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QUANTITATIVE ESTIMATES FOR A NEW COMPLEX Q-

DURRMEYER TYPE OPERATORS ON COMPACT DISKS 
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In the present article, the upper bound and Voronovskaya type result with 

quantitative estimate and the exact degree of approximation for a new complex q-

Bernstein-Durrmeyer operators attached to analytic functions on compact disks are 

obtained. In this way, we put in evidence the over convergence phenomenon for the 

q-Bernstein-Durrmeyer polynomials, namely the extensions of approximation 

properties (with quantitative estimates) from real intervals to compact disks in the 

complex plane. 
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1. Introduction 

Since last few years, the study of linear positive operators defined on a 

complex domain has been an active area of research in approximation theory. S. 

N. Bernstein [19] was the first one who initiated complex approximation and 

introduced complex Bernstein polynomials by 

𝐵𝑛(𝑓; 𝑧) = ∑ (
𝑛

𝑘
)

𝑛

𝑘=0

𝑧𝑘(1 − 𝑧)𝑛−𝑘𝑓(𝑘/𝑛). 

If 𝑓: G → ℂ is an analytic function in the open set G ⊂ ℂ, with 𝐷̅1 ⊂ G 

(where 𝐷1 = {𝑧 ∈ ℂ: |𝑧| > 1}, then Bernstein proved that the complex Bernstein 

polynomials converges to 𝑓 uniformly in 𝐷̅1. 

Sorin Gal pioneered the study of the upper quantitative estimates for the 

uniform convergence of 𝐵𝑛(𝑓) to 𝑓 in [7]. In [9], Gal proved the Voronovskaja 

type results with quantitative estimates for the complex Bernstein polynomials. 

Anastassiou-Gal [6], Gal [8], Gal-Gupta [13], and Gupta [15] established 

quantitative estimates for certain other variants of Durrmeyer type operators. 

    In 2011, Mahmudov [20] obtained the order of simultaneous 

approximation and Voronovskaja type theorems with quantitative esimates for the 
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complex one parameter class of Bernstein-Durrmeyer polynomials on compact 

disks. In the present paper, we establish the exact order in ordinary approximation 

and a Voronovskaja type theorem with a quantitative esimate for the complex 

modified Bernstein-Schurer operators based on q-integers on compact disks. 

    Recently, Agarwal-Gupta [4] studied the upper quantitative estimates 

for q-Bernstein-Durrmeyer operators on compact disks. To make the convergence 

faster, Ren and Zeng used the King type approach for these operators on compact 

disks in [24]. A q-analogue of genuine Bernstein-Durrmeyer operators on 

compact disks is given in [21]. Also Agrawal-Sathish has studied the over 

convergence properties of new type of q-Bernstein Schurer operators on compact 

disks in [5]. Recently, Gal [14] and Gupta-Agarwal [16] studied the over 

convergence properties for several integral operators. In 2016, Gal and Gupta [10] 

studied the approximation properties of the complex version of Durrmeyer type 

operators based on Polya distribution, attached to analytic functions on a disk. In 

the recent years several researchers have studied in this direction for different 

sequences of linear positive operators (see [1-3], [11-12], [17-18], [22-23], [25-

26], etc.). 

Let 𝑝 ∈ 𝑁⁰: = 𝑁 ∪ {0} (the set of all non-negative integers) and 0 < 𝑞 <
1. For 𝑓 ∈ 𝐶[0,1 + 𝑝] the q-modified complex Bernstein-Schurer operators are 

defined for ∀𝑧 ∈ ℂ, as 

𝐷𝑛,𝑝(𝑓; 𝑞, 𝑧)

=
[𝑛 + 𝑝 + 1]𝑞[𝑛]𝑞

[𝑛 + 𝑝]𝑞
∑ 𝑏𝑛+𝑝,𝑘(𝑞; 𝑧)𝑞−𝑘

𝑛+𝑝

𝑘=0

∫ 𝑓(𝑡)𝑏𝑛+𝑝,𝑘(𝑞; 𝑞𝑡)𝑑𝑞(𝑡)

[𝑛+𝑝]𝑞

[𝑛]𝑞

0

,           (1) 

where 

𝑏𝑛+𝑝,𝑘(𝑞; 𝑧) =
[𝑛]𝑞

[𝑛 + 𝑝]𝑞
(

𝑛 + 𝑝

𝑘
) 𝑧𝑘 (

[𝑛 + 𝑝]𝑞

[𝑛]𝑞
− 𝑧)

𝑞

𝑛+𝑝−𝑘

. 

Let 𝐷𝑅 be the disk 𝐷𝑅: = {𝑧 ∈ ℂ: |𝑧| < 𝑅} in the complex plane ℂ. Let us 

denote by 𝐻(𝐷𝑅), the space of all analytic functions on 𝐷𝑅. For 𝑓 ∈ 𝐻(𝐷𝑅), we 

may write 

𝑓(𝑧) = ∑ 𝑐𝑚𝑧𝑚

∞

𝑚=0

 

In this paper, we have shown the overconvergence phenomenon for a new 

type of 𝑞-Bernstein-Durrmeyer type operators, namely the extensions of the 

approximation properties with quantitative estimates from real intervals to 

complex domain. 
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2. Basic Results 

In the sequel, we require the following results. 

Lemma 2.1. Let 𝑫𝒏,𝒑(𝒇; 𝒒, 𝒛) be as defined in (𝟏) and 𝟎 < 𝒒 < 𝟏. Then, 

𝑫𝒏,𝒑(𝒕𝒎; 𝒒, 𝒛) is a polynomial in 𝒛 of degree ≤ 𝒎𝒊𝒏{𝒎, 𝒏} and 

𝑫𝒏,𝒑(𝒕𝒎; 𝒒, 𝒛)

=
[𝒏 + 𝒑 + 𝟏]𝒒!

[𝒏 + 𝒑 + 𝒎 + 𝟏]𝒒!

[𝒏 + 𝒑 + 𝟏]𝒒
𝒎

[𝒏]𝒒
𝒎

∑ 𝒄𝒔(𝒎, 𝒒)[𝒏]𝒒
𝒔 𝑩𝒏,𝒑(𝒆𝒔, 𝒒, 𝒛),

𝒎

𝒔=𝟎

                     (𝟐) 

where 𝑐𝑠(𝑚, 𝑞) > 0 are certain constants depending on 𝑚 and 𝑞 and 𝐵𝑛,𝑝(𝑓, 𝑞, 𝑧) 

is the 𝑞-Bernstein-Schurer polynomial defined by ∑ 𝑏𝑛+𝑝,𝑘(𝑞; 𝑧)𝑓([𝑘]𝑞/[𝑛]𝑞).𝑛+𝑝
𝑘=0  

Proof.  By simple computations and using [𝑘 + 𝑠]𝑞 = [𝑠]𝑞 + 𝑞𝑠[𝑘]𝑞, the proof of 

the lemma easily follows hence the details are omitted. 

Lemma 2.2. Let 0 < 𝑞 < 1. Then, for all 𝑚, 𝑛 ∈ 𝑁 and 𝑝 ∈ 𝑁⁰ such that 𝑚 ≤
𝑛 + 𝑝, we have 

[𝑛 + 𝑝 + 1]𝑞!

[𝑛 + 𝑝 + 𝑚 + 1]𝑞!
∑ 𝑐𝑠(𝑚, 𝑞)[𝑛 + 𝑝]𝑞

𝑠 ≤ 1.

𝑚

𝑠=0

 

Proof. In view of Lemma 2.1 with 𝑒𝑚(𝑡) = 𝑡𝑚, we obtain 

𝑫𝒏,𝒑 (𝒕𝒎; 𝒒,
[𝒏 + 𝒑]𝒒

[𝒏]𝒒
)

=
[𝒏 + 𝒑 + 𝟏]𝒒!

[𝒏 + 𝒑 + 𝒎 + 𝟏]𝒒!

[𝒏 + 𝒑]𝒒
𝒎

[𝒏]𝒒
𝒎

∑ 𝒄𝒔(𝒎, 𝒒)[𝒏]𝒒
𝒔 𝑩𝒏,𝒑 (𝒆𝒔; 𝒒,

[𝒏 + 𝒑]𝒒

[𝒏]𝒒
) .

𝒎

𝒔=𝟎

 

If we consider the operators 

𝐵𝑛,𝑝(𝑒𝑠; 𝑞, 𝑧) =
[𝑛]𝑞

𝑛+𝑝

[𝑛 + 𝑝]𝑞
𝑛+𝑝 ∑ (

𝑛 + 𝑝

𝑘
)

𝑞
𝑧𝑘 (

[𝑛 + 𝑝]𝑞

[𝑛]𝑞
− 𝑧)

𝑛+𝑝−𝑘

𝑞

𝑛+𝑝

𝑘=0

(
[𝑘]𝑞

[𝑛]𝑞
)

𝑠

 

And putting 𝑧 =
[𝑛+𝑝]𝑞

[𝑛]𝑞
𝑤, then we get 

[𝑛]𝑞
𝑛+𝑝

[𝑛 + 𝑝]𝑞
𝑛+𝑝 ∑ (

𝑛 + 𝑝

𝑘
)

𝑞
𝑧𝑘 (

[𝑛 + 𝑝]𝑞

[𝑛]𝑞
− 𝑧)

𝑞

𝑛+𝑝−𝑘𝑛+𝑝

𝑘=0

(
[𝑘]𝑞

[𝑛]𝑞
)

𝑠
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= ∑ (
𝑛 + 𝑝

𝑘
)

𝑞
𝑤𝑘(1 − 𝑤)𝑞

𝑛+𝑝−𝑘

𝑛+𝑝

𝑘=0

(
[𝑘]𝑞

[𝑛]𝑞
)

𝑠

 

