of application management influence on network resilience,
however, is not much approached in the literature, while still representing, in our
opinion, a very typical case of network level of service decrease, in case of

Efficiency of application monitoring in improving mobile communication networks” (...) 151

malfunctioning. Also, it is a frequent case of prolonged recovery time, therefore
also reducing network resiliency. In this paper, a case study is analyzed for a
typical communications network with many applications that have to be both
manually and automatically monitored and recovered in case of a failure.

The rest of the paper is organized as following: Section 2 provides a brief
description of the software instruments used for application monitoring and
management. In Section 3, a practical comparison between containers and virtual
machines efficiency is analyzed in a case study considered for a virtual
communications network. Section 4 proposes a solution to be developed for
improving the quality-of-service management, and final conclusions in Section 5.

2. Instruments for application monitoring and ensuring quality of
services

Presently, mobile communication networks encompass many hardware
and associated software applications and services. The management of these
functional components is a complex task, therefore specific artificial intelligence-
driven over-imposed services are installed and assist human operators in
delivering good level of service in monitoring applications and hardware devices.
For obtaining a high level of NRR, some objectives must be taken into
consideration:

- Ensuring essential hardware redundancy — “graceful degradation”.

- Monitoring and ensuring congestion control — preventive maintenance.

- Procedures for rapid recovery of failed, or slow responding
applications involving reduced level of service — operational
reliability.

- Adequate procedures for deployment of new features, with minimum
impact over other applications and services.

- Al-driven assistance on applications and hardware monitoring, able of
producing correlations and recommendations for rapid recovery after
major failures — fast, assisted post-event response and recovery
processes.

However, today large mobile communication networks with over one
million subscribers employ different over-imposed Al applications to support
operators in ensuring a reliable quality of service and monitoring applications and
services for good operation. Such an instrument for monitoring mixed hardware /
service availability is the Application Performance Index (or Apdex), which is
expressed by:

152 Viviana Laetitia Minea, Marius Minea, Augustin Semenescu

JqP[A — nS+D.5-‘:r+ﬁ-nh (1)

N=n, +n+n, (2)

In the equations (1) and (2), API, represents the Application Performance
Index of the respective application. This index is ranging from O to 1. The other
terms are as following: n. the number of satisfactory service level counts, n, the
number of tolerable service level counts, and n, the number of unsatisfactory
service level counts. N is the total number of samples.

Considering how fast technologies develop and platforms upgrade to
newer versions, the compatibility will always be a vital problem that needs to be
taken into consideration.

Security is also a big concern, mainly for those applications that operate
with delicate personal user’s information. In today’s immersive technologies
world, an important place when it comes to running applications is represented by
Docker. Docker primarily uses the so-called container technique, which is
presently gaining increasing attention and has become the preferred alternative to
traditional virtual machines.

Software as a service (SaaS) is a software delivery model where both the
software and the associated data are centrally hosted in a cloud. According to a
study conducted by North Bridge Venture Partners, “45% of businesses say they
already, or plan to run their company from the cloud — showing how integral the
cloud is to business”. Docker is a tool that makes use of isolated resources that
allow applications to be packaged in containers with all the dependencies installed
and ran wherever is needed, completely independent of the rest of the host
resources. This procedure frees local processing resources and delivers more
flexibility. Docker containers are implemented by using virtualization, but the
biggest differences between this solution and the alternative of deploying
applications on separate virtual machines are the efficiency of resource sharing,
flexibility, convenience, lightweight operations, and maintenance. Instead of
installing the operating system as well as all the necessary software in a virtual
machine, docker images can be easily built with a Dockerfile, which specifies the
initial tasks when the docker image starts to run. A container is very similar to an
application, which runs as an isolated process on top of the operating system (OS)
in its own address space. More than a normal process, a container not only
includes the application executable (for example the jar file), but also packs
together all the necessary software that the application needs to run with such as
the libraries and the other dependencies. The resources allocated to each container
can be adjusted dynamically, and the container cannot use more resources than
being specified in a control-group mechanism.

