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METAHEURISTIC APPROACH IN NONLINEAR SYSTEMS
IDENTIFICATION

Mihai CORNOIU', Catalin BARA?, Dumitru POPESCU?

In this paper is presented a Hammerstein systems identification algorithm.
The algorithm uses Particle Swarm Optimization firstly to approximate the
nonlinear component, also using sigmoid type functions, and, secondly, to estimate
the linear component’s parameters and the nonlinear functions connection
coefficients, by solving a standard least squares problem. Due to the nature of
Hammerstein systems, Particle Swarm Optimization was adapted with respect to
specific constraints, which are detailed in this article. Numerical results confirm the
accuracy of this proposed identification method.

Keywords: nonlinear, modeling, identification, optimization, parameter
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1. Introduction

It is a widely known fact that nonlinearities are generic in nature; hence
almost all processes are nonlinear if they are considered not merely in a small
vicinity of their working points. Also, the development of the industrial
equipment and the desire to use it at its full potential has generated a need to
create mathematical models, which can describe the global nonlinear behavior of
the process. Identification is a powerful tool which allows such breakthroughs, by
experimentally determining the structure and the parameters of the mathematical
models, if the process is unknown, or if the describing equations are too complex
[1].

The two main directions in describing nonlinear systems behavior consist
in either using nonparametric models, which theoretically need an infinite
numbers of parameters, therefore they are restricted suitably only for

! PhD Student, Automatic Control and Systems Engineering Department, Automatic Control and
Computers  Faculty, University POLITEHNICA of Bucharest, Romania, e-mail:
mihai.cornoiu@acse.pub.ro

? PhD Student, Automatic Control and Systems Engineering Department, Automatic Control and
Computers Faculty, University POLITEHNICA of Bucharest, Romania, Romania, e-mail:
bara.catalin@gmail.com

* Prof. Automatic Control and Systems Engineering Department, Automatic Control and
Computers  Faculty, University POLITEHNICA of Bucharest, Romania, e-mail:
dpopescu@indinf.pub.ro



92 Mihai Cornoiu, Catalin Bara, Dumitru Popescu

identification and control purposes, either by parametric models, which can be
described by a finite number of parameters [2]. A widely used category of
parametric models is represented by block oriented models, such as Hammerstein
models, which are separable models consisting of a static nonlinear element
followed by a linear dynamic component. Literature proposes several
identification methods suitable for Hammerstein systems: [3] use instrumental
variables methods; [4] estimates the parameters for systems having piecewise-
linear nonlinearities with asymmetric dead-zones; [5], [6] use correlation analysis
to identify the block components, [7] use subspace methods, [8] use Bezier curves
and Bernstein polynomials, and examples could continue. An important aspect in
Hammerstein systems identification consists in the nonlinear function
approximation. Many methods have been proposed in the literature; for example,
[9] uses single input rule modules connected fuzzy inference model (SIRMs model) and
[10] tackles the problematic of sparse function approximation. However, [11] uses
sigmoid type functions to approximate the static nonlinear component, thus
defining the concept of Automatic Choosing Function. The idea behind this
concept consists in separating the input signal’s corresponding data region into
subdomains and approximating each one with a linear function. The ACF will
consist in the junction of these local linear functions, which are smoothly
connected using appropriate coefficients. Connection coefficients and linear
component parameters are estimated by using linear least-squares techniques.
Still, it is important to note that the approximation error is strongly connected with
the ACF parameters, namely the choice of the partitioning intervals and the shape
of the ACF. A way for determining these parameters is given by nature, namely
by using a stylized representation of the movement of organisms in a bird
flock or fish school. [12] developed the Particle Swarm Optimization method,
a metaheuristic, as it makes few or no assumptions about the problem being
optimized and can search very large spaces of candidate solutions. Hence, by
using PSO and adding some problem specific restrictions to it, the systems
parameters will be successfully estimated. The measure of quality will be the
evaluation criterion, which is given by the mean square errors between the outputs
of the real systems and of the estimated model.