=
1

[𝑛]𝑞
𝑠 ∑ (

𝑛 + 𝑝

𝑘
)

𝑞
𝑤𝑘(1 − 𝑤)𝑞

𝑛+𝑝−𝑘

𝑛+𝑝

𝑘=0

[𝑘]𝑞
𝑠  

By ([7], p.61, Theorem 1.5.6), since ∑ (𝑛
𝑘

)
𝑞

𝑤𝑘(1 − 𝑤)𝑞
𝑛−𝑘𝑛

𝑘=0 (
[𝑘]𝑞

[𝑛]𝑞
)

𝑠

= 1 at 𝑤 =

 1 for all 𝑠 =  0,1,2 …therefore, 

[𝑛]𝑞
𝑛+𝑝

[𝑛 + 𝑝]𝑞
𝑛+𝑝 ∑ (

𝑛 + 𝑝

𝑘
)

𝑞
𝑧𝑘 (

[𝑛 + 𝑝]𝑞

[𝑛]𝑞
− 𝑧)

𝑞

𝑛+𝑝−𝑘𝑛+𝑝

𝑘=0

(
[𝑘]𝑞

[𝑛]𝑞
)

𝑠

=
[𝑛 + 𝑝]𝑞

𝑠

[𝑛]𝑞
𝑠  

at 𝑧 =
[𝑛+𝑝]𝑞

[𝑛]𝑞
. Further 

𝑫𝒏,𝒑 (𝒕𝒎; 𝒒,
[𝒏 + 𝒑]𝒒

[𝒏]𝒒
)

=
[𝒏 + 𝒑 + 𝟏]𝒒!

[𝒏 + 𝒑 + 𝒎 + 𝟏]𝒒!

[𝒏 + 𝒑]𝒒
𝒎

[𝒏]𝒒
𝒎

∑ 𝒄𝒔(𝒎, 𝒒)[𝒏 + 𝒑]𝒒
𝒔

𝒎

𝒔=𝟎

.   (𝟑) 

Since 𝒃𝒏+𝒑,𝒌 (𝒒;
[𝒏+𝒑]𝒒

[𝒏]𝒒
) = 𝟎 for 𝒌 = 𝟎, 𝟏, 𝟐, … , 𝒏 + 𝒑 − 𝟏 and 

𝒃𝒏+𝒑,𝒌 (𝒒;
[𝒏+𝒑]𝒒

[𝒏]𝒒
) = 𝟏 for 𝒌 =  𝒏 +  𝒑 we have 

𝑫𝒏,𝒑 (𝒕𝒎; 𝒒,
[𝒏 + 𝒑]𝒒

[𝒏]𝒒
)

=
[𝒏 + 𝒑 + 𝟏]𝒒

[𝒏 + 𝒑]𝒒
𝒒−(𝒏+𝒑)𝒃𝒏+𝒑,𝒏+𝒑 (𝒒;

[𝒏 + 𝒑]𝒒

[𝒏]𝒒
)

× ∫ 𝒕𝒎𝒃𝒏+𝒑,𝒏+𝒑(𝒒; 𝒒𝒕)𝒅𝒒(𝒕)

[𝒏+𝒑]𝒒

[𝒏]𝒒

𝟎

 

              =
[𝒏 + 𝒑 + 𝟏]𝒒

[𝒏 + 𝒑 + 𝒎 + 𝟏]𝒒

[𝒏 + 𝒑]𝒒
𝒎

[𝒏]𝒒
𝒎

≤
[𝒏 + 𝒑]𝒒

𝒎

[𝒏]𝒒
𝒎

.                                                 (𝟒) 
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From (3) and (4), we obtain 

[𝑛 + 𝑝 + 1]𝑞!

[𝑛 + 𝑝 + 𝑚 + 1]𝑞!
∑ 𝑐𝑠(𝑚, 𝑞)[𝑛 + 𝑝]𝑞

𝑠 ≤ 1.

𝑚

𝑠=0

 

which completes the proof. 

Lemma 2.3. Let𝑟 >
[𝑛+𝑝]𝑞

[𝑛]𝑞
and 0 < 𝑞 < 1. Then, for all 𝑚, 𝑛 ∈ 𝑁⁰and|𝑧| ≤ 𝑟, 

we have |Dn,p(𝑒𝑚; q, z)| ≤ 𝑟𝑚. 

Proof. FromGal ([7] p.61, proof of Theorem 1.5.6), we have|𝐵𝑛,𝑞(𝑒𝑠; 𝑧)| ≤

𝑟𝑠whenever |𝑧| ≤ 𝑟 and 𝑟 ≥ 1. Hence, in view of Lemmas 2.1 and 2.2, for all 

𝑚, 𝑛 ∈ 𝑁⁰ and |𝑧| ≤ 𝑟, 𝑟 ≥
[𝑛+𝑝]𝑞

[𝑛]𝑞
 we get 

|𝑫𝒏,𝒑(𝒆𝒎; 𝒒, 𝒛)| ≤
[𝒏 + 𝒑 + 𝟏]𝒒!

[𝒏 + 𝒑 + 𝒎 + 𝟏]𝒒!

[𝒏 + 𝒑]𝒒
𝒎

[𝒏]𝒒
𝒎

∑ 𝒄𝒔(𝒎, 𝒒)[𝒏]𝒒
𝒔 |𝑩𝒏,𝒑(𝒆𝒔; 𝒒, 𝒛)|

𝒎

𝒔=𝟎

 

≤
[𝒏 + 𝒑 + 𝟏]𝒒!

[𝒏 + 𝒑 + 𝒎 + 𝟏]𝒒!

[𝒏 + 𝒑]𝒒
𝒎

[𝒏]𝒒
𝒎

∑ 𝒄𝒔(𝒎, 𝒒)
[𝒏 + 𝒑]𝒒

𝒔

[𝒏]𝒒
𝒔

(𝐫
[𝒏]𝒒

[𝒏 + 𝒑]𝒒
)

𝒔𝒎

𝒔=𝟎

 

≤
[𝒏 + 𝒑 + 𝟏]𝒒!

[𝒏 + 𝒑 + 𝒎 + 𝟏]𝒒!
𝐫𝐦 ∑ 𝒄𝒔(𝒎, 𝒒)[𝒏 + 𝒑]𝒒

𝒔 ≤ 𝒓𝒎

𝒎

𝒔=𝟎

. 

Remark2.1. By simple computations, we have 

𝒛 (
[𝒏 + 𝒑]𝒒

[𝒏]𝒒
− 𝒛) 𝑫𝒒 (𝒃𝒏+𝒑,𝒌(𝒒; 𝒛))

= 𝒃𝒏+𝒑,𝒌(𝒒; 𝒛) ([𝒌]𝒒

[𝒏 + 𝒑]𝒒

[𝒏]𝒒
− [𝒏 + 𝒑]𝒒𝒛) 

and 

𝒛 (
[𝒏 + 𝒑]𝒒

[𝒏]𝒒
− 𝒛) 𝑫𝒒𝒃𝒏+𝒑,𝒌(𝒒; 𝒛) = 𝒃𝒏+𝒑,𝒌(𝒒; 𝒛) (

[𝒌]𝒒[𝒏 + 𝒑]𝒒

[𝒏]𝒒
− 𝒒𝒕[𝒏 + 𝒑]𝒒). 

Lemma 2.4. Let 𝟎 <  𝒒 <  𝟏. For all 𝒆𝒎(𝒕) = 𝒕𝒎, 𝒎 ∈ 𝑵⁰ and 𝒛 ∈ ℂ we have 
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𝒛 (
[𝒏 + 𝒑]𝒒

[𝒏]𝒒
− 𝒛) 𝑫𝒒 (𝑫𝒏,𝒑(𝒆𝒎; 𝒒, 𝒛))

= (𝒒[𝒏 + 𝒑]𝒒 + [𝒎 + 𝟐]𝒒𝒒−(𝒎+𝟏))𝑫𝒏,𝒑(𝒆𝒎+𝟏; 𝒒, 𝒛)

− ([𝒎 + 𝟏]𝒒𝒒−(𝒎+𝟏)
[𝒏 + 𝒑]𝒒

[𝒏]𝒒
+ [𝒏 + 𝒑]𝒒𝒛). 

Proof. Applying Remark 2.1, we have 

𝒛 (
[𝒏 + 𝒑]𝒒

[𝒏]𝒒
− 𝒛) 𝑫𝒒 (𝑫𝒏,𝒑(𝒆𝒎; 𝒒, 𝒛))

=
[𝒏 + 𝒑 + 𝟏]𝒒[𝒏]𝒒

[𝒏 + 𝒑]𝒒
∑ 𝒛 (

[𝒏 + 𝒑]𝒒

[𝒏]𝒒

𝒏+𝒑

𝒌=𝟎

− 𝒛)
𝒒

𝑫𝒒 (𝒃𝒏+𝒑,𝒌(𝒒; 𝒛)) 𝒒−𝒌 ∫ 𝒕𝒎𝒃𝒏+𝒑,𝒌(𝒒; 𝒒𝒕)𝒅𝒒(𝒕)

[𝒏+𝒑]𝒒

[𝒏]𝒒

𝟎

 

=
[𝒏 + 𝒑 + 𝟏]𝒒[𝒏]𝒒

[𝒏 + 𝒑]𝒒
∑ 𝒃𝒏+𝒑,𝒌(𝒒; 𝒛) ([𝒌]𝒒

[𝒏 + 𝒑]𝒒

[𝒏]𝒒

𝒏+𝒑

𝒌=𝟎

− [𝒏 + 𝒑]𝒒𝒛) 𝒒−𝒌 ∫ 𝒕𝒎𝒃𝒏+𝒑,𝒌(𝒒; 𝒒𝒕)𝒅𝒒(𝒕)

[𝒏+𝒑]𝒒

[𝒏]𝒒

𝟎

 