Performance comparison between containers and virtual machines has
attracted research [12-16]. Rapid recovery of failed applications can be much

https://www.business2community.com/strategy/saas-market-trends-for-2019-and-how-to-align-your-growth-strategy-02128313
https://www.business2community.com/strategy/saas-market-trends-for-2019-and-how-to-align-your-growth-strategy-02128313

Efficiency of application monitoring in improving mobile communication networks” (...) 153

easier performed and would require a reduced level of service when using a
dynamic environment based on Docker orchestration.

3. Comparation between Containers and Virtual Machines Efficiency
—a Case Study

3.1 Test conditions

A comparative study of containers efficiency over virtual machines has
been performed for a virtual communications network environment.

Two critical services were considered, namely A and B, with a high target
availability, that need to be restored as soon as possible. Service A was deployed
via Linux virtual machines in a classical manner (by running a process in the
background of the servers — Fig. 1), while Service B is a multi-container Docker
application (as shown in Fig. 2).

essaging
Service

Management

(Operation System
A U K

(Hardware Infrastructure

Fig. 1 Deployment of a Jawa application in a classical architecture

WEB SERVER MESSAGING MANAGEMENT
CONTAINER DATA BASE CONTAINER CONTAINER CONTAINER
: :
Dependencies
| | | |
DOCKER
\
[OPERATING SYSTEM]
[
[HARDWARE INFRASTRUCTURE j

Fig. 2 Deployment of an application employing Docker architecture.

154 Viviana Laetitia Minea, Marius Minea, Augustin Semenescu

The need of securing a disaster-recovery environment for service A
involves the need of having an independent machine where the administrator shall
install all the services’ prerequisites and then run the process. For service B, the
administrator is capable to program the application for running multiple
workloads on the same OS, these being independent instances of the same service
that do not interfere with each other. If an auto-restart mechanism for these two
services is to be implemented, in case of A the administrator has to transform the
application in a Linux service using systemd* software. Ubuntu has a built-in
mechanism to create custom services, enabling them to get started at system boot
time or when their process is terminated, and start/stop them as a service. This
means a bash script® must be written to control the application’s state, and this
script then needs to be configured as a service using Ubuntu’s system and service
manager (systemd). All these actions must to be performed manually by the
service administrator, because systemd is configured exclusively via plain-text
files.

In the case of service B, the Docker orchestration tool is always aware of
the state of the application-containers, due to the embedded health monitors. To
perform an automatic restart of a Docker container at a crash or system reboot, the
only step required is to use a special Docker command. Docker provides restart
policies to control whether containers start automatically when they exit, or when
Docker restarts. It is a very common use case to add the restart policy on an
existing container, involving a very reduced level of service from the
administrator’s part.

3.2 Test results

Let us consider a generic Java test application called app.jar. This
application is then started and checked over performance in a container
environment versus a virtual machine environment. Both the experimental virtual
machine environment and the container environment consist of Linux virtual
servers with 16GB RAM memory and 6 CPU cores of x86_64 architecture, model
name Intel(R) Xeon(R) 2.20GHz. The traditional environment runs Java
openjdk1.8 and the container environment run Docker version 17.03. The
containers are configured to use 100% from the hardware resources.

Aspects of interest for this case study include the following:

- How much resources (in terms of memory usage and CPU power)

imply the different implementations.

4 «gystemd” is a software suite that provides an array of system components for Linux operating
systems.
5 A Bash script is a plain text file which contains a series of commands.

Efficiency of application monitoring in improving mobile communication networks” (...) 155

- How convenient the execution environment can be set up, different
workloads running in each setup.

- How well each environment can scale. A shorter setup time not only
indicates an easier job for the system administrators, but also brings
shorter latency, thus better experience to the users.

Runtime system level metrics, such as resources utilization, were collected
and compared, along with the average CPU utilization on both environments. This
was calculated by averaging values from 4 VMs on which the Java app.jar process
has been run and averaging the values from 4VMs on which the Java app.jar was
run from containers. Memory usage was sampled every 2 hours during a day and
CPU usage every 30 minutes over the same day. The measured values represent
the total CPU processing power consumed, composed of user-level CPU, system-
level CPU and CPU wait-time. Table 1 below represent a sample of the recorded
data during testing period, with memory usage for the Java running server and
Docker.