This paper is organized as follows. The general statement of the problem
and the ACF concept are described in section 2. Section 3 consists in the
description of the identification method. Section 4 handles the optimization
problem, namely adjusting the parameters of ACF by using PSO. Numerical
results that confirm the accuracy of the algorithm are presented in section 5.
Conclusions are drawn in section 6.
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2. Statement of the problem

A Hammerstein system, as depicted in Fig. 1, consists of a static nonlinear
part, represented by f'(-) function, and of a dynamical linear component, described
by known degrees polynomials A4(¢') and B(q'). The problem is finding the
system parameters a, and b,, i=1:n,j=0:n,, where n,n, are the

corresponding degrees of polynomials 4(¢™') and B(g¢™'), and approximating the
nonlinear component f'(-), using only input data, u(k), and output data, y(k).
The intermediate signal, x(k), is not accessible to measurements, and e(k)
represents the measurement noise.
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Fig. 1. Hammerstein System

The characteristic equations describing the Hammerstein system are:
A(g (k) =B(g )x(k=1)+ A(g e(k)
x(k) = f(u(k))
A(q71)=1+a1q71+a2q72+~-+anAq7”" W)
B(g)=b,+bq ' +b,g” +--+ b, q"
The nonlinear function f(-) 1is approximated using sigmoid type
Automatic Choosing Functions, which are defined as follows:

1 1
I, (u(k)) =1_l+eH(u(k)fa,-) T AR 2

I+e
where H €R,. Considering the data region corresponding to the input

signal u(k) to be D=[u_ ,u_ ], this domain is divided into M partitions such

min > 7'max ]

M
that D:UDI.. Each D, can be expressed as [«a,fB], where
i=1

o =u,,pB=u,.o ,i=L1---,M . Due to its nature, [/,(u(k)) is almost

unity only for input signals values u(k)€[e,, ], and is almost zero for values

i+l =

that do not fit the specific partition.
Fig. 2 presents the shape of the ACF obtained using the following
parameters: u(k) is a 1000 element uniformly distributed signal with amplitude

range of [0,10], =2,/ =8 and H ={10,50,100,500} . It can be noticed that by
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increasing the value of H, the shape of the ACF approximates a block-pulse
function.

Automatic Choosing Function

Fig. 2. Shape of Automatic Choosing Function (ACF)
3. ldentification Procedure

Assuming that the nonlinear function f(u(k)) is approximated linearly on
each partition D; as follows:

S (k) = ¢; + du(k), 3)
we obtain the representation on the entire domain D:
f(u(k))=Zﬁ(u(k))l,-(u(k))+8(k), “4)

where, ¢(k) is the approximation error. By substituting equations (3) and
(4) in the Hammerstein model recurrent equations (1) we obtain:

A(g )y (k)= B(q'l)Zfi(u(k =) (u(k=1)) +

(%)
+A(q " e(k)+B(g e(k—1),
or
yk)y=aylk-D)+a,y(k-2)+---+a, y(k—n,)+
5,3 kD) Gk ~1)) + ©)
+b,, f‘,fi(u(k —ny =) (u(k —ngz —1))+v(k),
where :
v(k) = A(q "e(k)+ B(g )e(k—1) (7

represents the total approximation error. Equation (6) reveals the classic form:
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y(k) =" (k)0 +v(k), ®)
with:
0=10,.0,.0, 0,00, 005,00, 1
aaT :[al’a2’”.’an ]T
r o ©)
ec, Z[bOCi’blci’.”’anCi]
HdTi Z[bodi,bldi,---,bnﬁdi]T
o(k) =[p; (k). . (k). @, (k), . @, (k).@; (k). 0, (k). @; (F)]'
@, (k) =[~y(k=1),=y(k=2),-,=y(k=n )]
I (u(k~1)
I (u(k-2
.y <| =)
' 10
]i(“(k_ng_l)) o
u(k =11, (u(k-1))
k—2) (u(k—2
gy | DI uE=2)
u(k—ny, —1)I,(u(k —n, -1))

where i=1,---, M.
Equation (8) also permits evaluating the unknown parameter vector 4, by
using the linear least-squares algorithm, for example:

0=1> pk)e" 'Y pk)y(k)] (11)

The unknown parameter vector can be rewritten in the form:
6=16",(6,80,) 06,00, (12)
where “® ” denotes the Kronecker tensor product, and:

A A A

éb =[by, by, HB]T
6. =[¢,,¢,, .6, 1" (13)
6, =[d,,d,,d,]

Upon analyzing equation (12), it becomes obvious that the first ny

elements of & provide exactly the estimation for the 4 polynomial parameters
(linear dynamic component parameters), or éa. However, determining the exact
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values of the ACF approximation parameters and of the B polynomial of the linear

dynamic part is impossible, since vector 0 only contains information about the
products of these parameters. Still, a procedure which permits the evaluation of

vectors é,,,éc and éd has been developed, and it is presented in the following.