=
[𝒏 + 𝒑 + 𝟏]𝒒[𝒏]𝒒

[𝒏 + 𝒑]𝒒
∑ 𝒃𝒏+𝒑,𝒌(𝒒; 𝒛) ([𝒌]𝒒

[𝒏 + 𝒑]𝒒

[𝒏]𝒒
− [𝒏 + 𝒑]𝒒𝒒𝒕 + [𝒏 + 𝒑]𝒒𝒛

𝒏+𝒑

𝒌=𝟎

− [𝒏 + 𝒑]𝒒𝒛) 𝒒−𝒌 ∫ 𝒕𝒎𝒃𝒏+𝒑,𝒌(𝒒; 𝒒𝒕)𝒅𝒒(𝒕)

[𝒏+𝒑]𝒒

[𝒏]𝒒

𝟎

 

  =
[𝒏 + 𝒑 + 𝟏]𝒒[𝒏]𝒒

[𝒏 + 𝒑]𝒒
∑ 𝒃𝒏+𝒑,𝒌(𝒒; 𝒛) ([𝒌]𝒒

[𝒏 + 𝒑]𝒒

[𝒏]𝒒

𝒏+𝒑

𝒌=𝟎

− [𝒏 + 𝒑]𝒒𝒒𝒕) 𝒒−𝒌 ∫ 𝒕𝒎𝒃𝒏+𝒑,𝒌(𝒒; 𝒒𝒕)𝒅𝒒(𝒕)

[𝒏+𝒑]𝒒

[𝒏]𝒒

𝟎

+ 𝒒[𝒏 + 𝒑]𝒒𝑫𝒏,𝒑(𝒆𝒎+𝟏; 𝒒, 𝒛)

− [𝒏 + 𝒑]𝒒𝒛𝑫𝒏,𝒑(𝒆𝒎; 𝒒, 𝒛)              (𝟓) 
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Let 𝜹(𝒕) = (
[𝒏+𝒑]𝒒

[𝒏]𝒒
− 𝒕) (

𝒕

𝒒
)

𝒎+𝟏

, then 𝜹(𝒒𝒕) = (
[𝒏+𝒑]𝒒

[𝒏]𝒒
− 𝒒𝒕) 𝒕𝒎+𝟏. Using 𝒒-

integration by parts, we have 

∫ 𝑫𝒒 (𝒃𝒏+𝒑,𝒌(𝒒; 𝒒𝒕)) 𝜹(𝒒𝒕)𝒅𝒒(𝒕)

[𝒏+𝒑]𝒒

[𝒏]𝒒

𝟎

 

= 𝜹(𝒕)𝒃𝒏+𝒑,𝒌(𝒒; 𝒒𝒕) |
𝟎

[𝒏+𝒑]𝒒

[𝒏]𝒒 − ∫ 𝒃𝒏+𝒑,𝒌(𝒒; 𝒒𝒕)𝑫𝒒(𝜹(𝒕))𝒅𝒒(𝒕)

[𝒏+𝒑]𝒒

[𝒏]𝒒

𝟎

 

= −
𝟏

𝒒𝒎+𝟏
∫ 𝒃𝒏+𝒑,𝒌(𝒒; 𝒒𝒕)𝑫𝒒 (

[𝒏 + 𝒑]𝒒

[𝒏]𝒒
𝒕𝒎+𝟏 − 𝒕𝒎+𝟐) 𝒅𝒒(𝒕)

[𝒏+𝒑]𝒒

[𝒏]𝒒

𝟎

 

= −
𝟏

𝒒𝒎+𝟏
∫ 𝒃𝒏+𝒑,𝒌(𝒒; 𝒒𝒕) (

[𝒏 + 𝒑]𝒒

[𝒏]𝒒

[𝒎 + 𝟏]𝒒𝒕𝒎 − [𝒎 + 𝟐]𝒒𝒕𝒎+𝟏) 𝒅𝒒(𝒕)

[𝒏+𝒑]𝒒

[𝒏]𝒒

𝟎

. 

In view of (5), we get the desired recurrence relation. 

3. Main Results 

Let 𝑷𝒏(𝒛) be a polynomial of degree 𝒏 of complex variable 𝒛 with derivative 

𝑷𝒏′(𝒛). Then, by the Bernstein inequality and the complex mean value theorem, 

we have 

|𝑫𝒒(𝑷𝒏(𝒛))| ≤ ‖𝑷𝒏′‖𝒓 ≤
𝒏

𝒓
‖𝑷𝒏‖𝒓, 𝒇𝒐𝒓 𝒂𝒍𝒍 |𝒛|

≤ 𝒓,                                                   (𝟔) 

where‖. ‖𝒓denotes the sup-norm on |𝒛| ≤ 𝒓. 

Our first main result is the following upper estimate. 

Theorem 3.1. Let 𝟎 <  𝒒 <  𝟏, 𝒇(𝒛) = ∑ 𝒄𝒎𝒛𝒎∞
𝒎=𝟎 , for all |𝒛| ≤ 𝑹 and let 

[𝒏+𝒑]𝒒

[𝒏]𝒒
≤ 𝒓 ≤ 𝑹. Then, for all |𝒛| ≤ 𝒓 and 𝒏 ∈ 𝑵, we have 

|𝑫𝒏,𝒑(𝒇; 𝒒, 𝒛) − 𝒇(𝒛)| ≤
[𝒏 + 𝒑]𝒒

[𝒏]𝒒

𝑪𝒓(𝒇)

[𝒏 + 𝒑 + 𝟏]𝒒
, 



198                        A. Sathish Kumar, Purshottam N. Agrawal, Tuncer Acar 

where 𝑪𝒓(𝒇) = (𝟏 + 𝒓) ∑ |𝒄𝒎|𝒎(𝒎 + 𝟏)∞
𝒎=𝟏 𝒓𝒎−𝟏 < ∞. 

Proof. First we show that 𝑫𝒏,𝒑(𝒇; 𝒒, 𝒛) = ∑ 𝑪𝒎𝑫𝒏,𝒑(𝒆𝒎; 𝒒, 𝒛)∞
𝒎=𝟎 , where 

𝒆𝒎(𝒛) = 𝒛𝒎, 𝒎 = 𝟎, 𝟏, 𝟐, …. Indeed, denoting 𝒇𝒎(𝒛) = ∑ 𝒄𝒋𝒛𝒋𝐦
𝒋=𝟎 , |𝒛| ≤ 𝒓, 𝒎 ∈

𝑵, by applying the linearity of 𝑫𝒏,𝒑, we get 𝑫𝒏,𝒑(𝒇𝒎; 𝒒, 𝒛) =

∑ 𝒄𝒋𝑫𝒏,𝒑(𝒆𝒋; 𝒒, 𝒛)𝐦
𝒋=𝟎 . For any fixed 𝒏 ∈ 𝑵 and |𝒛| ≤ 𝒓 with 𝒓 ≥

[𝒏+𝒑]𝒒

[𝒏]𝒒
, it is 

enough to show that 

𝐥𝐢𝐦
𝒎→∞

𝑫𝒏,𝒑(𝒇𝒎; 𝒒, 𝒛) = 𝑫𝒏,𝒑(𝒇; 𝒒, 𝒛). 

But this is immediate from 𝐥𝐢𝐦
𝒎→∞

‖𝒇𝒎 − 𝒇‖𝒓 = 𝟎 and from the inequality 

|𝑫𝒏,𝒑(𝒇𝒎; 𝒒, 𝒛) − 𝒇(𝒛)|

≤
[𝒏 + 𝒑 + 𝟏]𝒒[𝒏]𝒒

[𝒏 + 𝒑]𝒒
∑|𝒃𝒏+𝒑,𝒌(𝒒; 𝒛)|𝒒−𝒌 ∫ 𝒃𝒏+𝒑,𝒌(𝒒; 𝒒𝒕)|𝒇𝒎(𝒕)

[𝒏+𝒑]𝒒

[𝒏]𝒒

𝟎

𝒏+𝒑

𝒌=𝟎

− 𝒇(𝒕)|𝒅𝒒(𝒕) ≤ 𝑴𝒓,𝒏,𝒑‖𝒇𝒎 − 𝒇‖𝒓 

valid for all |𝒛| ≤ 𝒓, where 

𝑴𝒓,𝒏,𝒑 =
[𝒏 + 𝒑 + 𝟏]𝒒[𝒏]𝒒

[𝒏 + 𝒑]𝒒
∑ (

𝒏 + 𝒑

𝒌
)

𝒒
𝒓𝒌 (

[𝒏 + 𝒑]𝒒

[𝒏]𝒒

𝒏+𝒑

𝒌=𝟎

+ 𝒓)
𝒒

𝒏+𝒑−𝒌

𝒒−𝒌 ∫ 𝒃𝒏+𝒑,𝒌(𝒒; 𝒒𝒕)𝒅𝒒(𝒕)

[𝒏+𝒑]𝒒

[𝒏]𝒒

𝟎

 

= ∑ (
𝒏 + 𝒑

𝒌
)

𝒒
𝒓𝒌 (

[𝒏 + 𝒑]𝒒

[𝒏]𝒒
+ 𝒓)

𝒒

𝒏+𝒑−𝒌

.