Table 1
Utilization of memory in the studied cases (sample data)

Time 00:00 | 02:00 | 04:00 | 06:00 | 08:00 | 10:00 | 12:00

(Idle RAM usage, Java running
server: 850 MB, 6% CPU.)
Used RAM Memory [GB]: 11.14 | 1111 11712 1114 1113 | 1113] 1291

(Idle RAM usage, Docker
running: 1.5 GB, 2.6% CPU)
Used RAM Memory [GB]: 10.9 10.8 11 11 11 11.2 10.2

Instant fluctuations of values according to time moments that were noticed
and recorded are usually a normal behavior, being happening because the
processor usage increases or decreases according to momentary job requirements.
However, it presents interest to comparatively determine the average usage of the
processor in both situations (VM with Java vs. VM with Docker). In normal
operation, if there is no contention, any container freely uses all the host’s CPU
time. For example, if a second container is idle, a first container can make use of
all CPU cycles, even though it was configured with fewer shares.

156

Viviana Laetitia Minea, Marius Minea, Augustin Semenescu

= e
(W B R |

o

Memory usage [GB]

Comparative memory usage

00:0002:00 04:00 06:0008:00 10:00 12:00 14:0016:00 18:00 20:00 22:00 00:00
Time

Fig. 3 Memory consumption for the two cases analysed

R e R . —]

= Series]

Series2

From Table 1 and Fig. 3, it can be concluded that in the two studied cases
the memory usage is better for Docker use case.

Table 2

Utilization of CPU processing power in the studied cases (sample data for Java)

Cluster with 4 servers running Java

Timestamp 0:00 0:30 1:00 1:30 2:00 2:30 3:00
Serverl in test 20.5 15 40 30 27 27 11.6
Server2 in test 8.2 14.6 14.6 24 25 7.4 9.46
Server3 in test 42 42 42 50 51 51.8 41
Server4 in test 12 14.15 14 40 46 24 24
Average values 20.675 | 21.437 | 27.65 36 37.25 27.55 21.515
[%] CPU usage 5
(With stopped
app: 7% CPU)

Table 3

Utilization of CPU processing power in the studied cases (sample data for Docker)

Cluster of 4 servers running under Docker

Timestamp 0:00 0:30 1:00 1:30 2:00 2:30 3:00
Serverl in test 16.6 134 14.85 13.35 12.91 15.27 13.7
Server2 in test 5.4 5.46 4.86 5.53 4.86 6.45 4.87
Server3 in test 5.7 5.84 6.9 6.38 6.3 6.43 5.27
Server4 in test 11.5 11.62 11.44 10.95 10.87 10.4 10.8
Average values 6.925 6.175 6.6525 | 6.315 6.0175 | 7.0375 | 5.96
[%] CPU usage

(With stopped

app: 2.6% CPU)

Efficiency of application monitoring in improving mobile communication networks” (...) 157

Comparative CPU processing power utilization

W
o o

:f o LT

el el ele el elle e

o

CPU Usage [%]
%]
(=]
. D
%
¢

2R RS EREREREREREREREREREREREEERS
S AT IO RSN B AN ESE mAT IO NESNA RGBS NS
_______ el r B Rl i A
Time
= Seriesl Series2

Fig. 4 CPU processing power consumption for the two cases analysed (with Java running server-
Series2 and with Docker containers-Seriesl)

Looking on the test results, it can be noticed that performance of Docker
containers and VMs in idle state, considering memory usage gives a bonus to
VMs, while considering the CPU usage, Docker containers perform much better
(Fig. 4).

