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NON-DOMINATED SORTING GENETIC OPTIMISATION 

FOR CHARGING SCHEDULING OF ELECTRICAL 

VEHICLES WITH TIME AND COST AWARENESS 

Husam Mahdi AL-ALWASH 1, Eugen BORCOCI 2 

The usage of electric vehicles (EVs) is a growing trend, but limited charging 

stations (CSs) and the fear of charge running out hinder confidence in relying on EVs. 

Optimal scheduling algorithms are needed to optimise EVs charging objectives. This 

paper proposes using a bi-non-dominated sorting genetic algorithm (NSGA-II) to 

optimise charging cost and service time jointly. NSGA-II outperforms traditional 

genetic algorithms (GA) regarding diversity and domination, resolving extreme 

solution issues. The proposed optimization algorithm based on NSGA-II, in principle, 

could be applied to any charging system, no matter what electrical technologies (e.g., 

AC-DC, DC-DC, or both) are used. 

Keywords: electric vehicles, charging scheduling, multi-objectives optimisation, 

and genetic algorithms 

1. Introduction 

The emergence of electric vehicles (EVs) is a significant trend in the 

automotive industry. EVs offer several advantages over traditional fuel vehicles, 

including (reduce air pollution and gas emissions, lower operating costs, etc.) [1]. 

Today, many major automakers are investing heavily in EV technology to phase 

out their traditional fuel vehicles entirely in the coming years [2]. With continued 

investment in technology and infrastructure, the transition to EVs is only expected 

to accelerate in the future [3]. EVs are seen as a sustainable transportation option 

because they have the potential to use electricity generated from renewable sources 

like solar or wind power. This reduces dependence on fossil fuels. 

A main challenge of EVs is the range of autonomy. EVs typically have a 

range of 100-300 miles on a single charge, which is considered too low for some 

long-distance trips [4]. Conversely, charging stations (CSs) still need to be 

improved in many areas, such as charging infrastructure coverage, charging speed 

and accessibility, and range anxiety [5]. Intelligent algorithms can be a solution to 

solve the charging problem for EV by optimising the charging schedule of EVs and 
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minimising the waiting time at CSs [6]. Several types of scheduling algorithms are 

described in [7]. For instance, a solution is to consider the real-time demand 

(dynamic) for charging and the availability of CSs. This reduces EV drivers' waiting 

time and ensures that the CSs are utilised efficiently. Another approach is to use 

predictive scheduling that anticipates the charging demand based on historical data 

and then a forecast is performed for future demand. This can help to allocate the 

charging resources effectively and ensure that the CSs are available when needed.  

An EV charging system can be evaluated based on several key metrics, 

including charging efficiency, charging speed, availability, cost, and reliability  [8]. 

High charging efficiency and speed can minimise the charging time and reduce 

energy waste; the drivers expect high availability of CSs and low costs; high 

reliability can ensure that EV drivers can rely on the charging infrastructure for 

their daily needs. However, some objectives may conflict with each other, e.g., 

maximising charging speed while minimising cost [9]. Therefore, a multi-objective 

optimisation problem must be solved, where the challenge is to balance the different 

metrics. A multi-objective optimisation should find an optimal trade-off solution 

that satisfies the problem's constraints and objectives. However, this paper proposes 

the usage of a bi-non-dominated sorting genetic algorithm (NSGA-II) for 

optimising EV charging in terms of service time and charging cost. We mean by a 

non-dominated set of solutions that no one is superior with respect to all objectives, 

but it is superior to some and inferior to others. This study is clearly dedicated to 

simulations. So, there is no hardware implementations in this paper. 

The remainder of the article is organised as follows. Section 2 summarises 

the state-of-the-art. Section 3 presents the methodology used in this study. The 

experimental evaluation of the proposed method and results are described in Section 

4. Section 5 presents the conclusion and future work. 

2. Related works 

The work in [10], developed the diversity-maximisation non-dominated 

sorting genetic algorithm (DM-NSGA-II) to solve a multi-objectives function 

(power load profile, EV charging cost, and battery charge degradation). It is based 

on a flexible time scale to generate a real-time optimal schedule. It was shown that 

the DM-NSGA-II is wider in solution space and offers various trade-off options to 

decision-makers. This algorithm provides a set of solutions to the decision-maker 

instead of a single one, which requires an additional selection algorithm. 