𝒏+𝒑

𝒌=𝟎

 

Therefore, we get 

|𝑫𝒏,𝒑(𝒇; 𝒒, 𝒛) − 𝒇(𝒛)| ≤ ∑ |𝑪𝒎||𝑫𝒏,𝒑(𝒆𝒎; 𝒒, 𝒛) − 𝒆𝒎(𝒛)|

∞

𝒎=𝟎

= ∑ |𝑪𝒎||𝑫𝒏,𝒑(𝒆𝒎; 𝒒, 𝒛) − 𝒆𝒎(𝒛)|

∞

𝒎=𝟏
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since 𝑫𝒏,𝒑(𝒆𝟎; 𝒒, 𝒛) = 𝒆𝟎(𝒛) = 𝟏. Now from Lemma 2.4, for all 𝒎 ∈ 𝑵 we have 

𝑫𝒏,𝒑(𝒆𝒎; 𝒒, 𝒛) − 𝒆𝒎(𝒛)

=
𝒒𝒎𝒛 (

[𝒏+𝒑]𝒒

[𝒏]𝒒
− 𝒛)

[𝒏 + 𝒑 + 𝒎 + 𝟏]𝒒
𝑫𝒒𝑫𝒏,𝒑(𝒆𝒎−𝟏; 𝒒, 𝒛)

+

[𝒎]𝒒

[𝒏+𝒑]𝒒

[𝒏]𝒒
+ 𝒒𝒎𝒛[𝒏 + 𝒑]𝒒

[𝒏 + 𝒑 + 𝒎 + 𝟏]𝒒
(𝑫𝒏,𝒑(𝒆𝒎−𝟏; 𝒒, 𝒛) − 𝒆𝒎−𝟏(𝒛))

+

[𝒎]𝒒

[𝒏+𝒑]𝒒

[𝒏]𝒒
+ 𝒒𝒎𝒛[𝒏 + 𝒑]𝒒

[𝒏 + 𝒑 + 𝒎 + 𝟏]𝒒
𝒛𝒎−𝟏 − 𝒛𝒎 

=
𝒒𝒎𝒛 (

[𝒏+𝒑]𝒒

[𝒏]𝒒
− 𝒛)

[𝒏 + 𝒑 + 𝒎 + 𝟏]𝒒
𝑫𝒒𝑫𝒏,𝒑(𝒆𝒎−𝟏; 𝒒, 𝒛)

+

[𝒎]𝒒

[𝒏+𝒑]𝒒

[𝒏]𝒒
+ 𝒒𝒎𝒛[𝒏 + 𝒑]𝒒

[𝒏 + 𝒑 + 𝒎 + 𝟏]𝒒
(𝑫𝒏,𝒑(𝒆𝒎−𝟏; 𝒒, 𝒛) − 𝒆𝒎−𝟏(𝒛))

+

[𝒎]𝒒

[𝒏+𝒑]𝒒

[𝒏]𝒒

[𝒏 + 𝒑 + 𝒎 + 𝟏]𝒒
𝒛𝒎−𝟏

+
(𝒒𝒎[𝒏 + 𝒑]𝒒 − [𝒏 + 𝒑 + 𝒎 + 𝟏]𝒒)

[𝒏 + 𝒑 + 𝒎 + 𝟏]𝒒
𝒛𝒎. 

Since 𝑞𝑚[𝑛 + 𝑝]𝑞 − [𝑛 + 𝑝 + 𝑚 + 1]𝑞 = −[𝑚]𝑞 − 𝑞𝑛+𝑝+𝑚, we have 

|𝐷𝑛,𝑝(𝑒𝑚; 𝑞, 𝑧) − 𝑒𝑚(𝑧)|

=
𝑞𝑚𝑟 (

[𝑛+𝑝]𝑞

[𝑛]𝑞
+ 𝑟)

[𝑛 + 𝑝 + 𝑚 + 1]𝑞
|𝐷𝑞𝐷𝑛,𝑝(𝑒𝑚−1; 𝑞, 𝑧)|

+

[𝑚]𝑞

[𝑛+𝑝]𝑞

[𝑛]𝑞
+ 𝑞𝑚𝑟[𝑛 + 𝑝]𝑞

[𝑛 + 𝑝 + 𝑚 + 1]𝑞
|𝐷𝑛,𝑝(𝑒𝑚−1; 𝑞, 𝑧) − 𝑒𝑚−1(𝑧)|

+

[𝑚]𝑞

[𝑛+𝑝]𝑞

[𝑛]𝑞

[𝑛 + 𝑝 + 𝑚 + 1]𝑞
𝑟𝑚−1

+
(𝑞𝑚[𝑛 + 𝑝]𝑞 − [𝑛 + 𝑝 + 𝑚 + 1]𝑞)

[𝑛 + 𝑝 + 𝑚 + 1]𝑞
𝑟𝑚. 

Using (6) and Lemma 2.3 we obtain 
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𝑞𝑚𝑟 (
[𝑛+𝑝]𝑞

[𝑛]𝑞
+ 𝑟)

[𝑛 + 𝑝 + 𝑚 + 1]𝑞
|𝐷𝑞𝐷𝑛,𝑝(𝑒𝑚−1; 𝑞, 𝑧)|

≤
𝑞𝑚𝑟 (

[𝑛+𝑝]𝑞

[𝑛]𝑞
+ 𝑟) (𝑚 − 1)

[𝑛 + 𝑝 + 𝑚 + 1]𝑞𝑟
‖𝐷𝑛,𝑝(𝑒𝑚−1; 𝑞, . )‖

𝑟

≤
𝑞𝑚 (

[𝑛+𝑝]𝑞

[𝑛]𝑞
+ 𝑟) (𝑚 − 1)

[𝑛 + 𝑝 + 𝑚 + 1]𝑞
‖𝐷𝑛,𝑝(𝑒𝑚−1; 𝑞, . )‖

𝑟

≤

[𝑛+𝑝]𝑞

[𝑛]𝑞
(1 + 𝑟)

[𝑛 + 𝑝 + 1]𝑞
𝑟𝑚−1. 

Also, we have 

[𝑚]𝑞

[𝑛+𝑝]𝑞

[𝑛]𝑞

[𝑛 + 𝑝 + 𝑚 + 1]𝑞
𝑟𝑚−1 ≤

[𝑚 + 1]𝑞

[𝑛+𝑝]𝑞

[𝑛]𝑞

[𝑛 + 𝑝 + 1]𝑞
𝑟𝑚−1 

and 
[𝑚]𝑞 + 𝑞𝑛+𝑝+𝑚

[𝑛 + 𝑝 + 𝑚 + 1]𝑞
𝑟𝑚 ≤

[𝑚 + 1]𝑞 + 𝑞𝑛+𝑝+𝑚

[𝑛 + 𝑝 + 1]𝑞
𝑟𝑚. 

From [𝑛 + 𝑝 + 𝑚 + 1]𝑞 = 𝑞𝑚[𝑛 + 𝑝]𝑞 + [𝑚]𝑞 + 𝑞𝑛+𝑝+𝑚, it follows that 

𝑞𝑚[𝑛 + 𝑝]𝑞𝑟 + [𝑚]𝑞

[𝑛+𝑝]𝑞

[𝑛]𝑞

[𝑛 + 𝑝 + 𝑚 + 1]𝑞
≤ 𝑟. 

Hence, we get 

|𝐷𝑛,𝑝(𝑒𝑚; 𝑞, 𝑧) − 𝑒𝑚(𝑧)|

≤

[𝑛+𝑝]𝑞

[𝑛]𝑞
(1 + 𝑟)(𝑚 − 1)

[𝑛 + 𝑝 + 1]𝑞
𝑟𝑚−1 + 𝑟|𝐷𝑛,𝑝(𝑒𝑚−1; 𝑞, 𝑧) − 𝑒𝑚−1(𝑧)|

+

[𝑚 + 1]𝑞

[𝑛+𝑝]𝑞

[𝑛]𝑞

[𝑛 + 𝑝 + 1]𝑞
𝑟𝑚−1 +

[𝑚 + 1]𝑞

[𝑛+𝑝]𝑞

[𝑛]𝑞

[𝑛 + 𝑝 + 1]𝑞
𝑟𝑚 
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≤

[𝑛+𝑝]𝑞

[𝑛]𝑞
(1 + 𝑟)(𝑚 − 1)

[𝑛 + 𝑝 + 1]𝑞
𝑟𝑚−1 + 𝑟|𝐷𝑛,𝑝(𝑒𝑚−1; 𝑞, 𝑧) − 𝑒𝑚−1(𝑧)|

+

[𝑚 + 1]𝑞

[𝑛+𝑝]𝑞

[𝑛]𝑞

[𝑛 + 𝑝 + 1]𝑞
𝑟𝑚−1(1 + 𝑟)

≤ 2𝑚

[𝑛+𝑝]𝑞

[𝑛]𝑞
(1 + 𝑟)

[𝑛 + 𝑝 + 1]𝑞
𝑟𝑚−1 + 𝑟|𝐷𝑛,𝑝(𝑒𝑚−1; 𝑞, 𝑧) − 𝑒𝑚−1(𝑧)|. 

By writing the last inequality for 𝑚 =  2,3, …we can easily obtain step by step, 

the following 

|𝐷𝑛,𝑝(𝑒𝑚; 𝑞, 𝑧) − 𝑒𝑚(𝑧)|

≤ 𝑟 (𝑟|𝐷𝑛,𝑝(𝑒𝑚−2; 𝑞, 𝑧) − 𝑒𝑚−2(𝑧)|

+
2(𝑚 − 1)

[𝑛+𝑝]𝑞

[𝑛]𝑞
(1 + 𝑟)

[𝑛 + 𝑝 + 1]𝑞
𝑟𝑚−2) +

2𝑚
[𝑛+𝑝]𝑞

[𝑛]𝑞
(1 + 𝑟)

[𝑛 + 𝑝 + 1]𝑞
𝑟𝑚−1

= 𝑟2|𝐷𝑛,𝑝(𝑒𝑚−2; 𝑞, 𝑧) − 𝑒𝑚−2(𝑧)|

+
2(𝑚 − 1)

[𝑛+𝑝]𝑞

[𝑛]𝑞
(1 + 𝑟)

[𝑛 + 𝑝 + 1]𝑞
𝑟𝑚−1 +

2𝑚
[𝑛+𝑝]𝑞

[𝑛]𝑞
(1 + 𝑟)

[𝑛 + 𝑝 + 1]𝑞
𝑟𝑚

= 𝑟2|𝐷𝑛,𝑝(𝑒𝑚−2; 𝑞, 𝑧) − 𝑒𝑚−2(𝑧)|

+
2

[𝑛+𝑝]𝑞

[𝑛]𝑞
(1 + 𝑟)

[𝑛 + 𝑝 + 1]𝑞
𝑟𝑚−1(2𝑚 − 1) ≤ ⋯

≤

[𝑛+𝑝]𝑞

[𝑛]𝑞
(1 + 𝑟)

[𝑛 + 𝑝 + 1]𝑞
𝑟𝑚−1𝑚(𝑚 + 1). 