When running in container mode, Docker containers perform better mostly
when CPU experiences intensive usage. The results also show that compared with
virtual machines, containers provide a more easy-to-deploy and scalable
environment and a more efficient way of resource sharing. This is a serious
remarque, as in maintenance mode that mode of operation eases the fast recovery
of failed applications. Still, based on several analysis on communications
networks’ recovery and maintenance procedures, we can consider that further
developing Al applications with machine learning features, able to improve
themselves in terms of performance, might contribute significantly to a better
network resilience. In this sense, a machine learning engine could be the bond
between the human operators and the equipment side, taking advantage of new
solutions discovered for solving more complex failures and adding them to a local
failure database.

4. Solutions for Improving the Quality-of-Service Management

The development of large communications networks involves many
hardware modules and applications deployment. These include permanent
maintenance activities, with an increasing pressure on the technical personnel.
With the introduction of Al in the maintenance process, the efficiency of

158 Viviana Laetitia Minea, Marius Minea, Augustin Semenescu

maintenance operations can be significantly improved. Davis Al® is already
functional in many large communications networks. However, new deployments
of applications, running software updates, moving databases on different hosts, or
performing any other maintenance/development activities in such complex
functional systems might trigger unexpected chain malfunctions. From this point
of view, we consider that a structure as the one presented in Fig. 5 might help the
preventive maintenance activity. The modules drawn in grey are responsible with
the intelligent part of the maintenance process. The MLS (Machine Learning
Superstructure) shall be able to make use of both positive results from Davis Al
operations and human-performed ones, building a new database with complex
information on rapid recovery of failed applications. Presently, this solution is
under development in separate research and will be subject of a future article.

Functional Functional Functional Hardware / software
component 1 component 2 component n functional components

of the comms. network

Data
monitoring
Logical interface

connections
Davis Al Human Normal fault
operators management
database

Dynamic maintenance| Machine learning Software assisted
database superstructure maintenance

Fig. 5 Proposed over-imposed Al, machine learning-driven superstructure for preventive
maintenance activities

5. Conclusions

This purpose of this paper was to investigate the benefits of employing
containers for applications deployment and maintenance instead of virtual
machines, in terms of CPU usage and memory efficiency. The study has been
performed for 4 instances of one application installed on servers in the two
different cases and run for 48 h continuously, with sampling each 30 minutes for
CPU processing power usage and every 2 hours for memory usage. From the

® Davis Al is a complex artificial intelligence engine used for analysing millions of connections
between software components and associated data, designed to monitor level of service and
perform alarms to maintenance operators

Efficiency of application monitoring in improving mobile communication networks” (...) 159

results the conclusions are that containers offer much better performances
especially for intense tasks which is generally recommended in highly responsive
communications networks for a better level of service. Necessary operations flow
for an application manager have also been analyzed. There has been noticed a
decrease in necessary administrator operations, which frees time for other tasks to
human operators, also in the benefit of the quality of service. This study is the
first part of a more extensive experiment of developing an over-imposed structure
for fault management, as presented in the last part of the work, in order to make
more efficient the applications administration.

REFERENCES

[1]. ITU-T, Requirements for Network Resilience and Recovery. FG-DR&NRR - Focus Group
Technical Report, Version 1.0 (05/2014)

[2]. H. Shimazaki and N. Takahashi, NEOPILOT: an integrated ISDN fault management system,
[Proceedings] GLOBECOM '90: IEEE Global Telecommunications Conference and
Exhibition, San Diego, CA, USA, 1990, pp. 1503-1507 wvol.3, doi:
10.1109/GLOCOM.1990.116742.

[3] R. Shafin, L. Liu, V. Chandrasekhar, H. Chen, J. Reed and J. C. Zhang, "Atrtificial Intelligence-
Enabled Cellular Networks: A Critical Path to Beyond-5G and 6G," in IEEE Wireless
Communications, vol. 27, no. 2, pp. 212-217, April 2020, doi: 10.1109/MWC.001.1900323.

