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MODELING DEPENDENCIES IN BIVARIATE
DISTRIBUTIONS

Constantin TARCOLEA!, Adrian Stere PARIS?, Dana SYLVAN?

The study of univariate characteristics for experimental data is
straightforward, but it is important to reveal the common description of all
attributes and their dependencies. It is always possible to obtain the univariate
components from discrete or continuous random vectors. Conversely, in
general case, the problem is a complicated one. The target of this paper is to
present models for an overall estimation of all the properties and their
relationships. Some bivariate models were processed, and explained on the
basis of an experimental data set. The correlation matrix of values of the
cumulative distribution functions (CDF), obtained with chosen methods, and
improves the reliability of the proposed output methods. A univariate Weibull
distribution for the bivariate copula real values for two attributes it was
estimated as an authentication. The ideas developed in the paper remain
valuable for interconnected multivariate cases, described in high-dimensional
space, without essential modifications.
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1. Introduction and Preliminaries

This paper is limited to the field of applied mathematical physics problems.
It is always possible to calculate each distribution of the components, given a
multivariate distribution, but conversely it is really possible in the particular cases,
for example for the independence of marginal distributions. The copula theory
offers opportunities for advanced design and should model correlated structures
with well-known characteristics and theirs links; copula functions describe time
varying with linear / nonlinear features, marginal distributions, jointly with theirs
statistical dependencies [1]. Copula calculi require only marginal CDF’s of
properties and theirs correlation parameters, in order to approximate the shared
model. It is essential in decision support to obtain a reliable assessment, properly
accounting and modeling these features, dependencies and correlations. It was
proven that the copula techniques are advanced tools for modeling dependence and
interdependence structures [2, 3]. The present paper evaluates, for example, the
relationship between the hardness and tensile strength properties of steels, useful in
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practical applications [4]. Some attempts have been made to establish a relationship
between these properties for various single structurated steels [5].

It is preferable to measure the hardness of the materials, because it allows
an easier estimation, even for a small scale production [6]. The hardness—strength
entity describes and evaluates the performance of mechanical properties. For
illustration a sample of 25 paired data, Brinell hardness (H) and tensile strength (S),
is given by Sultan [7] in the table 1 from [9].

Table 1
Paired values of (H) and (S)

Prop. Values

H 143 | 200 | 160 | 181 | 148 | 178 | 162 | 215 | 161

S 342 | 57 | 475|534 |478 | 515|459 | 59.1| 484

H 141 | 175 | 187 | 187 | 186 | 172 | 182 | 177 | 204

S 473 | 57.3| 585|582 | 57 |49.4|57.2| 506 | 55.1

H 178 | 196 | 160 | 183 | 179 | 194 | 181

S 50.9 | 57.9 | 455 | 53.9 | 51.2 | 57.5 | 55.6

The rank correlation coefficients Pearson’s rho, Kendall’s tau and
Spearman’s rho were used to evaluate the interdependences of chosen
characteristics. Those coefficients are important tools in describing linear links;
quantify dependence, and therefore the modeling of copulas, but the non-linear
relationship structures are described only by the last two coefficients [8].

Chan analyzed a bivariate process based on these data, and proposed a
multivariate process capability index over a general tolerance domain, a
generalization of the rectangular and ellipsoidal areas [9].

The materials properties depend on many factors and therefore normal
distributions are adequate, at least at the beginning. Pavlina and Tyne [10] compiled
values of hardness and tensile strength for some mild steels. Tensile strength of the
steels usually exhibits a linear correlation with the hardness over the entire range of
strength values. The paper [10] proposes some bivariate copula, which describes
the general behavior of some given characteristics.

The goodness-of-fit of the empirical univariate data sets, hnorm and Snorm,
(table 1) to adequate the normal distribution is tested in the first step.

The p-values, calculated with adequate statistical tests, (table 2), proved that
the normal distribution should model the experimental univariate values for each
subset of data sets. The resulted p-values of statistics for normality fitting should
be greater than a, (0=0.05, the chosen significant level), what in these cases was
fulfilled for all applied tests (table 2).1t should be concluded that the random vector
approach gives a global idea for all characteristics, and also about all the
interdependences of the properties.
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The bivariate normality for joint data was checked in the next step. The

following values resulted in this case:
a. Mardia’s test [4] checked if a bidimensional set of data approach a bivariate data

(Fig.1).