Therefore, we have 

 



202                        A. Sathish Kumar, Purshottam N. Agrawal, Tuncer Acar 

|𝐷𝑛,𝑝(𝑓; 𝑞, 𝑧) − 𝑓(𝑧)| ≤ ∑ |𝐶𝑚||𝐷𝑛,𝑝(𝑒𝑚; 𝑞, 𝑧) − 𝑒𝑚(𝑧)|

∞

𝑚=1

≤ ∑ |𝐶𝑚|

[𝑛+𝑝]𝑞

[𝑛]𝑞
(1 + 𝑟)

[𝑛 + 𝑝 + 1]𝑞
𝑟𝑚−1𝑚(𝑚 + 1)

∞

𝑚=1

≤

[𝑛+𝑝]𝑞

[𝑛]𝑞
(1 + 𝑟)

[𝑛 + 𝑝 + 1]𝑞
∑ |𝐶𝑚|𝑟𝑚−1𝑚(𝑚 + 1)

∞

𝑚=1

≤
[𝑛 + 𝑝]𝑞

[𝑛]𝑞

𝐶𝑟(𝑓)

[𝑛 + 𝑝 + 1]𝑞
, 

where 𝐶𝑟(𝑓) = (1 + 𝑟) ∑ |𝐶𝑚|𝑟𝑚−1𝑚(𝑚 + 1).∞
𝑚=1  

This completes the proof of the theorem. 

Remark 3.1.Let 0 <  𝑞 <  1 be fixed. Since, 
1

[𝑛]𝑞
→ 1 − 𝑞 as 𝑛 → ∞, by 

applying limit 𝑛 → ∞,in the Theorem 3.1, 𝐷𝑛,𝑝(𝑓; 𝑞, 𝑧) does not converge to 𝑓(𝑧) 

But this can be achieved by taking a sequence 𝑞 = 𝑞𝑛 satisfying 0 < 𝑞𝑛 <  1 

with 𝑞𝑛 → 1 and 𝑞𝑛
𝑛 → 0 as 𝑛 → ∞. In this case 

1

[𝑛]𝑞
→ 0as 𝑛 → ∞. Therefore 

from Theorem 3.1, we have 𝐷𝑛,𝑝(𝑓; 𝑞, 𝑧) → 𝑓(𝑧) as 𝑛 → ∞ uniformly for |𝑧| ≤ 𝑟, 

when 
[𝑛+𝑝]𝑞

[𝑛]𝑞
≤ 𝑟 ≤ 𝑅. 

Our next main result is the following Voronovskaja type theorem with a 

quantitative estimate. 

Theorem 3.2. Let 𝑹 > 𝟏 + 𝒑, 𝒇: 𝑫𝑹 → 𝑪 be analytic in 𝑫𝑹, i.e. we can write   

𝒇(𝒛) = ∑ 𝒄𝒌𝒛𝒌∞
𝒌=𝟎 , for all 𝒛 ∈ 𝑫𝑹. For any fixed 𝒓 ∈ [

[𝒏+𝒑]𝒒

[𝒏]𝒒
, 𝑹) and for all 𝒏 ∈

𝑵, |𝒛| ≤ 𝒓, we have 

|𝑫𝒏,𝒑(𝒇; 𝒒, 𝒛) − 𝒇(𝒛) −
𝒛(𝟏−𝒛)𝒇′(𝒛)+𝒛(𝟏−(𝒄+𝟏)𝒛)𝒇′(𝒛)

[𝒏]𝒒
| ≤

𝟏−𝒒𝒏+𝒑

𝟏−𝒒𝒏

𝑴𝒓,𝒑,𝒌(𝒇)

[𝒏]𝒒
𝟐 +

𝑻𝒓,𝒑,𝒌(𝒇)

[𝒏]𝒒
𝟐 +

𝟑(𝟏 − 𝒒) ∑ |𝒄𝒌|𝒓
𝒌𝒌𝟒∞

𝒌=𝟏 ,  

where 𝑴𝒓,𝒑,𝒌(𝒇) = ∑ |𝒄𝒌|𝒓
𝒌𝒌𝑭𝒌,𝒓,𝒑

∞
𝒌=𝟏 < ∞, 𝑻𝒓,𝒑,𝒌(𝒇) = ∑ |𝒄𝒌|𝒓

𝒌𝒌𝑫𝒌,𝒓,𝒑
∞
𝒌=𝟏 < ∞ 

and 𝑭𝒌,𝒓,𝒑 = 𝟒(𝟏 + 𝒄)𝒌(𝒌 − 𝟏)𝟐(𝟏 + 𝒓), 𝑫𝒌,𝒓,𝒑 = (𝟏 + 𝒑)(𝟏 + 𝒄)(𝟐(𝒌 − 𝟏)𝟑 +

𝟖𝒌𝟐(𝒌 + 𝟏) + 𝟖𝒌(𝒌 + 𝟏)𝟐).   

Proof. Since 𝒇 is an analytic function, we can write 𝑫𝒏,𝒑(𝒇; 𝒒, 𝒛) =

∑ 𝑪𝒌𝑫𝒏,𝒑(𝒆𝒌; 𝒒, 𝒛)∞
𝒌=𝟎 . Also,  



Quantitative estimates for a new complex q-Durrmeyer type operators on compact disks    203 

𝒛(𝟏 − 𝒛)𝒇′(𝒛) + 𝒛(𝟏 − (𝒄 + 𝟏)𝒛)𝒇′(𝒛)

[𝒏]𝒒

=
𝒛(𝟏 − 𝒛)

[𝒏]𝒒
∑ 𝒄𝒌𝒌(𝒌 − 𝟏)𝒛𝒌−𝟐 +

𝒛(𝟏 − (𝒄 + 𝟏)𝒛)

[𝒏]𝒒
∑ 𝒄𝒌𝒌𝒛𝒌−𝟏

∞

𝒌=𝟏

∞

𝒌=𝟐

=
𝟏

[𝒏]𝒒
∑ 𝒄𝒌(𝒌𝟐 − (𝒌 + 𝒄)𝒛)𝒛𝒌−𝟏

∞

𝒌=𝟏

 

For all 𝒛 ∈ 𝑫𝑹 and 𝒏 ∈ 𝑵, we have  

|𝑫𝒏,𝒑(𝒇; 𝒒, 𝒛) − 𝒇(𝒛)

−
𝒛(𝟏 − 𝒛)𝒇′(𝒛) + 𝒛(𝟏 − (𝒄 + 𝟏)𝒛)𝒇′(𝒛)

[𝒏]𝒒
|≤ ∑ 𝒄𝒌

∞

𝒌=𝟏

|𝑫𝒏,𝒑(𝒆𝒌; 𝒒, 𝒛) − 𝒆𝒌(𝒛)

−
(𝒌𝟐 − (𝒌 + 𝒄)𝒛)

[𝒏]𝒒
𝒛𝒌−𝟏|. 

If we consider 𝑬𝒌,𝒏,𝒑(𝒒, 𝒛) = 𝑫𝒏,𝒑(𝒆𝒌; 𝒒, 𝒛) − 𝒆𝒌(𝒛) −
(𝒌𝟐−(𝒌+𝒄)𝒛)

[𝒏]𝒒
𝒛𝒌−𝟏, it is clear 

that 𝑬𝒌,𝒏,𝒑(𝒒, 𝒛) is a polynomial in 𝒛 of degree ≤ k. Using Lemma 2.4, we have  

𝑬𝒌,𝒏,𝒑(𝒒, 𝒛) =
𝒒𝒌𝒛(

[𝒏+𝒑]𝒒

[𝒏]𝒒
− 𝒛)

[𝒏 + 𝒑 + 𝒌 + 𝟏]𝒒
𝑬′𝒌−𝟏,𝒏,𝒑(𝒒, 𝒛)

+
([𝒌]𝒒

[𝒏+𝒑]𝒒

[𝒏]𝒒
+ 𝒒𝒌𝒛[𝒏 + 𝒑]𝒒)

