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TRANSITIVITY, ENTROPY AND LI-YORKE CHAOS OF 
MULTIPLE MAPPINGS

Yingcui Zhao1

In 2016, Hou and Wang[14] introduced the concept of multiple map-
pings based on iterated function system. In this paper, we defined the tran-
sitivity of the multiple mappings from a set-valued perspective, which is
completely different from the previous research perspective on iterated func-
tion systems. We show that multiple mappings and its continuous self-maps
don’t imply each other in terms of transitivity. While a sufficient condition
for multiple mappings to be transitive is provided. And we show that tran-
sitivity plus fixed point implies Li-Yorke chaos for open multiple mappings.
While positive entropy cant imply Li-Yorke chaos for multiple mappings,
which is different from the corresponding conclusion of a single continuous
map.
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1. Introduction

Chaos is a highly significant research topic in the field of topological dy-
namical systems. The first rigorous mathematical definition of chaos can be
traced back to 1975 by Li and Yorke[1]. Since then, scholars have embarked
on vigorous research on chaos. Scholars from different fields integrated the
study of chaos into their own research directions, describing the properties of
chaos from different perspectives. Then, a series of different concepts of chaos
have emerged, such as sensitivity and transitivity[4], Kato chaos[3], Devaney
chaos[2], distribution chaos[5], shadowing properties[6] and others(see [7, 8, 9],
for example). The study of the implication relationship between these different
concepts has always held an essential position in the field of topological dy-
namical systems. Xiong [16] proved that transitivity plus a fixed point implies
Li-Yorke chaos for continuous self-maps on compact metric space.

In 2016, Hou and Wang[14] defined multiple mappings derived from it-
erated function system. Their focus was primarily on studying the Hausdorff
metric entropy and Friedland entropy of multiple mappings. Additionally, they
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introduced the notions of Hausdorff metric Li-Yorke chaos and Hausdorff met-
ric distributional chaos from a set-valued perspective. It is worth noting that
researchers studying iterated function systems often approach the topic from
a group perspective rather than a set-valued perspective. This also establishes
a close connection between multiple mappings and set-valued mappings, or we
can consider multiple mappings as a special case of set-valued mappings.

It is important to acknowledge the valuable role of set-valued mappings in
addressing complex problems involving uncertainty, ambiguity, or multiple cri-
teria. Set-valued mappings offer versatility and flexibility, making them highly
beneficial across various fields. One prominent application of set-valued map-
pings is in optimization problems, where the objective is to identify the opti-
mal set of solutions. For instance, in multi-objective optimization, a set-valued
mapping can represent the Pareto front, encompassing all non-dominated so-
lutions.

Set-valued mappings also prove useful in decision-making processes that
require considering multiple criteria or preferences. By representing feasible
solutions as sets, decision-makers can thoroughly analyze and compare different
options, enabling them to make well-informed decisions. Additionally, set-
valued mappings find applications in data analysis tasks such as clustering
and classification. Unlike assigning each data point to a single category, set-
valued mappings can represent uncertainty or ambiguity by assigning data
points to multiple categories. In fact, the applications of set-valued mappings
are vast and diverse, encompassing numerous fields beyond those mentioned
here.

In [10], we studied that if there exists at least one Hausdorff metric
disdributionally chaotic pair of multiple mappings F , especially F is disdribu-
tionally chaotic, then there exists at least two strongly nonwandering points
of F and we provide a condition that is sufficient for F to exhibit distribu-
tional chaos in a sequence and chaos in the strong sense of Li-Yorke. Zeng et
al. [15] proved the existence of Hausdorff metric Li-Yorke chaos or Hausdorff
distributional chaos in multiple mappings simultaneously for two topological-
ly conjugate dynamical systems and the multiple mappings F and its 2-tuple
of continuous self-maps f1, f2 are not mutually implied in terms of Hausdorff
metric Li-Yorke chaos.

For a single continuous self-map, Blanchard et al. [11] claimed that
positive entropy implies Li-Yorke chaos by ergodic methods. Then, a combined
proof of this result is presented by Kerr and Li [12]. T. Downarowicz [13] have
established that positive entropy implies type 2 distributional chaos. Then we
may ask If the multiple mappings F has positive Hausdorff metric entropy, is
it Hausdorff metric chaotic? In [14], Bingzhe Hou and Xu Wang studied the
Hausdorff metric entropy to multiple mappings and presented two problems.
In this paper, we will give a negative answer both to the following problems.
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Problem 1.1. Let (X, d) be a compact metric space and G be a semigroup
generated by a finite set F = {f1, f2}. Does positive entropy imply Hausdorff
metric Li-Yorke chaos for F?

