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The study of univariate characteristics for experimental data is 

straightforward, but it is important to reveal the common description of all 

attributes and their dependencies. It is always possible to obtain the univariate 

components from discrete or continuous random vectors. Conversely, in 

general case, the problem is a complicated one. The target of this paper is to 

present models for an overall estimation of all the properties and their 

relationships. Some bivariate models were processed, and explained on the 

basis of an experimental data set. The correlation matrix of values of the 

cumulative distribution functions (CDF), obtained with chosen methods, and 

improves the reliability of the proposed output methods. A univariate Weibull 

distribution for the bivariate copula real values for two attributes it was 

estimated as an authentication. The ideas developed in the paper remain 

valuable for interconnected multivariate cases, described in high-dimensional 

space, without essential modifications. 
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1. Introduction and Preliminaries 

 

This paper is limited to the field of applied mathematical physics problems. 

It is always possible to calculate each distribution of the components, given a 

multivariate distribution, but conversely it is really possible in the particular cases, 

for example for the independence of marginal distributions. The copula theory 

offers opportunities for advanced design and should model correlated structures 

with well-known characteristics and theirs links; copula functions describe time 

varying with linear / nonlinear features, marginal distributions, jointly with theirs 

statistical dependencies [1]. Copula calculi require only marginal CDF’s of 

properties and theirs correlation parameters, in order to approximate the shared 

model. It is essential in decision support to obtain a reliable assessment, properly 

accounting and modeling these features, dependencies and correlations. It was 

proven that the copula techniques are advanced tools for modeling dependence and 

interdependence structures [2, 3]. The present paper evaluates, for example, the 

relationship between the hardness and tensile strength properties of steels, useful in 
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practical applications [4]. Some attempts have been made to establish a relationship 

between these properties for various single structurated steels [5]. 

It is preferable to measure the hardness of the materials, because it allows 

an easier estimation, even for a small scale production [6]. The hardness–strength 

entity describes and evaluates the performance of mechanical properties. For 

illustration a sample of 25 paired data, Brinell hardness (H) and tensile strength (S), 

is given by Sultan [7] in the table 1 from [9]. 

`       Table 1 

Paired values of (H) and (S)  

Prop. Values 

H 143 200 160 181 148 178 162 215 161 

S 34.2 57 47.5 53.4 47.8 51.5 45.9 59.1 48.4 

H 141 175 187 187 186 172 182 177 204 

S 47.3 57.3 58.5 58.2 57 49.4 57.2 50.6 55.1 

H 178 196 160 183 179 194 181   

S 50.9 57.9 45.5 53.9 51.2 57.5 55.6   
 

 The rank correlation coefficients Pearson’s rho, Kendall’s tau and 

Spearman’s rho were used to evaluate the interdependences of chosen 

characteristics. Those coefficients are important tools in describing linear links; 

quantify dependence, and therefore the modeling of copulas, but the non-linear 

relationship structures are described only by the last two coefficients [8]. 

   Chan analyzed a bivariate process based on these data, and proposed a 

multivariate process capability index over a general tolerance domain, a 

generalization of the rectangular and ellipsoidal areas [9]. 

The materials properties depend on many factors and therefore normal 

distributions are adequate, at least at the beginning. Pavlina and Tyne [10] compiled 

values of hardness and tensile strength for some mild steels. Tensile strength of the 

steels usually exhibits a linear correlation with the hardness over the entire range of 

strength values. The paper [10] proposes some bivariate copula, which describes 

the general behavior of some given characteristics. 

The goodness-of-fit of the empirical univariate data sets, hnorm and snorm, 

(table 1) to adequate the normal distribution is tested in the first step.  

The p-values, calculated with adequate statistical tests, (table 2), proved that 

the normal distribution should model the experimental univariate values for each 

subset of data sets. The resulted p-values of statistics for normality fitting should 

be greater than α, (α=0.05, the chosen significant level), what in these cases was 

fulfilled for all applied tests (table 2).It should be concluded that the random vector 

approach gives a global idea for all characteristics, and also about all the 

interdependences of the properties. 
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The bivariate normality for joint data was checked in the next step. The 

following values resulted in this case: 

a. Mardia’s test [4] checked if a bidimensional set of data approach a bivariate data 

(Fig.1). 
 