Keeping in mind that the unknown parameter vector 0 contains
information from all M partitions, one idea is to count the number of appearances
of the input signal corresponding to each partition and storing them in a weight
vector w. Upon having this information, the next step is to repeatedly assign each
element of éb the value /, thus permitting the evaluation of 61, and éd using again
the least-squares technique, but with the imposed w weights, and estimating the
remaining parameters of éb. At the end of this procedure, the values for the B
polynomial estimated coefficients are obtained by averaging the estimations
previously provided for each coefficient.

Since we now have éb , by applying again the least-squares technique we

estimate the ACF connection coefficients, namely vectors éc and éd , which
allows us to write the approximation equation for the nonlinear function as:

J () =Z(5; + du(k)I, (u(k)) (14)

4. Particle swarm optimization of model

As stated, there exists an important interdependence between the accuracy
of the algorithm and the partitioning intervals chosen to approximate the nonlinear
function. [13] use the metaheuristic Particle Swarm Optimization algorithm to
determine these partitioning intervals. A variation of their method, that considers
an additional constrain (such that the partition intervals should be disjoint and the
partitioning points, ¢,, should satisfy o, , <e,,i=1,---M) is presented in this
current section.

The proposed algorithm, an iterative procedure, follows the next steps:

Step 1. Generation of an initial population of Q particles with random
positions and velocities.

Each particle now has an initial position X and velocity ¥°, where

X=[a;},H],j=1,..,Mand i=1,--,0Q.
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Step 2. Construction of candidates for ACF
By using current particles positions, which contain information concerning
the partitioning intervals ({,},j=1,...,M ) and the shape of the ACF (H), by

using equation (2) we construct /,(u(k)) for each partition.

Step 3. Running the identification procedure
Once the candidates for ACF are constructed, the next step is to estimate

the unknown parameters vectors, éa , éb,éc and éd , as described in Section 4.

Step 4. Evaluation of performance criterion
The imposed performance criterion (or cost function) relies on the
quadratic approximation error,

J(X,)= %Z(y(lo ) (15)

where ,(k)=¢’ (k)éA?i is the output signal corresponding to each candidate

of the estimated model, and N represents the size of input and output data vectors.

Step 5. Updating each particle’s personal best position (pbest), and the
global best position among all particles (gbest)

For the first iteration, it is considered that each particle is in its personal
best position. The global best, gbest, is chosen as the personal best position of the
particle which has provided the smallest value for the cost function, as computed
in Step 4. For the other iterations, the following formulas are used:

! ! -1
pbestilz{X” (J(X;)<J(pbest; ")) (16)

pbest”", (otherwise)

best' = pbest' ,i, = =argminJ(pbest’ 17
& p Ipoq 2 best g p i

Step 6. Updating particles positions and velocities
V' =w-V! +c, -rand, -(pbest. — X!)+c, -rand, - (gbest' — X )
XilH :Xi[ +I/jl+1
The above formula represents the standard expression for computing the
velocities of the particles and their future positions. However, due to the particular
nature the particle vector has (the thresholds must be in increasing order), the
standard PSO procedure is modified, as follows. Each particle component should
not pass its neighbor as it updates its position, so the corresponding velocity is set
as the modulus between the primary velocity (as without the partitions limit
constraint) and the subdomains length. Also, if the velocity is negative, it is
treated the same as before, keeping in mind that the minimal value for the first
threshold should not be smaller than the minimum of the input signal. An example
of how this procedure works is shown in the next set of figures.

(18)
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X} X} XS X, X!
Fig. 3. Initial particle positioning

In Fig. 3 is represented a particle which contains 5 elements, for example
the first 5 thresholds that determine the partitions.
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Fig. 4. Particle velocities

Each element has its own unique velocity, either positive or negative.
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X" I il s

Fig. 5. Future particle positioning (using standard PSO)

Considering the velocities in this example, element 2 should overpass the
third one, thus violating the boundary constraint. Hence, the velocity of element 3
is recomputed, as well as its future position.

l+1 1+1 1+1 1+1 1
X ¥ R X5t

Fig. 6. Future particle positioning (using modified PSO)

Final particle positioning, no overpasses between any two neighboring
elements had occurred.