Problem 1.2. Let (X, d) be a compact metric space and G be a semigroup
generated by a finite set F = {f1, f2}. Does positive entropy imply Hausdorff
metric distributional chaos of type 2 for F?

The current paper aims to consider the set formed by the images of a sin-
gle point under multiple mappings (as a compact set). We primarily consider
the relationship between multiple mappings F and its 2-tuple of continuous
self-maps f1, f2 in terms of transitivity, the relationship between transitivity
and Li-Yorke chaos of multiple mappings and the implication between positive
entropy and chaos under Hausdorff metric of multiple mappings.

The structure of the current paper is outlined as follows. In Section
2, we provide an introduction to the preliminaries and definitions. Then we
study the relation between multiple mappings and its continuous self-maps in
terms of transitivity in Section 3. We show that transitivity + fixed point ⇒
Li-Yorke chaos for open multiple mappings in Section 4 and give a negative
answer both to Problem 1.1 and Problem 1.2 in Section 5.

2. Preliminaries

Throughout this paper, (X, f) is a dynamical system, in which X is
metric space with a metric d, f is a continuous self-map on X. And N =
{0, 1, 2, · · · }, Z+ = {1, 2, 3, · · · }. A map f is said to be transitive, if for any
nonempty open sets U, V of X there exists n ∈ Z+ such that fn(U)

⋂
V 6= ∅.

Let F = {f1, f2} be a multiple mappings with 2-tuple of continuous
self-maps on X. Then for ∀x ∈ X, F (x) = {f1(x), f2(x)} ⊂ X is compact.
Let

K(X) = {K ⊂ X | K is compact andK 6= ∅}.
Then F is from X to K(X). The metric on K(X) is denoted by dH ,

which is called Hausdorff metric. Specifically, it is defined as

dH(A,B) = max{sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)},∀A,B ⊂ X.

It is clear that (K(X), dH) is compact.
For any n ∈ Z+, F n : X → K(X) is defined by for any x ∈ X,

F n(x) = {fi1fi2 · · · fin(x) | i1, i2, · · · , in = 1 or 2}.
It is obvious that F n(x) ∈ K(X). For ∀A ⊂ X, let

F n(A) = {fi1fi2 · · · fin(a) | a ∈ A, i1, i2, · · · , in = 1 or 2} =
⋃
a∈A

F n(a).

For ∀U ⊂ K(X),

F−n(U) = {x ∈ X | F n(x) ∈ U}.
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Particularly, if A ∈ K(X), then F n(A) ∈ K(X). Then, F naturally induces a

continuous self-map on K(X), denoted by F̃ : K(X)→ K(X).

Definition 2.1. For any x ∈ X, we say

{F (x), F 2(X), F 3(X), · · · } := o̊rb(x, F )

is the deleted orbit of x under F .

Since we are studying the dynamical systems of multiple mappings from
a set-valued perspective, there is no natural way to extend the notion of tran-
sitivity. However, we have discovered a meaningful approach to extend it as
follows. Put Ran(F ) = {F n(x) | n ≥ 1, x ∈ X}.

Definition 2.2. The multiple mappings F = {f1, f2} is said to be transitive,
if for any open sets U 6= ∅ of X and U 6= ∅ of Ran(F ), we can find n ∈ Z+

satisfying

{F n(u) | u ∈ U}
⋂

U 6= ∅.

Definition 2.3. x ∈ X is said to be a transitive point of the multiple mappings
F = {f1, f2}, if its deleted orbit o̊rb(x, F ) is dense in Ran(F ).

It is easy to see that the Hausdorff metric transitivity of multiple map-
pings, in the case of degradation (where the multiple mappings consists of
only one continuous self-map), is the same as the transitivity of a classical
single continuous self-map. Next we provide some examples to illustrate the
existence of the newly defined concept Definition 2.2.

Example 2.1. Consider the multiple map defined on [0, 1] as F = {f1, f2}, in
which

f1(x) = 0,∀x ∈ [0, 1], f2(x) = 1,∀x ∈ [0, 1].

Then Ran(F ) = {{0, 1}} and F (0) = {0, 1} = F (1). So, F is transitive.

Example 2.2. Consider the multiple map defined on X = [0, 1] as F =
{f1, f2}, in which f1(x) = 0, ∀x ∈ [0, 1] and

f2(x) =

{
2x, 0 ≤ x ≤ 1

2
,

2− 2x, 1
2
< x ≤ 1.