The work in [11], a new model is presented that integrates multi-objective 

optimisation and multi-criteria decision-making (MCDM) to determine the optimal 

electric vehicle supply equipment (EVSE) configuration. This method combines 

the benefits of multi-objective optimisation, which provides Pareto solutions, with 

an improved MCDM model. The model evaluates the Pareto frontier and identifies 
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the best solution by allowing CSs owners to use linguistic variables to weigh 

decision-making factors. The proposed model enhances the conventional weighted 

aggregated sum product assessment (WASPAS) method by incorporating Dombi 

Bonferroni functions, making it more adaptable than other alternatives. 

The work in [12], presented a multi-objective whale optimisation algorithm 

(MWOA-PFLF) that incorporates particle filters and Levy Flights to minimise total 

distribution costs and maximise average battery utilisation simultaneously. The use 

of particle filters allows for the prediction of near-optimal solutions in each 

iteration. At the same time, the combination of Levy Flights helps to escape local 

optima and speed up convergence. The work in [13], proposed a solution to 

minimising energy consumption and travel time for EVs based on intelligent 

heuristic mechanisms, which is a multi-objective optimisation problem. A graph-

based multi-objective heuristic algorithm (MoHA) is proposed to obtain the desired 

solutions quickly. MoHA ensures that EVs are always routed through a path that 

minimises energy consumption and total travel time. 

The work in [14], proposed a multi-objective optimisation model for the 

design problem of urban electric transit networks. This model simultaneously 

determines the transit routes, service frequency, and charging depot locations while 

minimising costs for passengers and operators. Constraints regarding bus routes, 

charging depots, vehicle operation, and charging schedules are considered to ensure 

the feasibility of the electric transit network's design and operation. The solution 

approach is based on a Pareto artificial fish swarm algorithm (PAFSA), which 

utilises crossover and mutation operators. 

The work in [15], the charging optimisation model considered various 

charging options such as peak demand of depot charging, time-of-use (TOU) tariffs, 

partial recharging, waiting times, and characteristics of public stations. TOU tariffs 

is a pricing mechanism used to charge customers with different rates for electricity 

based on the time of day or day of the week. The authors break down the electric 

vehicle routing problem with time window constraint (EVRP-TW) and optimal 

charging problem into sub-problems. The overall optimal solution is achieved by 

solving all the sub-problems hierarchically. The developed optimisation algorithm 

(DOA) utilises ant colony optimisation (ACO) and grey wolf optimisation (GWO) 

algorithms in addition to the CPLEX solver, which is used for solving the 

optimisation problem by the simplex algorithm. 

The work in [16], examined the practical use of fast-charging and slow-

charging modes at CSs for EVs. A dynamic speed control for EVs is implemented 

to alleviate CS congestion and reduce waiting times. The system scalability, 

including various electric vehicle charging station (EVCS) solutions, is also 

explored. To solve the EVCS problem, the authors proposed a hybrid approach that 

combines particle swarm optimisation (PSO) and the firefly algorithm (FFA) with 

a Levy Flights search strategy. 
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The work in [17], the grey sail fish optimisation (GSFO) algorithm is 

proposed for optimal charging scheduling. This algorithm integrates the GWO and 

sail fish optimisation (SFO) techniques to determine the EV demand when charging 

and compute the path decision factor for each EV's travel to the CS. Meanwhile, 

the work in [18], solved an individual EV routing problem using a multi-objective 

optimisation approach to minimise the total trip time and cumulative charging cost. 

The problem formulation considered real-world elements such as traffic at CSs, 

detour distances to reach the station, and variable electricity costs. A genetic 

algorithm (GA) and PSO were employed to obtain the most optimal route. 

Overall, it is found that the literature has used different formulations and 

proposed various algorithms for solving the problem of charging electric vehicles 

(CEVs) using meta-heuristic-based searching algorithms such as PAFSA, PSO, 

FFA, GWO, ACO, and others. Some have included the travelling cost, waiting time, 

charging cost and other criteria. Furthermore, multi-objective optimisation is 

effective due to its capability of handling self-confliction caused by the multi-

objective nature of the problem. However, the issue of exploration and exploitation 

balancing is still an open issue and should be studied. To handle it, we propose the 

usage of the NSGA-II for solving this problem. This algorithm behaves with 

exploration and exploitation balancing by integrating non-dominated sorting and 

crowding distance, i.e., the distance between one solution and an adjacent one in 

the Pareto front. The Pareto front is a set of non-dominated solutions generated by 

multi-objective optimisation. 