Table 2 
 

Results of univariate normal distribution fitting 

 
Test 

Kolmogorov- 

Smirnov 

Anderson- 

Darling 

Lilliefors- 

van Soest 

Cramer- 

von 

Mises 

Ryan- 

Joiner 

 
hnorm 

 
P=0.483 

 
P>0.2 

 
P=0.32 

 
P>0.1 

 
P=0.792 

snorm P> 0.15 P>0.25 P>0.20 P=0.29 P>0.1 

 

The numerical results are: g1p = 0.1814531; chi.skewness = 0.7258123; 

p.value.skewness = 0.948108; g2p = 6.572155; z.kurtosis = -0.8743728; 
p.value.kurtosis = 0.3819153; chi.small.skewness = 0.8875422; p.value.small = 

0.9263412. The p-values of skewness and kurtosis statistics should be greater 

than α, (α=0.05, the chosen significant level), for multivariate normality, what 

in these cases was proved. 

 
 Distance Squared Mahalanobis 

 

Fig. 1. Chi-Square Q-Q Plot 

 

b.    the Henze-Zirkler and Royston tests gave similar results, what indeed 

justified the bivariate normal distribution as an adequate model. 
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2. Main results 

2.1Nonparametric method for copula calculus 

The empirical univariate distribution function (EUDF), as 

marginal distribution, is given by: 

 

EUDF (x)  = 
1

𝑛+1
∑ 𝐼𝑛

𝑖=1   (xi  x)    (1) 

 

where I is the indicator function: 

 

I (xi  x) = 1, and, I (xi  x) = 0.       (2) 

 

It is known that the EUDF estimates the cumulative distribution, and, if 

the sample size is sufficiently large, it converges to the theoretical cumulative 

distribution function of the population [11]. The distributions of margins can be 

arbitrary; here the values of the empirical distributions of the bivariate data set 

(table 1) were calculated. 

The random variable H (hardness) (table 1) has an average 𝒙̅= 178.625, 

and an empirical dispersion s2 = 17.31252; the second random variable S 

(strength), has respectively 𝒙̅= 53.07083, s2 = 4.4970022; the value of the 

correlation coefficient is ρ (H, S) = 0.831. 

The steps of the method are further in brief described. Consider a random 

sample, by the size n,  from the bivariate population: 

h1, s1; ...; hi, si; ...; hn, sn. 

Next were rescaled the observed data in ascending order, namely:  

 

                   𝑢̂(𝑖) =
𝑅𝑎𝑛𝑘(ℎ𝑖)

𝑛+1
 ;    𝑣(𝑖) =

𝑅𝑎𝑛𝑘(𝑠𝑖)

𝑛+1
 , 𝑖 = 1,2, … 𝑛.                                   (3) 

 

The vector:   

(f, g) =  ( û(1) , v̂(1) ; ...;  û(i ) ,  v̂(i ) ; ...; û(n) , v̂( n) )  

can be considered a random sample for a bivariate copula. 

           It is known that a cumulative distribution function of the sample of the 
normalized ranks is a consistent estimation of the true cumulative distribution 

function [12]. 

The empirical multivariate distribution function, EMDF (copula), is defined 

as: 

              𝐸𝑀𝐷𝐹(
𝑖

𝑛
,

𝑗

𝑛
) =

𝐶𝑎𝑟𝑑{(𝑢,𝑣)/  𝑢≤𝑢(𝑖),𝑣≤𝑣̂(𝑗) 

𝑛
                            (4)  
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where û(i ) , v̂( j ) , 1 ≤ i, j≤ n are the order statistics of the random sample. 

The two-dimensional copula EMDF (F, G) is a bivariate distribution, with 

uniformly distributed margins on canonical interval [0; 1]. The one- dimensional 

values of the bivariate empirical copula where modeled as a univariate CDF 

Weibull (Fig.2), useful in the reliability theory [12].  

The resulted Weibull CDF has the following expression: 
 

          F(x) = 1 − exp (−0.0125 x
1.53 

).                                   (5) 

It results that the shape parameter is over unity, what implies that the 

hazard rate is an ascending one. 

 

            2.2 Nataf model for bivariate normal copula 

The calculus of a bivariate cumulative normal distribution values is 

solved first with the Nataf model [3]. The Gaussian copula is a link between a 

multivariate normal distribution and marginal normal distributions. The 

bidimensional normal copula, with the given correlation coefficient and 

characteristics of the components, has the following form: 

           C (u, v) = Ф (Ф -1(u), Ф -1(v)); 0≤ u, v ≤1.                             (6) 

Fig.2. Weibull estimate of the copula values 

 

Then the joint distribution of those variables resulted from those 

probabilities using their individual inverse distribution functions. 

The Nataf transformation starts with the calculus of Ф(x) and Ф(y), and 

then transfers the range of the formers Ф values into the standard normal 

variables. 