Then
Ran(F ) = {{0, fn2 (x)} | n ≥ 1, x ∈ [0, 1]}.

Let U ⊂ X and U ⊂ Ran(F ) be nonempty open sets. Then there exists open
set V 6= ∅ of [0, 1] satisfying {{0, v} | v ∈ V } ⊂ U. As we all know, f2 is the
tent map. It is transitive. Then there is n ∈ Z+ with fn2 (U)

⋂
V 6= ∅. Thus,

there is u ∈ U with fn2 (u) ∈ V . Then

F n(u) = {0, fn2 (u)} ∈ U.

So, F is transitive.
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Of course, there are also many multiple mappings that are not transitive.
Now we give an example of multiple mappings which isn’t transitive.

Example 2.3. Consider the multiple mappings defined on X = [0, 1] as F =
{f1, f2}, in which

f1(x) =

{
2x, 0 ≤ x ≤ 1

2
,

1, 1
2
< x ≤ 1,

f2(x) =

{
1, 0 ≤ x ≤ 1

2
,

2− 2x, 1
2
< x ≤ 1.

Let

f(x) =

{
2x, 0 ≤ x ≤ 1

2
,

2− 2x, 1
2
< x ≤ 1.

Then

Ran(F ) = {{1, f(x)} | x ∈ [0, 1]}
⋃
{{0, 1, fn(x)} | n ≥ 2, x ∈ X}.

Let U = [0, 1
64

) and U = {{1, v} | v ∈ ( 1
16
, 3
16

)}. Then

{F n(u) | n ≥ 1, u ∈ U}
⋂

U = ∅.

So, F is not transitive.

In [14], the concepts of Hausdorff metric Li-Yorke chaos, (sequential)
distributional chaos of multiple mappings were introduced. Let us revisit these
definitions. It is important to note that all forms of chaos discussed in this
paper are defined using the Hausdorff metric.

Definition 2.4. The multiple mappings F is said to be chaotic in the sense of
Li-Yorke, if there is an uncountable set S ⊂ X satisfying for any x 6= y ∈ S,

lim inf
n→∞

dH(F n(x), F n(y)) = 0, lim sup
n→∞

dH(F n(x), F n(y)) > 0.

Definition 2.5. Define distributional function

φnxy(F, ·) : R→ [0, 1]

by

φnxy(F, t) =
1

n
]{0 ≤ i ≤ n− 1 | dH(F i(x), F i(y)) < t},∀t ∈ R, x, y ∈ X.

It is clear that φnxy(F, t) = 0,∀t < 0. Put

φxy(F, t) = lim inf
n→∞

φnxy(F, t), φ
∗
xy(F, t) = lim sup

n→∞
φnxy(F, t).

F is said to be distributionally chaotic of type k ∈ {1, 2, 3} (briefly re-
ferred to as HDC1, HDC2 and HDC3, respectively), if there is an uncountable
subset D ⊂ X such that any two points x 6= y ∈ D satisfy condition (k) as
following:



90 Yingcui Zhao

(1) φ∗xy(F, t) ≡ 1, ∀t > 0 and φxy(F, ε) = 0 for some ε ∈ Z+.
(2) φ∗xy(F, t) ≡ 1, ∀t > 0 and φ∗xy > φxy.
(3) φ∗xy > φxy.

Definition 2.6. Let x 6= y ∈ X and the sequence {pk} ⊂ Z+. For any δ > 0,
put

φxy(δ, {pk}) = lim inf
n→∞

1

n
]{1 ≤ k ≤ n | dH(F pk(x), F pk(y)) < δ},

φ∗xy(δ, {pk}) = lim sup
n→∞

1

n
]{1 ≤ k ≤ n | dH(F pk(x), F pk(y)) < δ}.

F is said to be distributionally chaotic in the sequence {pk}, if there is
an uncountable subset D ⊂ X such that for any two points x 6= y ∈ D,
(1) φ∗xy(t, {pk}) = 1 for all t > 0;
(2) φxy(ε, {pk}) = 0 for some ε ∈ Z+.

Obviously, if F is HDC1, then it is HDC2, HDC3 and sequentially dis-
tributionally chaotic. If F is HDC2, it is HDC3. If F is HDC1 or HDC2 or
sequentially distributionally chaotic, it is Li-Yorke chaotic.

3. Transitivity

Firstly, we present two classical propositions on transitivity.