3. Methodology 

This section presents our proposal for solving the CEVs problem. 

3.1. System high-level architecture 

In this study, the optimisation algorithm NSGA-II for EV charging schedule 

is considered to act in a centralised scheme. The system architecture includes EVs, 

CSs, and a central control unit (CCU), all interconnected through vehicle-to-

infrastructure (V2I) communication (e.g., see Fig. 1). 

1. EVs:  communicate their charging requirements to the CCU, such as the 

current state of the charge (SOC), EV battery capacity, charging mode, and 

current location of the vehicle. 

2. CSs: they inform the CCU about their locations, capacities (number of 

charging points), availability status, and pricing structure. They also 

continuously update any changes in their current data and pricing structure. 

Additionally, the peak and off-peak pricing rates and the time frames for 

each should be provided. 
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3. Travel Information: travel times or distances between EVs and CSs. In this 

study, we considered this information available and fed the optimisation 

algorithm NSGA-II. This information can be delivered by an external 

complex navigation system that accounts for different factors such as road 

lengths, traffic jam, speed limits on the road, and other factors which is out 

of the scope of this research. 

4. CCU: it processes the information from EVs and CSs in a centralised way. 

It runs the NSGA-II algorithm to optimise the scheduling of EV charging 

while trying to minimise the charging cost and service time. After the 

optimisation algorithm runs, the CCU communicates the charging schedule 

to the involved EVs and CSs (when and where each EV should be charged). 

5. V2I: it supports the EVs, CSs, and CCU communication based on different 

wireless technologies (cellular networks, dedicated short-range 

communications (DSRC), or other internet of things (IoT) communication 

protocols), ensuring reliable and secure message exchange. 

 
Fig. 1. The system architecture of charging scheduling in the centralised scheme 

3.2. Problem statement 

The optimisation in this system minimises the total cost (in terms of time 

and price) of EVs charging while ensuring adequate service levels. The CEVs 

problem has two major objectives:  

Service Time: consists of three components, travelling time, waiting time, 

and charging time. The service time can be reduced by minimising the waiting time 

for charging, maximising the utilisation of CSs, and ensuring that the charging 

process is completed within a certain time frame. It can be written as follows: 

𝑇𝑣,𝑐
𝑠𝑒𝑟𝑣𝑖𝑐𝑒 = 𝑇𝑣,𝑐

𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑖𝑛𝑔
+ 𝑇𝑣,𝑐

𝑤𝑎𝑖𝑡𝑖𝑛𝑔
+ 𝑇𝑣,𝑐

𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔
 (1) 

The value of 𝑇𝑣,𝑐
𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑖𝑛𝑔

 denotes the time required for EV to travel to the 

station. The EV indexed by 𝑣 and CS by 𝑐. 𝑇𝑣,𝑐
𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑖𝑛𝑔

= ∑
𝐷𝑖

𝑆𝑖
𝑖 , where 𝐷𝑖 denotes 

the distance of particular road segment 𝑖 (the way from the current position of the 

EV to the CS) and 𝑆𝑖 denotes the average speed in the 𝑖. Note that, in this study, we 
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supposed the charging system operator knows all road segments followed by the 

vehicle and its speed on each segment. 

However, the speed values could depend highly on the traffic. Also, the EV 

could stop for a while at some points of the route for whatever reasons, which will 

modify the time spent travelling. Knowing all these parameters is very difficult in 

a dynamic vehicular traffic context. Therefore, some simplifying assumptions are 

necessary in this study. For instance, we assume the average speed for EVS is 60k/h. 

The system could determine a minimal travelling time for an EV by proposing an 

available and closer CS considering the current position of that vehicle. 