[𝒏 + 𝒑 + 𝒌 + 𝟏]𝒒
𝑬𝒌−𝟏,𝒏,𝒑(𝒒, 𝒛) + 𝑿𝒌,𝒏,𝒑(𝒒, 𝒛), 

where 𝑿𝒌,𝒏,𝒑(𝒒, 𝒛) =
𝒛𝒌−𝟐

[𝒏]𝒒[𝒏+𝒑+𝒌+𝟏]𝒒
{

[𝒏+𝒑]𝒒

[𝒏]𝒒
(𝒒𝒌 (𝒌 − 𝟏)𝟐[𝒌 − 𝟐]𝒒 + (𝒌 −

𝟏)𝟐[𝒌]𝒒) + 𝒛 (𝒒𝒌[𝒌 − 𝟏]𝒒[𝒏 + 𝒑]𝒒 − 𝒒𝒌(𝒌 − 𝟏)(𝒌 − 𝟏 + 𝒄)[𝒌 − 𝟐]𝒒

[𝒏+𝒑]𝒒

[𝒏]𝒒
−

𝒒𝒌(𝒌 − 𝟏)𝟐[𝒌 − 𝟐]𝒒 + 𝒒𝒌(𝒌 − 𝟏)𝟐[𝒏 + 𝒑]𝒒 + [𝒌]𝒒[𝒏 + 𝒑]𝒒 − 𝒒𝒌(𝒌 − 𝟏)(𝒌 −

𝟏 + 𝒄)
[𝒏+𝒑]𝒒

[𝒏]𝒒
− 𝒌𝟐[𝒏 + 𝒑 + 𝒌 + 𝟏]𝒒) +𝒛𝟐(−𝒒𝒌[𝒏]𝒒[𝒌 − 𝟏]𝒒 + 𝒒𝒌(𝒌 − 𝟏)(𝒌 −

𝟏 + 𝒄)[𝒌 − 𝟐]𝒒 + 𝒒𝒌[𝒏]𝒒[𝒏 + 𝒑]𝒒 + 𝒒𝒌(𝒌 − 𝟏)(𝒌 − 𝟏 + 𝒄) − 𝒒𝒌[𝒏 + 𝒑]𝒒(𝒌 −

𝟏)(𝒌 − 𝟏 + 𝒄) − [𝒏]𝒒[𝒏 + 𝒑 + 𝒌 + 𝟏]𝒒 + 𝒌(𝒌 + 𝒄)[𝒏 + 𝒑 + 𝒌 + 𝟏]𝒒)} =

𝒛𝒌−𝟐

[𝒏]𝒒[𝒏+𝒑+𝒌+𝟏]𝒒
(𝑨𝒌,𝒏(𝒒) + 𝒛𝑩𝒌,𝒏(𝒒) + 𝒛𝟐𝑪𝒌,𝒏(𝒒)). 
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First we estimate 𝑨𝒌,𝒏(𝒒). 

𝑨𝒌,𝒏(𝒒) =
[𝒏+𝒑]𝒒

[𝒏]𝒒
(𝒒𝒌(𝒌 − 𝟏)𝟐[𝒌 − 𝟐]𝒒+(𝒌 − 𝟏)𝟐[𝒌]𝒒) 

              = 
𝟏−𝒒𝒏+𝒑

𝟏−𝒒𝒏 (𝒒𝒌(𝒌 − 𝟏)𝟐[𝒌 − 𝟐]𝒒+(𝒌 − 𝟏)𝟐[𝒌]𝒒). 

It is clear from the above equation |𝐀𝐤,𝐧(𝐪)|≤ 𝟐(𝟏 + 𝐩)(𝐤 − 𝟏)𝟑. Next,  we 

estimate 𝑩𝒌,𝒏(𝒒). Using [𝒏 + 𝒑]𝒒 = [𝒏]𝒒 + 𝒒𝒏[𝒑]𝒒 and [𝒏 + 𝒑 + 𝒌 + 𝟏]𝒒 =

[𝒏]𝒒 + 𝒒𝒏[𝒑 + 𝒌 + 𝟏]𝒒, we have  

𝑩𝒌,𝒏(𝒒) = [𝒏]𝒒(𝒒𝒌[𝒌 − 𝟏]𝒒 + [𝒌]𝒒 + 𝒒𝒌(𝒌 − 𝟏)𝟐 − 𝒌𝟐) + [𝒑]𝒒(𝒒𝒏+𝒌(𝒌 −

𝟏)𝟐 + 𝒒𝒏[𝒌]𝒒 + 𝒒𝒏+𝒌[𝒌 − 𝟏]𝒒) − 𝒒𝒏𝒌𝟐[𝒑 + 𝒌 + 𝟏]𝒒 +
[𝒏+𝒑]𝒒

[𝒏]𝒒
(−𝒒𝒌(𝒌 −

𝟏)𝟐[𝒌 − 𝟐]𝒒 − 𝒒𝒌(𝒌 − 𝟏)(𝒌 − 𝟏 + 𝒄)).                                                          (7) 

It is clear that  

|
[𝒏+𝒑]𝒒

[𝒏]𝒒
(−𝒒𝒌(𝒌 − 𝟏)(𝒌 − 𝟏 + 𝒄)[𝒌 − 𝟐]𝒒 − 𝒒𝒌(𝒌 − 𝟏)(𝒌 − 𝟏 + 𝒄))| 

≤ |
𝟏 − 𝒒𝒏+𝒑

𝟏 − 𝒒𝒏
|𝟐(𝟏 + 𝒄) (𝒌 − 𝟏)𝟑 

≤ 𝟐(𝟏 + 𝒄)(𝟏 + 𝒑)(𝒌 − 𝟏)𝟑. 

Now, we have  

[𝒏]𝒒(𝒒𝒌[𝒌 − 𝟏]𝒒 + [𝒌]𝒒 + 𝒒𝒌(𝒌 − 𝟏)𝟐 − 𝒌𝟐) = (𝟏 − 𝒒𝒏){−𝒒𝒌 ∑ [𝒋]𝒒
𝒌−𝟐
𝒋=𝟎 −

∑ [𝒋]𝒒
𝒌−𝟏
𝒋=𝟎 − 𝒌(𝒌 − 𝟏)[𝒌]𝒒}, 

which implies that  

|[𝐧]𝐪(𝐪𝐤[𝐤 − 𝟏]𝐪 + [𝐤]𝐪 + 𝐪𝐤(𝐤 − 𝟏)𝟐 − 𝐤𝟐)|

≤
(𝐤 − 𝟏)(𝐤 − 𝟐)

𝟐
+

(𝐤 − 𝟏)

𝟐
+ 𝐤𝟐(𝐤 − 𝟏). 
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Hence, in view of (7), we have  

|𝐁𝐤,𝐧(𝐪)| ≤ (𝟏 + 𝐩)(𝟏 + 𝐜){𝟐(𝐤 − 𝟏)𝟑 + 𝐤(𝐤 − 𝟏)𝟐 + 𝐤𝟐(𝐤 − 𝟏) + (𝐤

− 𝟐)(𝐤 − 𝟏)𝟐 + 𝐤𝟐(𝐤 − 𝟏) + 𝐤𝟐(𝐤 + 𝟏) + (𝐤 − 𝟐)(𝐤 − 𝟏)𝟐}

≤ 𝟖(𝟏 + 𝐩)(𝟏 + 𝐜)𝐤𝟐(𝐤 + 𝟏). 

Now, we estimate 𝑪𝒌,𝒏(𝒒). Using [𝒏 + 𝒑]𝒒 = [𝒏]𝒒 + 𝒒𝒏[𝒑]𝒒 and [𝒏 + 𝒑 + 𝒌 +

𝟏]𝒒 = [𝒏]𝒒 + 𝒒𝒏[𝒑 + 𝒌 + 𝟏]𝒒, we obtain  

𝑪𝒌,𝒏(𝒒) ≤ [𝒏]𝒒
𝟐(𝒒𝒌 − 𝟏)+ [𝒏]𝒒(−𝒒𝒌[𝒌 − 𝟏]𝒒 + 𝒒𝒌+𝒏[𝒑]𝒒 − 𝒒𝒌(𝒌 − 𝟏)(𝒌 − 𝟏 +

𝒄) − 𝒒𝒏[𝒑 + 𝒌 + 𝟏]𝒒 + 𝒌(𝒌 + 𝒄))+ 𝒒𝒌[𝒌 − 𝟐]𝒒(𝒌 − 𝟏)(𝒌 − 𝟏 + 𝒄) +

𝒒𝒌(𝒌 − 𝟏)(𝒌 − 𝟏 + 𝒄) − 𝒒𝒌+𝒏[𝒑]𝒒(𝒌 − 𝟏)(𝒌 − 𝟏 + 𝒄) + 𝒒𝒏[𝒑 + 𝒌 + 𝟏]𝒒𝒌(𝒌 +

𝒄). 

Using the identites  

[𝒌 − 𝟏]𝒒=∑ [𝒋]𝒒
𝒌−𝟐
𝒋=𝟎 (𝒒 − 𝟏) + (𝒌 − 𝟏),    [𝒌 + 𝟏]𝒒=∑ [𝒋]𝒒

𝒌
𝒋=𝟎 (𝒒 − 𝟏) + (𝒌 + 𝟏),  

we obatin  

[𝒏]𝒒
𝟐(𝒒𝒌 − 𝟏)+ [𝒏]𝒒 (−𝒒𝒌[𝒌 − 𝟏]𝒒 + 𝒒𝒌+𝒏[𝒑]𝒒 − 𝒒𝒌(𝒌 − 𝟏)(𝒌 − 𝟏 + 𝒄) −

𝒒𝒏[𝒑 + 𝒌 + 𝟏]𝒒 + 𝒌(𝒌 + 𝒄)) = [𝒏]𝒒(𝟏 − 𝒒𝒏)(𝒌 − [𝒌]𝒒) + (𝟏 −

𝒒𝒏){𝒒𝒌 ∑ [𝒋]𝒒
𝒌−𝟐
𝒋=𝟎 + 𝒒𝒌 ∑ [𝒋]𝒒

𝒌
𝒋=𝟎 + 𝒒𝒌+𝒏[𝒑]𝒒 + 𝒌𝟐[𝒌]𝒒 − [𝒌]𝒒𝒌(𝟏 − 𝒄)} +

[𝒏]𝒒(𝒒𝒌𝒄 − 𝒒𝒏). 

Thus, we get  

|𝐂𝐤,𝐧(𝐪)| ≤ 𝟏𝟎(𝟏 + 𝐩)(𝟏 + 𝐜)𝐤(𝐤 + 𝟏)𝟐 + 𝟑(𝟏 + 𝐜)𝐤𝟑[𝐧]𝐪(𝟏 − 𝐪𝐧). 