Proposition 3.1. The multiple mapping F is transitive if and only if for any
open sets U 6= ∅ of Ran(F ) and V 6= ∅ of X, one can find n ∈ Z+ satisfying

F−n(U)
⋂

V 6= ∅.

Proof. Necessity⇒: Let U 6= ∅ ⊂ Ran(F ) and U 6= ∅ ⊂ X be open. Then
there is n ∈ Z+ such that

{F n(u) | u ∈ U}
⋂

U 6= ∅.

Thus there are u ∈ U and µ ∈ U satisfying F n(u) = µ. Then F−n(µ) = u.
That is F−n(U) ∈ U . So,

F−n(U)
⋂

U 6= ∅.
Sufficiency⇐: Let U 6= ∅ ⊂ Ran(F ) and U 6= ∅ ⊂ X be open. Then one

can find n ∈ Z+ with F−n(U)
⋂
U 6= ∅. Thus there are u ∈ U and µ ∈ U such

that F−n(µ) = u. That is F n(u) = µ ∈ U. Then

{F n(u) | u ∈ U}
⋂

U 6= ∅.

So, F is transitive.
�

Proposition 3.2. If the multiple mapping F is transitive, then {x ∈ X |
o̊rb(x, F ) = Ran(F )} is a Gδ set.
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Proof. X is compact, then it implies K(X) is also compact. Then there is a
countable topological basis {Un}∞n=1 of K(X). Thus

{x ∈ X | o̊rb(x, F ) = Ran(F )} =
∞⋂
n=1

∞⋃
m=0

F−m(Un).

By Proposition 3.1,
∞⋃
m=0

F−m(Un) = X.

So, {x ∈ X | o̊rb(x, F ) = Ran(F )} is a Gδ set. �

A natural question is what is the implication between the transitivity of
multiple mappings F = {f1, f2} and the transitivity of its 2-tuple of continuous
self-maps f1, f2? The Example 2.1 shows that the transitivity of multiple map-
pings F = {f1, f2} doesn’t imply the transitivity of f1 or f2. Then combined
with the following example, the transitivity of multiple mappings F = {f1, f2}
and its 2-tuple of continuous self-maps f1, f2 do not imply each other.

Example 3.1. Consider the multiple mappings F = {f1, f2} defined on {0, 1, 2},
in which

f1 : 0 7−→ 1 7−→ 2 7−→ 0

and

f2 : 0 7−→ 2 7−→ 1 7−→ 0.

It is easy to see that both f1 and f2 is transitive and weakly mixing. Next we
show F is not transitive.

Ran(F ) = {{1, 2}, {0, 2}, {0, 1}, {0, 1, 2}}. Let U = {0} and U = {{0, 2}}.
Then U is a nonempty open set of {0, 1, 2} and U is a nonempty open set of
Ran(F ). While

F : 0 7→ {1, 2} 7→ {0, 1, 2} 7→ · · · 7→ {0, 1, 2} 7→ · · · .

So, F is not transitive.

Although that both f1 and f2 are transitive can’t imply F = {f1, f2}
is transitive, We present Theorem 3.1 as a sufficient condition for F to be
transitive.

Theorem 3.1. If f1(x) = c (c is a constant, ∀x ∈ X) and f2 is transitive,
then the multiple mapping F = {f1, f2} is transitive.

Proof. Clearly, Ran(F ) = {{c, fn2 (x)} | n ≥ 1, x ∈ X}. Let U ⊂ X and
U ⊂ Ran(F ) be two nonempty open sets. Then there exists nonempty open
set V ⊂ X such that {{c, v} | v ∈ V } ⊂ U. Since f2 is transitive, there
exists n ∈ Z+ such that fn2 (U)

⋂
V 6= ∅. Then there exists u ∈ U such that

fn2 (u) ∈ V , that is, F n(u) ∈ U. So, F is transitive. �
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4. Transitivity and Li-Yorke chaos

In this section, we will show that transitivity + fixed point ⇒ Li-Yorke
chaos for open multiple mappings. Prior to presenting this result, we provide
a list of several lemmas that are instrumental in proving the result.

Lemma 4.1. [16] Let hi : X → [0,+∞] be semicontinuous for any i ∈ Z+ and
a ∈ [0,+∞]. Define

g(x) = lim inf
i→∞

hi(x), x ∈ X.

If g−1([0, a]) = X, then g−1([0, a]) is a Gδ set.