The value of  𝑇𝑣,𝑐
𝑤𝑎𝑖𝑡𝑖𝑛𝑔

  denotes the waiting time , required for an EV to wait 

in the queue. The 𝑇𝑣,𝑐
𝑤𝑎𝑖𝑡𝑖𝑛𝑔

=
𝐿𝑞,𝑐

𝜆𝑐,𝑡
 , where 𝐿𝑞,𝑐 denotes the queue length and 𝜆𝑐,𝑡 

denotes the arrival rates of EVs to the station. The queue length depends on 𝜆𝑐,𝑡 and 

the average time a vehicle spends to charge its battery. The formulas are derived 

from basic queue theory for a M/M/c model [19], where the equivalent formulas: 

Lq = ρ2/(1-ρ), and traffic intensity ρ= λ/ µ. The value of 𝑇𝑣,𝑐
𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔

 denotes the 

charging time which is required for EV to complete the charging. The 𝑇𝑣,𝑐
𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔

=
𝐵𝑠𝑖𝑧𝑒(𝜎−𝐵𝑠𝑜𝑐(𝑡))

∂𝑐
𝑜 , where  𝐵𝑠𝑖𝑧𝑒 denotes the battery full size capacity and 𝐵𝑠𝑜𝑐(𝑡) 

denotes the battery SOC. ∂𝑐
𝑜 is the charging rate followed by charging mode 𝑜 (𝑜 = 

slow or fast). 𝜎 denotes the expected full percentage level of the battery.  

Charging Cost: refers to the expense of electricity consumed when 

recharging an EV battery. The charging cost of an EV can vary based on factors 

such as the energy prices, and the total amount of energy required to charge the 

battery. In order to reduce the charging cost, this work uses the TOU tariffs. This 

means EV owners are charged differently, depending on the time of day they charge 

their vehicle. Here, the electricity price varies over time, with higher prices during 

peak hours and lower prices during off-peak hours. This encourages EV owners to 

charge their vehicles during off-peak hours and reduce the strain on the grid during 

peak hours. The charging cost with applying TOU can be expressed as follows: 

∁𝑣,𝑐= {
 𝑝𝑜𝑓𝑓−𝑝𝑒𝑎𝑘,𝑐𝑙𝑎𝑠𝑠(𝑖) 𝐸𝑣,𝑐

𝑝𝑝𝑒𝑎𝑘,𝑐𝑙𝑎𝑠𝑠(𝑖) 𝐸𝑣,𝑐       
 (2) 

Where ∁𝑣,𝑐 denotes the charging cost. 𝐸𝑣,𝑐 is the amount of energy of the EV 

requires to be charged. 𝑝𝑐𝑙𝑎𝑠𝑠(𝑖),𝑜𝑓𝑓−𝑝𝑒𝑎𝑘 and 𝑝𝑝𝑒𝑎𝑘,𝑐𝑙𝑎𝑠𝑠(𝑖) , respectively, denote the 

pricing rates of charging in off-peak period and peak period for CS with a 𝑐𝑙𝑎𝑠𝑠(𝑖). 

Where 𝑐𝑙𝑎𝑠𝑠(𝑖) is the charging power rate for CS (e.g., fast, slow, regular). 

In this study, the proposed algorithm operates in collective optimisation 

mode. In this mode, the CCU collects charging requests from EVs over a certain 

period or until a certain number of requests are received, and then it processes all 
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the requests in a single run of the optimisation algorithm. This approach may lead 

to more efficient use of computational resources, but it might result in slightly 

outdated solutions if the system's state changes significantly during the collection 

period. Hence, the collection period should be tuned. Depending on the vehicular 

traffic conditions, it may change during the days of the week, during the day, etc. 

Optimising the collection period value could be another topic for future study. 

3.3.  The propose of multi-objective optimisation 

Typically, the user desires a low charging cost and a low service time, which 

are conflicts. A higher cost will be associated with shorter service time, and low 

cost will lead to longer service time. Hence, optimising them requires adopting one 

of the meta-heuristic multi-objective optimisation algorithms. Therefore, this 

research proposes the usage of NSGA-II  for optimising charging scheduling [20]. 

As a multi-objective optimisation algorithm, NSGA-II identifies trade-offs between 

minimising charging cost and service time by providing a set of Pareto-optimal 

solutions that cater to different decision-maker preferences. The algorithm's Pareto-

based ranking converges towards the true Pareto front, ensuring optimal solutions 

for the given problem. NSGA-II maintains diversity among solutions through the 

crowding distance metric, ensuring a wide spread of solutions representing various 

trade-offs between conflicting objectives. Its scalability, adaptability, and proven 

performance across various domains make it a suitable choice for tackling the 

complexities and self-conflicting nature of the CEV optimisation problem. 