Therefore, we have  

|𝑿𝒌,𝒏,𝒑(𝒒, 𝒛)| ≤
𝒓𝒌−𝟐(𝟏+𝒑)(𝟏+𝒄)

[𝒏]𝒒
𝟐 (𝟐(𝒌 − 𝟏)𝟑 + 𝟖𝒓𝒌𝟐(𝒌 + 𝟏) + 𝟏𝟎𝒓𝟐𝒌(𝒌 + 𝟏)𝟐) +

𝟑(𝟏 + 𝒄)𝒓𝒌𝒌𝟑(𝟏 − 𝒒). 

From Theorem 3.1, we obtain  

|𝑫𝒏,𝒑(𝒆𝒌; 𝒒, 𝒛) − 𝒆𝒌(𝒛)|≤  
𝟏−𝐪𝐧+𝐩

𝟏−𝐪𝐧

(𝟏+𝐫)

[𝐧]𝐪
𝐤(𝐤 + 𝟏)𝐫𝐤−𝟏. 

 



206                        A. Sathish Kumar, Purshottam N. Agrawal, Tuncer Acar 

For all 𝒌, 𝒏 ∈ 𝑵 and |𝒛| ≤ 𝒓 we get 

|𝑬𝒌,𝒏,𝒑(𝒒, 𝒛)|≤
𝒓(

[𝒏+𝒑]𝒒

[𝒏]𝒒
+𝒓)

[𝒏]𝒒
|𝑬′𝒌−𝟏,𝒏,𝒑(𝒒, 𝒛)| +

𝒓[𝒏+𝒑]𝒒

[𝒏]𝒒
|𝑬𝒌−𝟏,𝒏,𝒑(𝒒, 𝒛)|+|𝑿𝒌,𝒏,𝒑(𝒒, 𝒛)| ≤

𝟏−𝒒𝒏+𝒑

𝟏−𝒒𝒏

𝒓(𝟏+𝒓)

[𝒏]𝒒
|𝑬′

𝒌−𝟏,𝒏,𝒑
(𝒒, 𝒛)| +

 𝒓
𝟏−𝒒𝒏+𝒑

𝟏−𝒒𝒏
|𝑬𝒌−𝟏,𝒏,𝒑(𝒒, 𝒛)|+|𝑿𝒌,𝒏,𝒑(𝒒, 𝒛)|. 

Now, we shall find an estimate of |𝑬′𝒌−𝟏,𝒏,𝒑(𝒒, 𝒛)|,  for 𝒌 ≥ 𝟐 

|𝑬′𝒌−𝟏,𝒏,𝒑(𝒒, 𝒛)| ≤
𝒌 − 𝟏

𝒓
||𝑬𝒌−𝟏,𝒏,𝒑||

𝒓

≤
𝒌 − 𝟏

𝒓
||𝑫𝒏,𝒑(𝒆𝒌−𝟏; 𝒒, 𝒛) − 𝒆𝒌−𝟏(𝒛)||𝒓

+ ||
((𝒌 − 𝟏)𝟐 − (𝒌 − 𝟏)(𝒌 − 𝟏 + 𝒄)𝒆𝟏)𝒆𝒌−𝟐

[𝒏]𝒒
||𝒓

≤
𝟐(𝟏 + 𝒄)𝒌(𝒌 − 𝟏)𝟐(𝟏 + 𝒓)

[𝒏]𝒒
𝒓𝒌−𝟐 

Thus, we have  

|𝑬𝒌,𝒏,𝒑(𝒒, 𝒛)|≤
𝟏−𝒒𝒏+𝒑

𝟏−𝒒𝒏

𝟒(𝟏+𝒄)𝒌(𝒌−𝟏)𝟐(𝟏+𝒓)

[𝒏]𝒒
𝟐 𝒓𝒌 +

𝒓
𝟏−𝒒𝒏+𝒑

𝟏−𝒒𝒏 |𝑬𝒌−𝟏,𝒏,𝒑(𝒒, 𝒛)|+|𝑿𝒌,𝒏,𝒑(𝒒, 𝒛)|, 

where  

|𝑿𝒌,𝒏,𝒑(𝒒, 𝒛)|≤
𝒓𝒌−𝟐(𝟏+𝒑)(𝟏+𝒄)

[𝒏]𝒒
𝟐 (𝟐(𝒌 − 𝟏)𝟑 + 𝟖𝒓𝒌𝟐(𝒌 + 𝟏) + 𝟏𝟎𝒓𝟐𝒌(𝒌 + 𝟏)𝟐) +

𝟑(𝟏 + 𝒄)𝒓𝒌𝒌𝟑(𝟏 − 𝒒) ≤
𝒓𝒌

[𝒏]𝒒
𝟐 𝑫𝒌,𝒑,𝒄 + 𝟑(𝟏 + 𝒄)𝒓𝒌𝒌𝟑(𝟏 − 𝒒), 

where 𝑫𝒌,𝒑,𝒄 =(1+p)(1+c) (𝟐(𝒌 − 𝟏)𝟑 + 𝟖𝒌𝟐(𝒌 + 𝟏) + 𝟏𝟎𝒌(𝒌 + 𝟏)𝟐).  
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Thus, for all |𝐳| ≤ 𝒓, 𝒌 ≥ 𝟏 and 𝒏 ∈ 𝑵, we obtain  

|𝑬𝒌,𝒏,𝒑(𝒒, 𝒛)| ≤
𝟏−𝒒𝒏+𝒑

𝟏−𝒒𝒏

𝟒(𝟏+𝒄)𝒌(𝒌−𝟏)𝟐(𝟏+𝒓)

[𝒏]𝒒
𝟐 𝒓𝒌 +

𝒓
𝟏−𝒒𝒏+𝒑

𝟏−𝒒𝒏 |𝑬𝒌−𝟏,𝒏,𝒑(𝒒, 𝒛)|+
𝒓𝒌

[𝒏]𝒒
𝟐 𝑫𝒌,𝒑,𝒄 + 𝟑(𝟏 + 𝒄)𝒓𝒌𝒌𝟑(𝟏 − 𝒒) ≤

𝟏−𝒒𝒏+𝒑

𝟏−𝒒𝒏

𝒓𝒌

[𝒏]𝒒
𝟐 𝑭𝒌,𝒓,𝒑 + 𝒓

𝟏−𝒒𝒏+𝒑

𝟏−𝒒𝒏 |𝑬𝒌−𝟏,𝒏,𝒑(𝒒, 𝒛)|+
𝒓𝒌

[𝒏]𝒒
𝟐 𝑫𝒌,𝒑,𝒄+𝟑(𝟏 + 𝒄)𝒓𝒌𝒌𝟑(𝟏 − 𝒒), 

where 𝑭𝒌,𝒓,𝒑 is a polynomial of degree 3 in 𝒌  defined as  

𝑭𝒌,𝒓,𝒑 = 𝟒(𝟏 + 𝒄)𝒌(𝒌 − 𝟏)𝟐(𝟏 + 𝒓). But 𝑬𝟎,𝒏,𝒑(𝒒, 𝒛) = 𝟎, for any 𝒛 ∈ 𝑪 and 

therefore writing the last inequality for 𝒌 = 𝟏, 𝟐, …we easily obtain step by step 

following  

|𝑬𝒌,𝒏,𝒑(𝒒, 𝒛)| ≤
𝟏−𝒒𝒏+𝒑

𝟏−𝒒𝒏

𝒓𝒌

[𝒏]𝒒
𝟐 ∑ 𝑭𝒋,𝒓,𝒑

𝒌
𝒋=𝟏 +

𝒓𝒌

[𝒏]𝒒
𝟐 ∑ 𝑫𝒋,𝒑,𝒄 + 𝟑(𝟏 + 𝒄)𝒓𝒌(𝟏 −𝒌

𝒋=𝟏

𝒒) ∑ 𝒋𝟑 ≤
𝟏−𝒒𝒏+𝒑

𝟏−𝒒𝒏

𝒓𝒌

[𝒏]𝒒
𝟐

𝒌
𝒋=𝟏 𝒌𝑭𝒌,𝒓,𝒑 +

𝒓𝒌

[𝒏]𝒒
𝟐 𝒌𝑫𝒌,𝒑,𝒄 + 𝟑(𝟏 + 𝒄)𝒓𝒌(𝟏 − 𝒒)𝒌𝟒. 

Hence, we conclude that  

|𝑫𝒏,𝒑(𝒇; 𝒒, 𝒛) − 𝒇(𝒛) −
𝒛(𝟏−𝒛)𝒇′(𝒛)+𝒛(𝟏−(𝒄+𝟏)𝒛)𝒇′(𝒛)

[𝒏]𝒒
| ≤ ∑ |𝒄𝒌||𝑬𝒌,𝒏,𝒑(𝒒, 𝒛)|∞

𝒌=𝟏 ≤

𝟏−𝒒𝒏+𝒑

𝟏−𝒒𝒏

𝟏

[𝒏]𝒒
𝟐 ∑ |𝒄𝒌|𝒓𝒌𝒌𝑭𝒌,𝒓,𝒑

∞
𝒌=𝟏 +

𝟏

[𝒏]𝒒
𝟐 ∑ |𝒄𝒌|𝒓𝒌𝒌𝑫𝒌,𝒑,𝒄

∞
𝒌=𝟏 + 𝟑(𝟏 + 𝒄)(𝟏 −

𝒒) ∑ |𝒄𝒌|𝒓𝒌∞
𝒌=𝟏 𝒌𝟒.  