Step 7. Incrementing the iteration counter and returning to Step 2 until
termination criterion is satisfied.

The termination criterion could consist in either reaching preset maximum
number of iteration, either obtaining smaller value for the cost function than a pre-
specified. Once the termination criterion is satisfied, the algorithm will return the
suboptimal solution for choosing the partitioning intervals and the shape of the
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ACF. These parameters allow the estimation of the static nonlinear and linear
dynamic components with enhanced accuracy.

5. Numerical examples

The algorithm was implemented in Matlab and simulated using Simulink
environment; this section contains the obtained numerical results, which confirms
its accuracy. Note that numerical results that are presented in Section 6 are
normalized with by.

Let us consider the discrete time Hammerstein system

A(g)y(k)=B(g )x(k=1)+ A(ge(k)
x(k)=2-u(k)+u(k)+0.4-1° (k)
AlgH)=1+04-¢7'+0.2-¢7°
B(g)=0.5+0.1¢q"

(19)

The considered input signal is uniformly distributed with amplitude range
[-2.0, 2.0]; e(k) is considered white Gaussian noise with signal-to-noise ratio of
1%, since simulation has revealed that increased noise power greatly affects the
accuracy of the results. The input and output data vectors length is N = 300, the
number of partitions is set M = 10. The input parameters of the PSO are: particle
size of 20; maximum iteration limit of 50; inertia factor and acceleration
coefficients of 0.8. Results (also shown in Figures 7-9):

A(g)=1+0.4018-¢ ' +0.1965-4>
B(g")=0.5+0.1012¢""

The adjusting parameters of the ACF are: {o;} = {-1.7332, -1.7244, -
1.5611, -0.5762, -0.4458, 0.4023, 1.1326, 1.1791, 1.2239, 1.2245}; H = 3.7825.

The obtained quadratic approximation error was 2.8575-107.
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[y(k)-y, (1
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By replacing the previously chosen nonlinear function with a sinusoid,
x(k)=sin(2-7-u(k)), the obtained results (see Figures 10-12) are the following:

A(g)=1+0.3982-¢7' +0.1987 ¢
B(g")=0.5+0.0981¢"

The adjusting parameters of the ACF determined by the PSO are: {a;} =
{-1.2951, -1.2944, -1.2925, -0.4884, -0.3263, -0.0869, 0.4355, 0.8598, 1.0142,

1.0166}; H=1.2321. The quadratic approximation error value was 2.2973-10°.
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Fig. 11. True and estimated outputs
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Fig. 12. Differences between true and estimated output values
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The algorithm has also been tested on a linear analog system connected to
a PC. The discrete model corresponding to the association of a zero-order hold
CAN and the simulated analog system (sampling time was set to ./ seconds) is:

B(z'") —0.0411-z7'=0.0914- 22
Az 1-1.662-z7"'+0.9571-27-0.2191-z

(20)

The considered input signal is an uniform random signal with amplitude
range of [-2V, 2V]. The static nonlinearity = was  generated

as f(u(k))=u(k)+0.3-u’(k). The results (also see Figures 13-15) are the
following:

A(g™) =1-1.6445-¢7' +0.9044- ¢ ~0.1826-¢°
B(g")=-0.0411-0.0891g "

{ai}= {-1.9192, -1.8942, -0.8418, -0.4675, -0.3279, -0.1203, 0.0581,
0.6942, 0.7568, 1.7065}; H = 8.3068. The quadratic approximation error

characteristic to the estimation model was 2.5029-107°.

Estimated nonlinear function

b Estimated values

True values

-2 e E 05 0 05 1 15 2
u(k)
Fig. 13. Estimated nonlinear function (analog system case)
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Fig. 14. True and estimated outputs
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Fig. 15. Differences between true and estimated output values

6. Conclusions

This paper describes an identification method used for Hammerstein
systems, by providing estimations for both static nonlinear and dynamic linear
components. The main challenge in implementing this algorithm was solving the
non-convex equation (12) and evaluating the unknown coefficients; however,
optimizing the ACF coefficients by using PSO has greatly reduced its
significance. Also, the PSO procedure was modified, in order to adapt this method
to the specific restrictions generated by our identification problem. Still, for
greater dimensional problems, PSO proves to have some disadvantages, because
of the heavy increase of numeric effort.
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