In this propose, NSGA-II begins by initialising a population of random 

solutions P(0) to find a solution for the CEV problem. Each solution represents the 

assignment of EVs at a specific CS and is determined by a set of decision variables 

(e.g., travelling time, waiting time, charging time, and pricing rate) based on 

formulas (1) and (2). The fitness of a solution is evaluated based on the objectives 

of charging cost and service time. The objective values are calculated for each 

solution to determine its fitness. This propose aims to find solutions that offer a 

superior trade-off between charging cost and service time, identifying a set of non-

dominated solutions known as the Pareto front. 

To generate the offspring population Q(t), the algorithm selects parent 

solutions from P(t) based on their dominance rank and crowding distance. 

Crossover and mutation operators are applied to the decision variables of the parent 

solutions to create offspring solutions, which inherit characteristics from their 

parents while also introducing diversity. The objective values of the offspring 

solutions are evaluated and added to Q(t) until the desired population size (N) is 

reached. At the end of each generation, the current population P(t) is replaced by 

the offspring population Q(t), and the process continues until the maximum number 

of generations (G) is reached. The final population P(G) contains a set of Pareto-
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optimal solutions representing various trade-offs between the conflicting cost and 

service time objectives. 

Algorithm – Pseudocode of optimisation CEV problem using NSGA-II  

Input:  N, G,  𝑃𝑐 , 𝑃𝑚 

Output: Pareto-optimal solutions 

1: Initialise population P(0) of size N with random solutions 

2: Evaluate the objective values of each solution in P(0) 

3: t ← 0 

4: While t < G do 

5: Perform non-dominated sorting on P(t) to rank solutions based on dominance 

6: Calculate the crowding distance for each solution in P(t) 

7: Create an empty offspring population Q(t) 

8: While 

10: Apply crossover with probability 𝑃𝑐  to generate two offspring solutions 

11: Apply mutation with probability 𝑃𝑚to each offspring solution 

12: Evaluate the objective values of the offspring solutions 

13: Add offspring solutions to Q(t) 

14: End while 

15: P(t+1) ← Q(t) 

16: t ← t + 1 

17: End while 

18: Return Pareto-optimal solutions from the final population P(G) 

The NSGA-II algorithm is well-suited for the CEV optimisation problem 

due to its ability to efficiently handle multiple conflicting objectives and provide 

high-quality Pareto-optimal solutions. Its diversity preservation and convergence 

towards the true Pareto front make it a suitable choice for tackling the complexities 

of the problem, ultimately offering decision-makers a range of solutions that cater 

to different preferences and requirements.  

4. Experimental results and analysis  

This study's experimental evaluation was conducted using MATLAB 

2020b, a widely used numerical computing software known for its built-in 

optimisation and algorithm development tools. The setup encompassed a grid size 

of 10, with 100 EVs having battery capacities ranging from 40 to 100. We placed 

20 CSs at random locations, each varying in their charging rates, namely, slow (3.7 

kW), regular (22 kW), and fast (50 kW). The number of EVs waiting in the queue 

was set at 10. We devised a scenario wherein EVs were allocated during two distinct 

periods: off-peak and peak. Pricing was determined by the charging rate preference, 

setting rates at [0.10, 0.15, 0.20] for off-peak and [0.30, 0.35, 0.40] for peak periods.  

We employed multiple genetic parameters from the MATLAB toolbox for 

our case study. The study set varying mutation probabilities (0.08 and 0.1) and 
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crossover fractions (0.7 and 0.9) combined with different population sizes (50, 100, 

and 200). The aim was to analyse the sensitivity of both NSGA-II and GA to these 

parameters. The result was six distinct Pareto fronts corresponding to six individual 

experiments, as illustrated in Fig 2. This evaluation was chiefly to compare the 

efficiency of NSGA-II with the conventional GA, focusing primarily on charging 

cost and service time. Our findings revealed that increasing the population size from 

50 to 200, with other parameters constant, yielded no significant alterations in 

average charging cost or service time. The NSGA-II presented diverse, non-

dominated solutions regarding the two optimisation goals: charging cost and service 

time. Conversely, the conventional GA typically produced a singular solution with 

reduced service time and charging cost. The NSGA-II consistently offered more 

optimised solutions than GA, a limitation in the latter stemming from its 

predisposed objective weighting. 