Lemma 4.2. Suppose that the multiple mappings F = {f1, f2} is an open
mapping. If there are at least one transitive point of the multiple mappings F
and one common fixed point v ∈ X of f1 and f2 (that is f1(v) = f2(v) = v),
then one can find a dense Gδ set B of X ×X satisfying for ∀(x1, x2) ∈ B,

lim inf
n→∞

dH(F n(x1), F
n(x2)) = 0.

Proof. Define F : X ×X → R as for ∀(x1, x2) ∈ X ×X,

F(x1, x2) = lim inf
n→∞

dH(F n(x1), F
n(x2)).

Define F : K(X)×K(X)→ R as for ∀(A1, A2) ∈ K(X)×K(X),

F(A1, A2) = lim inf
n→∞

dH(F n(A1), F
n(A2)).

Let ω be a transitive point of the multiple mappings F , then for ∀A =
(A1, A2) ∈ o̊rb(ω, F )× o̊rb(ω, F ), there exist positive integers k1, k2 such that
F k1(ω) = A1 and F k2(ω) = A2. Let v ∈ X be the common fixed point of
f1 and f2. Then F (v) = {v} ∈ Ran(F ) and there exists {ni} such that
limni→∞ F

ni(ω) = {v}. Thus for each j = 1, 2,

lim
ni→∞

F ni(Aj) = lim
ni→∞

F ni(F kj(ω)) = lim
ni→∞

F kj(F ni(ω)) = F kj(ω) = {v}.

Then F(A) = 0. Since o̊rb(ω, F )× o̊rb(ω, F ) = Ran(F ) × Ran(F ), F
−1

(0) =
Ran(F )×Ran(F ).

Now we show that F−1(0) is dense in X ×X by contradiction.

Suppose that F−1(0) 6= X ×X. Then one can find a nonempty open set
U × V ⊂ X × X satisfying F−1(0)

⋂
U × V = ∅. Thus for ∀(a, b) ∈ U × V ,

F(a, b) = lim infn→∞ dH(F n(a), F n(b)) 6= 0.
Let A1 = F (a) and A2 = F (b). If (a, b) ∈ U × V , then

lim inf
n→∞

dH(F n(A1), F
n(A2)) 6= 0.

Since F is an open mapping,

{F (a) | a ∈ U} × {F (b) | b ∈ V } := U× V



Transitivity, entropy and Li-Yorke chaos of multiple mappings 93

is a nonempty open set of Ran(F )×Ran(F ). Then for any (A1, A2) ∈ U×V,

F(A1, A2) 6= 0, which is contradictory to F
−1

(0) being dense in Ran(F ) ×
Ran(F ). So, F−1(0) is dense in X ×X.

By Lemma 4.1, F−1(0) is a dense Gδ set in X ×X. �

Lemma 4.3. If Rec(F ) := {x ∈ X | ∃{ni} with limni→∞ F
ni(x) = x} is

dense in X, then Rec(F ) is a dense Gδ set.

Proof. Define F : X → [0,+∞) as for ∀x ∈ X,

F(x) = lim inf
n→∞

dH(F n(x), {x}).

Then x ∈ Rec(F )⇔ F(x) = 0. Thus F−1(0) = X. By Lemma 4.1, Rec(F ) =
F−1(0) is a dense Gδ set of X. �

Lemma 4.4. If the multiple mappings F is transitive, then Rec(F × F ) is a
dense Gδ set of X ×X.

Proof. By Proposition 3.2, one can find at least one transitive point ω ∈ X of
F . Then o̊rb(ω, F )× o̊rb(ω, F ) is dense in Ran(F )×Ran(F ) and o̊rb(ω, F )×
o̊rb(ω, F ) ⊂ Rec(F × F ). Thus Rec(F × F ) is dense in X × X. By Lemma
4.3, Rec(F × F ) is a dense Gδ set of X ×X. �

Theorem 4.1. If the multiple mappings F is transitive and there is at least
one common fixed point of f1 and f2, then F is Hausdorff metric Li-Yorke
chaotic.

Proof. Let D = Rec(F × F )
⋂
B, where B is identical to the B referred to in

lemma 4.2. By Proposition 3.2, one can find at least one transitive point of F .
By Lemma 4.2 and Lemma 4.4, D ⊂ X ×X and it is a residual set.