Table 2
Results of univariate normal distribution fitting
Kolmogorov- | Anderson- | Lilliefors- Cramer- Ryan-
Test - ; von .
Smirnov Darling van Soest . Joiner
Mises
Rnorm | P=0.483 P>0.2 P=0.32 P>0.1 P=0.792
Snorm | P>0.15 P>0.25 P>0.20 P=0.29 | P>0.1

The numerical results are: g,p = 0.1814531; chi.skewness = 0.7258123;
p.value.skewness = 0.948108; g,p = 6.572155; z.kurtosis = -0.8743728;
p.value.kurtosis = 0.3819153; chi.small.skewness = 0.8875422; p.value.small =
0.9263412. The p-values of skewness and kurtosis statistics should be greater
than a, (0=0.05, the chosen significant level), for multivariate normality, what

in these cases was proved.

Distance Squared Mahalanobis

Chi-Square (Juantile

Fig. 1. Chi-Square Q-Q Plot

b. the Henze-Zirkler and Royston tests gave similar results, what indeed
justified the bivariate normal distribution as an adequate model.
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2. Main results

2.1Nonparametric method for copula calculus
The empirical univariate distribution function (EUDF), as
marginal distribution, is given by:

EUDF (x) =— X7, 1 (X <X) (1)

where | is the indicator function:

I (xj<x)=1,and, | (xj>x)=0. (2

It is known that the EUDF estimates the cumulative distribution, and, if
the sample size is sufficiently large, it converges to the theoretical cumulative
distribution function of the population [11]. The distributions of margins can be
arbitrary; here the values of the empirical distributions of the bivariate data set
(table 1) were calculated.

The random variable H (hardness) (table 1) has an average x= 178.625,
and an empirical dispersion s? = 17.31252; the second random variable S
(strength), has respectively x= 53.07083, s? = 4.4970022; the value of the
correlation coefficient is p (H, S) = 0.831.

The steps of the method are further in brief described. Consider a random
sample, by the size n, from the bivariate population:
h, 815 -5 i, Sij .5 N, S,
Next were rescaled the observed data in ascending order, namely:

~  _ Rank(hy) =~ _ Rank(sy)
@O~ a1 2 "OT a4

=12, ..n. (3)

The vector:
(f,9)= (4) .9 ;- Ggi)» Y(i) s - G(n) »V(n))

can be considered a random sample for a bivariate copula.

It is known that a cumulative distribution function of the sample of the
normalized ranks is a consistent estimation of the true cumulative distribution
function [12].

The empirical multivariate distribution function, EMDF (copula), is defined

as:
__ Card{(w,v)/ ustiy),vsj

EMDF (-, %)

(4)

n
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where U(j),V(j), 1 <i, j<nare the order statistics of the random sample.

The two-dimensional copula EMDF (F, G) is a bivariate distribution, w

ith

uniformly distributed margins on canonical interval [0; 1]. The one- dimensional
values of the bivariate empirical copula where modeled as a univariate CDF

Weibull (Fig.2), useful in the reliability theory [12].
The resulted Weibull CDF has the following expression:

F(x) =1—exp (-0.0125x"%). (5)

It results that the shape parameter is over unity, what implies that the
hazard rate is an ascending one.

2.2 Nataf model for bivariate normal copula

The calculus of a bivariate cumulative normal distribution values is
solved first with the Nataf model [3]. The Gaussian copula is a link between a
multivariate normal distribution and marginal normal distributions. The
bidimensional normal copula, with the given correlation coefficient and
characteristics of the components, has the following form:

C(u,Vv)=@ (@ *w), @ 1v);0<u, v<l.

Fig.2. Weibull estimate of the copula values
78 User Defined Model EE)

i Info Please press the right mouse button for the 5 = 0.04791564
graphing features menu. Press F1 for help. r = 0.98386059

457
ot

o®

Y Axis {(units)
e
T

.

i
®
|

2
%

T T T T T
0.1 45 88 13.2 17.6 219 263

X Axis (units)

Then the joint distribution of those variables resulted from those
probabilities using their individual inverse distribution functions.