[4] Chang, C.-W.; Lee, H.-W.; Liu, C.-H. A Review of Artificial Intelligence Algorithms Used for
Smart Machine Tools. Inventions 2018, 3, 41. https://doi.org/10.3390/inventions3030041

[5] Cyntia S. Hood, C. Ji. Proactive Network-Fault Detection. IEEE Transactions on Reliability,
Vol. 46, No. 3, 1997 September

[6] S. Jiang, D. Siboni, A.A. Rhissa, G. Beuchot. An Intelligent and Integrated System of Network
Fault Management: Artificial Intelligence Technologies and Hybrid Architectures. IEEE
Catalogue No. 95TH80610-7803-2579-6/95, 1995

[7] A. J. Garcia, M. Toril, P. Oliver, S. Luna-Ramirez, M. Ortiz. Automatic Alarm Prioritization
by Data Mining for Fault Management in Cellular Networks. Elsevier Science Direct,
Expert Systems with Applications, 158 (2020) 113526, 2020

[8] M. Awad, H. Hamdoun. A Framework for Modelling Mobile Radio Access Networks for
Intelligent Fault Management. 2016 Conference of Basic Sciences and Engineering Studies
(SGCAC), 978-1-5090-1812-3/16, 2016

[9] R. Sokollu, O. Karaca. Fault Management for Smart Wireless Sensor Networks. 2012 9th
International Conference on Ubiquitous Intelligence and Computing and 9th International
Conference on Autonomic and Trusted Computing, 978-0-7695-4843-2/12, 2012

[10] Y. Yu, X. Li, X. Leng, L. Song, K. Bu, Y. Chen, J. Yang, L. Zhang, K. Cheng, X. Xao. Fault
Management in Software-Defined Networking: A Survey. IEEE Communications Surveys
& Tutorials, Vol. 21, No. 1, First Qarter 2019

[11] Chen, Jue & Chen, Jinbang & Xu, Fei & Yin, Min & Zhang, Wei. When Software Defined
Networks Meet Fault Tolerance: A Survey. 351-368. 10.1007/978-3-319-27137-8 27,
2015.

[12] https://developer.ibm.com/technologies/containers/articles/containerization-docker-case-
study/

[13] A. Babu, M. Hareesh, J. P. Martin, S. Cherian, and Y. Sastri. System performance evaluation
of para virtualization, container virtualization, and full virtualization using xen, openvz, and

https://doi.org/10.3390/inventions3030041

160 Viviana Laetitia Minea, Marius Minea, Augustin Semenescu

xenserver. In Advances in Computing and Communications (ICACC), 2014 Fourth
International Conference on, pages 247-250. IEEE, 2014.

[14] J. Bhimani, Z. Yang, M. Leeser, and N. Mi. Accelerating big data applications using
lightweight virtualization framework on enterprise cloud. In High Performance Extreme
Computing Conference (HPEC), 2017 IEEE, pages 1-7. IEEE, 2017.

[15] P. R. Desai. A survey of performance comparison between virtual machines and containers.
ijcseonline. org, 2016.

[16] S. Soltesz, H. P otzl, M. E. Fiuczynski, A. Bavier, and L. Peterson. Container-based operating
system virtualization: a scalable, high-performance alternative to hypervisors. In ACM
SIGOPS Operating Systems Review, volume 41, pages 275-287. ACM, 2007.

[17] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio. An updated performance comparison of
virtual machines and linux containers. In Performance Analysis of Systems and Software
(ISPASS), 2015 IEEE International Symposium On, pages 171-172. IEEE, 2015.

[18] Qi Zhang, Ling Liu, Calton Pu, Qiwei Dou, Liren Wu, and Wei Zhou. A Comparative Study
of Containers and Virtual Machines in Big Data Environment IBM Thomas J. Watson
Research, New York, USA; College of Computing, Georgia Institute of Technology,
Georgia, USA; Department of Computer Science, Yunnan University, Yunnan, China

[19] https://www.business2community.com/strategy/saas-market-trends-for-2019-and-how-to-
align-your-growth-strategy-02128313

https://www.business2community.com/strategy/saas-market-trends-for-2019-and-how-to-align-your-growth-strategy-02128313
https://www.business2community.com/strategy/saas-market-trends-for-2019-and-how-to-align-your-growth-strategy-02128313