 
                     (a)                                                            (b)                                                              (c) 

 
                               (d)                                                             (e)                                                               (f) 
 

Fig. 2. The Pareto front for the six experiments generated from NSGA-II and traditional GA with 

crossover fraction 0.7, mutation probability 0.08, and population size (a) 50 (b) 100 (c) 200 and 

crossover fraction 0.9, mutation probability 0.1, and population size (d) 50 (e) 100 (f) 200. 

Further clarity is provided through three histograms derived from our initial 

experiment. Fig. 3 showcases the solution from the conventional GA, with the 

majority of EVs allocated to stations 5 and 6 and the least (two EVs) spread across 

other stations. This uneven distribution is symptomatic of GA's inherent 

restrictions, revealing its inadequacy in optimising assignments evenly. The 

significant imbalance highlights the inherent challenge of fairly distributing EVs 

across CSs in a real-world scenario. 
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Fig. 3. The assignment of 100 EVs over 20 CSs generated by GA with crossover fraction 0.7, 

mutation probability 0.08, and population size 50 in terms of service time and cost. 

Fig. 4 represents the solution generated from NSGA-II. The assignments, in terms 

of service time (a) and charging cost (b), show a more balanced EV distribution 

across CSs. Multiple stations, for instance, stations 9, 17, and 19 in (a), received the 

highest EV count. The minimal EV count at station 15 could be influenced by 

factors like travel time or charging time, affecting service duration. In practical 

scenarios, the system follows assignment (a) for EVs preferring to charge during 

peak periods, typically EVs prioritising reduced service time. Conversely, for those 

requesting off-peak charging to reduce the costs, the system follows assignment (b). 

However, this equitable distribution of EVs and maintaining the charging system 

stability, achieved by NSGA-II, highlights its capability to consider various factors 

when making assignments, including charging rate and price rate preferences. 

 
   (a)                                                                       (b) 

 

Fig. 4. The assignment of 100 EVs over 20 CSs generated by NSGA-II with crossover fraction 0.7, 

mutation probability 0.08, and population size 50 in terms of (a) service time and (b) charging 

cost. 

Ultimately, we expanded the number of EVs to 200 to assess the efficacy of 

our proposed solution with a larger vehicle count. Fig. 5 (a) showcases the solution 

produced by GA, indicating noticeable improvements with the increased EV 

assignments. In contrast, solutions from NSGA-II are represented in Fig. 5 (b) for 

service time and in Fig. 5 (c) for charging cost. The NSGA-II solutions demonstrate 

a more even distribution than GA, ensuring a more efficient and sustainable 
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charging infrastructure. This underscores the superiority of NSGA-II in handling 

increased complexity and optimising multiple objectives simultaneously, 

particularly when scaling to real-world scenarios with a larger number of vehicles. 

This balance not only enhances the overall efficiency of the CSs but also aligns 

with the EV user's preferences, whether prioritising service time or charging cost. 

 
                     (a)                                                            (b)                                                              (c) 

Fig. 5. The assignment of 100 EVs distributed over  20 CSs during the off-peak period generated 

from GA and NSGA-II. 

5. Conclusions and future work 

This paper has presented the problem of CEVs from the perspective of 

multi-objective optimisation. It has formulated the problem as a bi-objective 

optimisation problem with two objectives, namely, service time and charging cost. 

We proposed the usage of NSGA-II as an optimisation algorithm. Unlike traditional 

GA optimisation, which uses a weighted average for more than one objective 

optimisation, NSGA-II brings several distinct advantages. Firstly, it offers decision-

makers a set of non-dominated solutions known as the Pareto front. It uses non-

dominated sorting and crowding distance for both exploitation and exploration. 

Comparing NSGA-II with traditional GA has shown its superiority in diversity and 

optimality. This leads to more flexibility for the decision-maker in assigning the 

EVs to the CS. Future work is to explore the usage of reinforcement learning, which 

is more capable of operating in a dynamic environment and being trained on the 

variable conditions of the environment.  
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