As 𝐟(𝟒)(𝐳) = ∑ 𝐜𝐤𝐤(𝐤 − 𝟏)(𝐤 − 𝟐)(𝐤 − 𝟑)𝐳𝐤−𝟒∞
𝐤=𝟒 and the series ∑ 𝒄𝒌

∞
𝒌=𝟎 𝒛𝒌 is 

absolutely convergent in |𝒛| ≤ 𝒓, it easily follows that ∑ 𝒄𝒌𝒌(𝒌 − 𝟏)(𝒌 −∞
𝒌=𝟒

𝟐)(𝒌 − 𝟑)𝒛𝒌−𝟒  is absolutely convergent in |𝐳| ≤ 𝒓, which implies that 

∑ |𝒄𝒌|𝒓𝒌𝒌𝑭𝒌,𝒓,𝒑
∞
𝒌=𝟏 < ∞ and ∑ |𝒄𝒌|𝒓𝒌𝒌𝑫𝒌,𝒑,𝒄

∞
𝒌=𝟏 < ∞. Thus, the proof is 

completed.  

Remark 3.2. Let 0 <  𝑞 <  1 be fixed. Since, 
1

[𝑛]𝑞
→ 1 − 𝑞 as 𝑛 → ∞, by 

applying limit 𝑛 → ∞, in the Theorem 3.2, we don’t get the convergence. But this 

can be achieved by choosing  1 −
1

𝑛2 ≤ 𝑞𝑛 < 1 with with 𝑞𝑛 → 1 as 𝑛 → ∞. In 

this case 
1

[𝑛]𝑞𝑛

→ 0 as → ∞ , 
1−𝑞𝑛+𝑝

1−𝑞𝑛
→ 1 as 𝑛 → ∞ and 1 − 𝑞𝑛 ≤

1

𝑛2 ≤
1

[𝑛]𝑞𝑛
2  

Therefore, from Theorem 3.2, we have  
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|𝐷𝑛,𝑝(𝑓; 𝑞, 𝑧) − 𝑓(𝑧) −
𝑧(1−𝑧)𝑓′(𝑧)+𝑧(1−(𝑐+1)𝑧)𝑓′(𝑧)

[𝑛]𝑞
| ≤

𝑀𝑟,𝑝,𝑘(𝑓)

[𝑛]𝑞𝑛
2 +

𝑇𝑟,𝑝,𝑘(𝑓)

[𝑛]𝑞𝑛
2 +

3

[𝑛]𝑞𝑛
2 ∑ |𝑐𝑘|𝑟

𝑘𝑘4∞
𝑘=1 , 

that is, the order of approximation is 𝑂(
1

[𝑛]𝑞𝑛

2 ). 

Now we will find the exact order of approximation for complex q-modified 

Bernstein-Schurer operators. Throughout thesection, we assume that 𝑞𝑛  is a 

sequence such that 0 < 𝑞𝑛 < 1 with 𝑞𝑛 → 1 as 𝑛 → ∞  and 𝑞𝑛
𝑛 → 𝑎(𝑎 < 1)  as 

𝑛 → ∞.  

Theorem 3.3. Let 𝑹 > 𝟏 + 𝒑, 𝑫𝑹 = {𝒛 ∈ 𝑪; |𝒛| < 𝑹} and 𝒇(𝒛) = ∑ 𝒄𝒎𝒛𝒎∞
𝒎=𝟎 , 

for all 𝒛 ∈ 𝑫𝑹. If 𝒇 is a non constant polynomial, then for 𝒓 ∈ [
[𝒏+𝒑]𝒒

[𝒏]𝒒
, 𝑹) 

||𝑫𝒏,𝒑(𝒇; 𝒒𝒏, . ) − 𝒇||𝒓 ≥
𝑪𝒓,𝒏,𝒑

′ (𝒇)

[𝒏]𝒒
, 

where 𝑪𝒓,𝒑
′ (𝒇) > 𝟎 depends on 𝒇, 𝒓, 𝒑 and on the sequence {𝒒𝒏}𝒏∈𝑵 but it is 

independent on of 𝒏. 

Proof. For all 𝒛 ∈ 𝑫𝑹 and 𝒏 ∈ 𝑵, we get  

||𝑫𝒏,𝒑(𝒇; 𝒒𝒏, . ) − 𝒇||𝒓 =
𝟏

[𝒏]𝒒
{𝒛(𝟏 − 𝒛)𝒇′′(𝒛) + (𝟏 − (𝒄 + 𝟏)𝒛)𝒇′(𝒛) +

𝟏

[𝒏]𝒒
([𝒏]𝒒𝒏

𝟐 (𝑫𝒏,𝒑(𝒇; 𝒒, 𝒛) − 𝒇(𝒛) −
𝒛(𝟏−𝒛)𝒇′(𝒛)+𝒛(𝟏−(𝒄+𝟏)𝒛)𝒇′(𝒛)

[𝒏]𝒒
))}. 

Now, using the identity ||𝑭 + 𝑮||𝒓 ≥ |||𝑭||𝒓 − ||𝑮||𝒓| ≥ ||𝑭||𝒓 − ||𝑮||𝒓, we 

obtain  

||𝑫𝒏,𝒑(𝒇; 𝒒𝒏, . ) − 𝒇||𝒓

≥
𝟏

[𝒏]𝒒
{𝒆𝟏(𝟏 − 𝒆𝟏)𝒇′′ + (𝟏 − (𝒄 + 𝟏)𝒆𝟏)𝒇′

−
𝟏

[𝒏]𝒒
([𝒏]𝒒𝒏

𝟐 ||𝑫𝒏,𝒑(𝒇; 𝒒𝒏, . ) − 𝒇

−
𝒆𝟏(𝟏 − 𝒆𝟏)𝒇′′ + (𝟏 − (𝒄 + 𝟏)𝒆𝟏)𝒇′′

[𝒏]𝒒
||)}. 

Since 𝒇 is a non-constant polynomial in 𝑫𝑹 ,we get 

||𝒆𝟏(𝟏 − 𝒆𝟏)𝒇′′ + (𝟏 − (𝒄 + 𝟏)𝒆𝟏)𝒇′||𝒓 > 𝟎. 
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Indeed, supposing contrary it follows that 

𝒛(𝟏 − 𝒛)𝒇′′(𝒛) + (𝟏 − (𝒄 + 𝟏)𝒛)𝒇′(𝒛) = 𝟎, 

writing the expansion of 𝒇′(𝒛) and 𝒇′′(𝒛) in the last equality, we can see that 

𝒂𝒎 = 𝟎, 𝒎 = 𝟏, 𝟐, … Thus 𝒇 is a constant, which is a contradiction to the 

hypothesis.  

Now, from Remark 3.2, we have  

[𝒏]𝒒𝒏
𝟐 |𝑫𝒏,𝒑(𝒇; 𝒒𝒏, . ) − 𝒇 −

𝒆𝟏(𝟏−𝒆𝟏)𝒇′′+(𝟏−(𝒄+𝟏)𝒆𝟏)𝒇′

[𝒏]𝒒
| → 𝟎 as 𝒏 → ∞.  

Consequently, there exists 𝒏𝟏 (depending only on 𝒇and r) such that, for all 

𝒏 ≥ 𝒏𝟏, we have  

||𝒆𝟏(𝟏 − 𝒆𝟏)𝒇′′ + (𝟏 − (𝒄 + 𝟏)𝒆𝟏)𝒇′||𝒓 −
𝟏

[𝒏]𝒒
([𝒏]𝒒𝒏

𝟐 ||𝑫𝒏,𝒑(𝒇; 𝒒𝒏, . ) − 𝒇 −

𝒆𝟏(𝟏−𝒆𝟏)𝒇′′+(𝟏−(𝒄+𝟏)𝒆𝟏)𝒇′′

[𝒏]𝒒
||) ≥

𝟏

𝟐
||𝒆𝟏(𝟏 − 𝒆𝟏)𝒇′′ + (𝟏 − (𝒄 + 𝟏)𝒆𝟏)𝒇′||𝒓, 

which implies that  

||𝑫𝒏,𝒑(𝒇; 𝒒𝒏, . ) − 𝒇||𝒓 ≥
𝟏

𝟐[𝒏]𝒒𝒏

||𝒆𝟏(𝟏 − 𝒆𝟏)𝒇′′ + (𝟏 − (𝒄 + 𝟏)𝒆𝟏)𝒇′||𝒓, for all 

𝒏 ≥ 𝒏𝟏. For 𝟏 ≤ 𝒏 ≤ 𝒏𝟏, we have 

||𝑫𝒏,𝒑(𝒇; 𝒒𝒏, . ) − 𝒇||𝒓 ≥
𝑪𝒓,𝒏,𝒑(𝒇)

𝟐[𝒏]𝒒𝒏

, with 𝑪𝒓,𝒏,𝒑(𝒇) = [𝒏]𝒒𝒏
||𝑫𝒏,𝒑(𝒇; 𝒒𝒏, . ) − 𝒇||𝒓 >

𝟎. 
Then, finally we get 

||𝑫𝒏,𝒑(𝒇; 𝒒𝒏, . ) − 𝒇||𝒓 ≥
𝐂𝐫,𝐧,𝐩

′ (𝐟)

[𝒏]𝒒
, 

where 𝐂𝐫,𝐧,𝐩
′ (𝐟) = 𝐦𝐢𝐧{𝑪𝒓,𝟏,𝒑, 𝑪𝒓,𝟐,𝒑 … 𝑪𝒓,𝒏−𝟏,𝒑,

𝟏

𝟐
||𝒆𝟏(𝟏 − 𝒆𝟏)𝒇′′ + (𝟏 −

(𝒄 + 𝟏)𝒆𝟏)𝒇′||𝒓}. Hence, the proof is completed. 

4. Conclusion 

In this paper, an upper bound, the exact order of approximation and a 

Voronovskaja-type theorem with a quantitative estimate are obtained for the 

complex q-Bernstein-Durrmeyer type operators attached to analytic functions on 

compact disks. Our results show that extension of complex q-Bernstein-

Durrmeyer type operators from real intervals to compact disks in the complex 

plane extends approximation properties. 
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