Due to the compactness of X, it is both complete and separable. As
stated in [17], this implies the existence of a dense Mycielski set K in which
any distinct pair of elements (x1, x2) satisfies (x1, x2) ∈ D. So, F Li-Yorke
chaotic. �

5. Entropy and Chaos

In this section, we mainly show positive entropy doesn’t imply neither
Li-Yorke chaos nor HDC2 for multiple mappings by Example 4.1 of [14].

Example 5.1. Denote X by the unit interval [0, 1]. Let F = {f1, f2}, where
f1, f2 : X → X defined by

f1(x) =


x, 0 ≤ x ≤ 1

3
,

3x− 2
3
, 1

3
< x ≤ 4

9
,

3
5
x+ 2

5
, 4

9
< x ≤ 1,
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f2(x) =


3
5
x, 0 ≤ x ≤ 5

9
,

3x− 4
3
, 5

9
< x ≤ 2

3
,

x, 2
3
< x ≤ 1,

Hou and Wang have already proven F has positive topological entropy. Now
we use a case-by-case analysis to show F is not Li-Yorke chaotic.

(1) For any x ∈ [0, 1
3
] and any n ∈ Z+, F n(x) = {x, 3

5
x, (3

5
)
2
x, · · · , (3

5
)
n
x}.

Then limn→∞ F
n(x) ∈ K(X), ∀x ∈ [0, 1

3
].

(2) For any x ∈ [2
3
, 1] and any n ∈ Z+, F n(x) = {x, 3

5
(x − 1) + 1, (3

5
)
2
(x −

1) + 1, · · · , (3
5
)
n
(x− 1) + 1}. Then limn→∞ F

n(x) ∈ K(X), ∀x ∈ [2
3
, 1].

(3) Let G = {fi1fi2 · · · fin | n ∈ Z+, i1, i2, · · · , in = 1 or 2}. For any x ∈ (1
3
, 2
3
)

and any g ∈ G, there exists n ∈ Z+ such that g(x) ∈ F n(x). Then there
exists a monotone increasing sequence {gk(x)}∞k=n with gk(x) ∈ F k(x),
k = n, n + 1, · · · and a monotone decreasing sequence {hk(x)}∞k=n with
hk(x) ∈ F k(x), k = n, n+ 1, · · · such that

g(x) ∈ {gk(x)}∞k=n and g(x) ∈ {hk(x)}∞k=n.

Suppose that there exist x ∈ (1
3
, 2
3
), A 6= B ∈ K(X) and {ni}, {mi}

such that limni→∞ F
ni(x) = A and limmi→∞ F

ni(x) = B. Select a ∈
A−B, then there exists {yni

}∞i=1 with yni
∈ F ni(x), i = 1, 2 · · · such that

limni→∞ yni
= a. Thus there exists a monotone increasing (or decreasing)

sequence {ynij
}∞j=1 ⊂ {yni

}∞i=1 such that limj→∞ ynij
= a. Let {ynij

}∞j=1 be

monotone increasing (When it is monotone decreasing, it is in a similar
way.). There must be a monotone increasing sequence {ymi

}∞i=1 with ymi
∈

Fmi(x), i = 1, 2 · · · such that {ynij
}∞j=1

⋃
{ymi
}∞i=1 = {yti}∞i=1 is monotone

increasing. While limmi→∞ ymi
6= a. This is a contradiction. So, F is not

Li-Yorke chaotic.

By Example 5.1, we have the following theorem, which is different from
the corresponding conclusion of a single continuous map.

Theorem 5.1. For multiple mappings, positive entropy cant imply Li-Yorke
chaos or HDC1 or HDC2 or (sequentially) distributional chaos.

6. Conclusions

We define and study transitivity of multiple mappings from the perspec-
tive of a set-valued view. This perspective is different from the view that
has been previously studied in the context of dynamical systems of iterated
function systems. We show that
(1) transitivity of multiple mappings F = {f1, f2} and its 2-tuple of continu-

ous self-maps f1, f2 do not imply each other. And, a sufficient condition
for F to be transitive is provided.

(2) transitivity + fixed point ⇒ Li-Yorke chaos for open multiple mappings.
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(3) positive entropy doesn’t imply neither Li-Yorke chaos nor HDC2 for mul-
tiple mappings.

The above conclusions not only deepen our understanding of continuous self-
maps but also enable us to use relatively simple continuous self-maps to com-
prehend relatively complex multiple mappings. It is worth mentioning that we
have defined the transitivity property of multiple mappings and have obtained
some conclusions through our study. This has opened up new avenues for
investigating the topological structure and properties of multiple mappings.
And we give a negative answer to [problem 5.3 and problem 5.4] of [14].
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