The next step of the transformation is to estimate the Pearson correlation 

coefficient, here ρ=0.831 [14]. 
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The bivariate cumulative distribution function G(x, y), for arbitrary 

marginal distributions, induced by the Gaussian copula, is: 

   G(x, y) = Ф2 (Ф -1(F(x)), Ф -1(F(y)), ρ).                                      (7) 

The values of the bivariate CDF should be compiled with the bivariate 

normal copula function. For example, if x=200, y=57, then: 

F (200) = 0.89152; F(57) =0.80887; Ф -1(0.89152) =1.23466;  

Ф-1 (0.80887) =0.87373; 
 it results: 

G (200, 57) = Ф2 (1.23466; 0.87373; 0.831) = 0.78725. 

2.3 The method of transforming the dependent into independent 

variables 

The random variables H~ N (178. 62, 17.312)     and  

S ~N (53 .07, 4.4972) are correlated with ρ=0.831, and the resultant bivariate normal 

density function is: 

 

𝑓(ℎ, 𝑠) =
1

2𝜋 17.31∗4.49√1−0.832
exp [−

𝑧(ℎ,𝑠)

2(1−0.832)
]                

 

where:                                                                                                                    (8)    

𝑧(ℎ, 𝑠) =
(ℎ−178.62)2

17.312 −
2∗0.83(ℎ−178.62)(𝑠−53.07)

17.31∗4.49
+

(𝑠−53.07)2

4.492 .          

                

It is known that the random variables X, Y, [14], defined by the formula: 

 

              𝑋 =
𝐻−𝜇𝐻

𝜎𝐻
 

 

       𝑌 = −
𝜌

√1−𝜌2
  

𝐻−𝜇𝐻

𝜎𝐻
+

1

√1−𝜌2
 
𝑆−𝜇𝑆

𝜎𝑆
                                                             (9) 

 

are independent  and  each  standard  normal  distributed.   In the studied case it 

follows: 

 

             𝑋 =
𝐻−178.62

17.31
 

 

       𝑌 = −
0.831

√1−0.8312
 
𝐻−178.62

17.31
+

1

√1−0.8312

𝑆−53.07

4.497
                                          (10) 

The random vector (X, Y) has the cumulative distribution function F(x, y) 

equal with the product of the cumulative distribution functions of the components, 

because they become independent:  

ρ(X,Y)=-4.08972E-06≈0. 
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Next there were calculated the values of the cumulative distribution function 

of the standardized normal random variable X, denoting Ф (x), were further 

calculated, respectively the values of the cumulative distribution function, of 

the random variable Y, denoted Ф(y).  
 The bivariate cumulative function F(x, y) is the product of these 

independent univariate cumulative distributive functions 

         𝑭(𝒙, 𝒚) = ∅(𝒙) ∗ ∅(𝒚)                                                          (11) 
The correlation coefficients (table 3) were computed to prove the 

concordance between these three presented models. It is obvious that all three 

models show a good association; the best correlation is between Nataf and 

Copula (EMDF) models. 
Table 3 

Correlation matrix of the CDF’s values 

 G(x,y) F(x,y) EMDF(u,v) 

G(x,y) 1   

F(x,y) 0.761104 1  

EMDF(u,v) 0.964079 0.790292 1 

3. Conclusions 

The bivariate joint distribution of the studied case was written in terms 

of univariate marginal distribution functions of the exploratory variables and a 

copula, which models the dependence structure between the predictor variables. 

The paper offers an example of calculus of a bivariate statistical 

distribution for a simultaneous explanation based on two basic mechanical 

properties, Brinell hardness and tensile strength of steels. The idea should be 

similarly applied to high-dimensional models, and offers estimates of a joint 

distribution of many characteristics by evaluating all properties together with 

their dependences. 
Additionally it was proposed a univariate Weibull model for the bivariate 

copula, given real values for CDF, an adequate description of the reliability of 

the mechanical products, if the attributes are measured. 

Mechanical devices are frequently subject to wear and their reliability is 

closed to normal distributions, because their life depends on many factors.On 

the other hand the variability of manufactured parts and the quality control 

procedures are usually modeled by the normal distribution. The introduced 

nonparametric method for copula calculi solved the problem in the general case, 

for an unknown multivariate distribution. The calculus of the bivariate 

cumulative normal distribution was developed with the Nataf model and the 

method of transforming the dependent into independent variables, with 

comparable results. The authors proposed a new approach for the analysis of 
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joint properties, with univariate distributions, using only real numbers, the 

values of CDF of the bivariate functions. 

The copula approach allows reliable estimation of multiple correlations 
for example between the steel alloys components and characteristics, on the 
basis of the performed studies and analyses of the obtained results. In the future 
we try to research criteria for hierarchical multivariate distribution functions, 
based on the marginal distributions data.  
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