The Nataf transformation starts with the calculus of @(x) and @(y), and
then transfers the range of the formers @ values into the standard normal
variables.

The next step of the transformation is to estimate the Pearson correlation
coefficient, here p=0.831 [14].

(6)
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The bivariate cumulative distribution function G(x, y), for arbitrary
marginal distributions, induced by the Gaussian copula, is:

G(x,y) = @2 (D H(F(x)), @ (F(Y)), p). (7)
The values of the bivariate CDF should be compiled with the bivariate
normal copula function. For example, if x=200, y= 57 then:
F (200) 0.89152; F(57) =0.80887; @ - (0 89152) =1.23466;
@1 (0.80887) =0.87373;
it results:
G (200, 57) = @, (1.23466; 0.87373; 0.831) = 0.78725.

2.3 The method of transforming the dependent into independent
variables
The random variables H~ N (178. 62, 17. 312) and
S~N (53.07,4.497 )are correlated with p=0.831, and the resultant bivariate normal
density function is:

_ 1 _ z(h,s)
fh,s) = 27 17.31%4.49V1-0.832 exp| 2(1—0.832)]

where: (8)
h—178.62)%2  2%0.83(h—178.62)(s—53.07 —53.07)2
z(h,s) = ( )° ( )(s ), (s )
17.312 17.31%4.49 4,492

It is known that the random variables X, Y, [14], defined by the formula:

H_
X = KH
OH

Y = — p H—HH_I_ 1 S—-ug (9)

are independent and each standard normal distributed. In the studied case it
follows:

_ H-178.62
T 1731
0.831 H-178.62 1 §—53.07
Y =— + (10)
v1-0.8312 17.31 V1-0.8312 4.497

The random vector (X, Y) has the cumulative distribution function F(x, y)
equal with the product of the cumulative distribution functions of the components,
because they become independent:

p(X,Y)=-4.08972E-06~0.
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Next there were calculated the values of the cumulative distribution function
of the standardized normal random variable X, denoting @ (x), were further
calculated, respectively the values of the cumulative distribution function, of
the random variable Y, denoted @(y).

The bivariate cumulative function F(x, y) is the product of these
independent univariate cumulative distributive functions

F(x,y) = ®(x) * (y) (11)

The correlation coefficients (table 3) were computed to prove the
concordance between these three presented models. It is obvious that all three
models show a good association; the best correlation is between Nataf and

Copula (EMDF) models.
Table 3
Correlation matrix of the CDF’s values

G(x,y) F(x,y) EMDF(u,v)

G(x.y) 1
F(x.y) 0.761104 1
EMDF(u,v) | 0.964079 | 0.790292 1

3. Conclusions

The bivariate joint distribution of the studied case was written in terms
of univariate marginal distribution functions of the exploratory variables and a
copula, which models the dependence structure between the predictor variables.

The paper offers an example of calculus of a bivariate statistical
distribution for a simultaneous explanation based on two basic mechanical
properties, Brinell hardness and tensile strength of steels. The idea should be
similarly applied to high-dimensional models, and offers estimates of a joint
distribution of many characteristics by evaluating all properties together with
their dependences.

Additionally it was proposed a univariate Weibull model for the bivariate
copula, given real values for CDF, an adequate description of the reliability of
the mechanical products, if the attributes are measured.

Mechanical devices are frequently subject to wear and their reliability is
closed to normal distributions, because their life depends on many factors.On
the other hand the variability of manufactured parts and the quality control
procedures are usually modeled by the normal distribution. The introduced
nonparametric method for copula calculi solved the problem in the general case,
for an unknown multivariate distribution. The calculus of the bivariate
cumulative normal distribution was developed with the Nataf model and the
method of transforming the dependent into independent variables, with
comparable results. The authors proposed a new approach for the analysis of
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joint properties, with univariate distributions, using only real numbers, the
values of CDF of the bivariate functions.

The copula approach allows reliable estimation of multiple correlations
for example between the steel alloys components and characteristics, on the
basis of the performed studies and analyses of the obtained results. In the future
we try to research criteria for hierarchical multivariate distribution functions,
based on the marginal distributions data.
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